CS 441 Discrete Mathematics for CS Lecture 17

Sequences and summations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administration

- Homework 5 is out
 - due on Friday, February 24, 2006.
- Midterms will be distributed on Friday, February 24, 2006 at the end of the class

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Definition: A **sequence** is a function from a subset of the set of integers (typically the set $\{0,1,2,...\}$ or the set $\{1,2,3,...\}$ to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a term of the sequence.

Notation: $\{a_n\}$ is used to represent the sequence (note $\{\}$ is the same notation used for sets, so be careful). $\{a_n\}$ represents the ordered list a_1, a_2, a_3, \dots

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

Examples:

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence?

CS 441 Discrete mathematics for CS

Examples:

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence? 1, 4, 9, 16, 25, ...
- (2) $a_n = (-1)^n$, where n=0,1,2,3,...
 - Elements of the sequence?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

Examples:

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence? 1, 4, 9, 16, 25, ...
- (2) $a_n = (-1)^n$, where n=0,1,2,3,...
 - Elements of the sequence?

- 3) $a_n = 2^n$, where n=0,1,2,3,...
 - Elements of the sequence?

CS 441 Discrete mathematics for CS

Examples:

- (1) $a_n = n^2$, where n = 1,2,3...
 - What are the elements of the sequence? 1, 4, 9, 16, 25, ...
- (2) $a_n = (-1)^n$, where n=0,1,2,3,...
 - Elements of the sequence?

- 3) $a_n = 2^n$, where n=0,1,2,3,...
 - Elements of the sequence?

1, 2, 4, 8, 16, 32, ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Arithmetic progression

Definition: An **arithmetic progression** is a sequence of the form a, a+d,a+2d, ..., a+nd

where a is the *initial term* and d is *common difference*, such that both belong to R.

Example:

- $s_n = -1 + 4n$
- members:

CS 441 Discrete mathematics for CS

Arithmetic progression

Definition: An **arithmetic progression** is a sequence of the form a, a+d,a+2d, ..., a+nd

where a is the *initial term* and d is *common difference*, such that both belong to R.

Example:

- $S_n = -1 + 4n$
- members: -1, 3, 7, 11, ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Geometric progression

<u>Definition</u> A **geometric progression** is a sequence of the form:

$$a, ar, ar^2, ..., ar^k,$$

where a is the *initial term*, and r is the *common ratio*. Both a and r belong to R.

Example:

• $a_n = (\frac{1}{2})^n$ members:

CS 441 Discrete mathematics for CS

Geometric progression

<u>Definition</u> A **geometric progression** is a sequence of the form:

$$a, ar, ar^2, ..., ar^k,$$

where a is the *initial term*, and r is the *common ratio*. Both a and r belong to R.

Example:

• $a_n = (\frac{1}{2})^n$

members: $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

• Given a sequence, the process of finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: 1,3,5,7,9,
- What is the formula for the sequence?

CS 441 Discrete mathematics for CS

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: 1,3,5,7,9,
- What is the formula for the sequence?
- Each term is obtained by adding 2 to the previous term.

• What type of progression this suggest?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example:

- Assume the sequence: 1,3,5,7,9,
- What is the formula for the sequence?
- Each term is obtained by adding 2 to the previous term.
- 1, 1+2=3, 3+2=5, 5+2=7
- It suggests **the arithmetic progression**: a+nd with a=1 and d=2
 - $a_n = 1 + 2n$ or $a_n = 1 + 2n$

CS 441 Discrete mathematics for CS

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example 2:

- Assume the sequence: 1, 1/3, 1/9, 1/27, ...
- What is the sequence?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Sequences

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example 2:

- Assume the sequence: 1, 1/3, 1/9, 1/27, ...
- What is the sequence?
- The denominators are powers of 3.

$$1, 1/3 = 1/3, (1/3)/3 = 1/(3*3) = 1/9, (1/9)/3 = 1/27$$

• What type of progression this suggests?

CS 441 Discrete mathematics for CS

• Given a sequence finding a rule for generating the sequence is not always straightforward

Example 2:

- Assume the sequence: 1, 1/3, 1/9, 1/27, ...
- What is the sequence?
- The denominators are powers of 3.

1,
$$1/3 = 1/3$$
, $(1/3)/3 = 1/(3*3) = 1/9$, $(1/9)/3 = 1/27$

- This suggests a geometric progression: ark with a=1 and r=1/3
 - (1/3)ⁿ

CS 441 Discrete mathematics for CS