CS 441 Discrete Mathematics for CS Lecture 16

Congruencies

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Modular arithmetic

• In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: ?

CS 441 Discrete mathematics for CS

Modular arithmetic

• In computer science we often care about the remainder of an integer when it is divided by some positive integer.

Problem: Assume that it is a midnight. What is the time on the 24 hour clock after 50 hours?

Answer: the result is 2am

How did we arrive to the result:

- Divide 50 with 24. The reminder is the time on the 24 hour clock.
 - -50=2*24+2
 - so the result is 2am.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Congruency

Definition: If a and b are integers and m is a positive integer, then **a is congruent to b modulo n** if m divides a-b. We use the notation $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ to denote the congruency. If a and b are not congruent we write $\mathbf{a} \neq \mathbf{b} \pmod{\mathbf{m}}$.

Example:

• Determine if 17 is congruent to 5 modulo 6?

CS 441 Discrete mathematics for CS

Congruency

Definition: If a and b are integers and m is a positive integer, then **a is congruent to b modulo n** if m divides a-b. We use the notation $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ to denote the congruency. If a and b are not congruent we write $\mathbf{a} \neq \mathbf{b} \pmod{\mathbf{m}}$.

Example:

- Determine if 17 is congruent to 5 modulo 6?
- 17 5=12,
- 6 divides 12
- so 17 is congruent to 5 modulo 6.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Congruency

Theorem. If a and b are integers and m a positive integer. Then $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$.

Example:

- Determine if 17 is congruent to 5 modulo 6?
- $17 \mod 6 = \dots$

CS 441 Discrete mathematics for CS

Congruency

Theorem. If a and b are integers and m a positive integer. Then $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$.

Example:

- Determine if 17 is congruent to 5 modulo 6?
- $17 \mod 6 = 5$
- $5 \mod 6 = ...$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Congruency

Theorem. If a and b are integers and m a positive integer. Then $a \equiv b \pmod{m}$ if and only if $(a \mod m) = (b \mod m)$.

Example:

- Determine if 17 is congruent to 5 modulo 6?
- $17 \mod 6 = 5$
- $5 \mod 6 = 5$
- Thus 17 is congruent to 5 modulo 6.

CS 441 Discrete mathematics for CS

Congruencies: properties

Theorem 1. Let m be a positive integer. The integers a and b are congruent modulo m if and only if there exists an integer k such that a=b+mk.

Theorem2. Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then:

 $a+c \equiv b+d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Modular arithmetic in CS

Modular arithmetic and congruencies are used in CS:

- Pseudorandom number generators
 - Generate a sequence of random numbers from some interval
- Hash functions
 - identify how to map information that would need to a large sparse table into a small compact table
- Cryptology
 - Prevent other people from reading the transmitted messages

CS 441 Discrete mathematics for CS

- Any randomness in the program is implemented using random number generators that generate a sequence of random numbers from some interval
 - The chance of picking any number in the interval is uniform
- Pseudorandom number generators: use a simple formula to define the sequence:
 - The sequence looks like it was generated randomly
 - The next element in the sequence is a deterministic function of the previous element.
 - Typically based on the modulo operation.

Next: the Linear congruential method

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pseudorandom number generators

Linear congruential method

- We choose 4 numbers:
 - the modulus m,
 - multiplier a,
 - increment c, and
 - seed x_0 ,

such that 2 = < a < m, 0 = < c < m, $0 = < x_0 < m$.

- We generate a sequence of numbers $x_1, x_2, x_3, ..., x_n$ such that $0 = < x_n < m$ for all n by successively using the congruence:
 - $x_{n+1} = a(x_n + c) \mod m$

CS 441 Discrete mathematics for CS

Linear congruential method:

• $x_{n+1} = (a x_n + c) \mod m$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- x₃ =

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pseudorandom number generators

Linear congruential method:

•
$$x_{n+1} = a (x_n + c) \mod m$$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- x₄=

CS 441 Discrete mathematics for CS

Linear congruential method:

• $x_{n+1} = a (x_n + c) \mod m$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- $x_4 = 46 \mod 9 = 1$
- x₅ =

CS 441 Discrete mathematics for CS

M. Hauskrecht

Pseudorandom number generators

Linear congruential method:

•
$$x_{n+1} = a (x_n + c) \mod m$$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- $x_4 = 46 \mod 9 = 1$
- $x_5 = 11 \mod 9 = 2$
- $x_6 =$

CS 441 Discrete mathematics for CS

Linear congruential method:

• $x_{n+1} = a (x_n + c) \mod m$

Example:

- Assume: $m=9, a=7, c=4, x_0=3$
- $x_1 = 7*3+4 \mod 9=25 \mod 9=7$
- $x_2 = 53 \mod 9 = 8$
- $x_3 = 60 \mod 9 = 6$
- $x_4 = 46 \mod 9 = 1$
- $x_5 = 11 \mod 9 = 2$
- $x_6 = 18 \mod 9 = 0$
-

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

Encryption of messages.

- An idea: Shift letters in the message
 - e.g. A is shifted to D (a shift by 3)

How to represent the idea of a shift by 3?

• There are 26 letters in the alphabet. Assign each of them a number from 0,1, 2, 3, .. 25 according to the alphabetical order.

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

CS 441 Discrete mathematics for CS

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

A B C D E F G H I K L M N O P Q R S T U Y V X W Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH

_

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ
0 1 2 3 4 5 6 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - -(I)LIKE DISCRETE MATH

-**(L)**

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 16 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I(L)KE DISCRETE MATH
 - L0

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L (L

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 910 1 12 13 4 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L 01N

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

Encryption of messages using a shift by 3.

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- Encrypt message:
 - I LIKE DISCRETE MATH
 - L OLNH GLYFUHVH PDVK.

CS 441 Discrete mathematics for CS

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• What is method you would use to decode the message:

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$

CS 441 Discrete mathematics for CS

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJKLMNOPQRSTUYVXWZ

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$
 - L OLNH GLYFUHVH PDVK

_

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p+3) \mod 26$

Coding of letters:

ABCDEFGHIJKLMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 78 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$
 - -LOLNH GLYFUHVH PDVK

CS 441 Discrete mathematics for CS

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 19 20 21 22 23 24 25

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$
 - IONH GLYFUHVH PDVK
 - I (L)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Cryptology

How to decode the message?

- The encryption of the letter with an index p is represented as:
 - $f(p) = (p + 3) \mod 26$

Coding of letters:

ABCDEFGHIJK LMNOPQRSTUYVXWZ

- What is method would you use to decode the message:
 - $f^{-1}(p) = (p-3) \mod 26$
 - L OLNH GLYFUHVH PDVK
 - I LIKE DISCRETE MATH

CS 441 Discrete mathematics for CS