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Division

Let a be an integer and d a positive integer. Consider the task a/d .
Then there are unique integers, q and r, with 0 <=r < d, such that
a=dq-+r.

Definitions:

» ais called the dividend,

» dis called the divisor,

» qis called the quotient and

* 1 the remainder of the division.

Relations:
* gq=adivd, r=amodd
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Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest
integer d such that d | a and d | b is called the greatest common

divisor of a and b. The greatest common divisor is denoted as
gcd(a,b).

Examples:
+ gcd(24,36) =7
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Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest
integer d such that d | a and d | b is called the greatest common

divisor of a and b. The greatest common divisor is denoted as
gcd(a,b).

Examples:

+ gcd(24,36) =7

* Check 2,3,4,6,12 gcd(24,36) =12
* gcd(11,23)=7?
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Greatest common divisor

Definition: Let a and b are integers, not both 0. Then the largest
integer d such that d | a and d | b is called the greatest common

divisor of a and b. The greatest common divisor is denoted as
gcd(a,b).

Examples:
+ gcd(24,36) =7
» 12 (start with 2,3,4,6,12)
ged(11,23) =7
* 2 ways: 1) Check 2,3,4,5,6 ...
2) 11 is a prime so only the multiples of it are possible
* no positive integer greater than 1 that divides both numbers
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Greatest common divisor

A systematic way to find the gcd using factorization:

e Let a:plal p232 p3a3 . pkak and b= P1b1 p2b2 p3b3 . pkbk
. ng(&,b)z P min(al,bl) o min(a2,b2) D; min(a3,b3) e Px min(ak,bk)

Examples:

+ gcd(24,36) =7

o 24 =2%2%2%3=03"3
o 36=2%2%3%3=22"32
+ gcd(24,36) =
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Greatest common divisor

A systematic way to find the ged using factorization:
o Leta=p,®' p,2 ps® ... p& and b=p,* p,b2 p,b3 ... p. &
. gcd(a b): P min(al,bl) P, min(a2,b2) D; min(a3,b3) o Pr min(ak,bk)

Examples:

+ gcd(24,36) =7

o 24 =2%*2%3=23"3

o 36=2%2%3%3=22"32

¢ gcd(24,36) =223 =12
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as lem(a,b).

Example:
* Whatis lem(12,9) =?
* Give me a common multiple: ...
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as lem(a,b).

Example:

* Whatis lem(12,9) =?

* Give me a common multiple: ... 12*9=108
* Can we find a smaller number?
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Least common multiple

Definition: Let a and b are two positive integers. The least
common multiple of a and b is the smallest positive integer that
is divisible by both a and b. The least common multiple is
denoted as lem(a,b).

Example:

* Whatis lem(12,9) =?

* Give me a common multiple: ... 12*9=108
* Can we find a smaller number?

* Yes. Try 36. Both 12 and 9 cleanly divide 36.
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Least common multiple

A systematic way to find the lcm using factorization:

e Let a:plal p2a2 p3a3 L pkak and b= plbl p2b2 p3b3 L pkbk
. lcm(a,b): P, max(al,bl) o max(a2,b2) s max(a3,b3) o Pr max(ak,bk)

Example:

* Whatis lcm(12,9) =?
o 12 =2%2%3=02%3

o 9=3*3=32

e lem(12,9) =
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Least common multiple

A systematic way to find the gcd using factorization:

e Let a:plal p232 p3a3 . pkak and b= P1b1 p2b2 p3b3 . pkbk
. ng(&,b)z P max(al,bl) o max(a2,b2) D; max(a3,b3) e Px max(ak,bk)

Example:

* Whatis lem(12,9) =?

o 12 =2%2%3=02%3

¢ 0=3%3=32

* lem(12,9)=22*32=4*9=36
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Euclid algorithm

Finding the greatest common divisor requires factorization

. a:plal pzaZ p3a3 pkak’ b= plbl p2b2 p3b3 . pkbk
. gcd(a,b)= P min(al,bl) P, min(a2,b2) D; min(a3,b3) o Pr min(ak,bk)

» Factorization can be cumbersome and time consuming since we
need to find all factors of the two integers that can be very large.

* Luckily a more efficient method for computing the ged exists:
* Itis called Euclidean algorithm

— the method is known from ancient times and named after
Greek mathematician Euclid.
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
* First divide the larger number (287) by the smaller one (91)
* We get 287 =3%*91 +14
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).

 First divide the larger number (287) by the smaller one (91)
» We get 287 =3*91 +14

(1) Any divisor of 91 and 287 must also be a divisor of 14:
« 287- 3*91=14
« Why? [ak—-3bk]=14 - (a-3b)k=14 - (a-3b)=14/k
(must be an integer and thus k divides 14 ]
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
* First divide the larger number (287) by the smaller one (91)
* We get 287 =3%*91 +14

(1) Any divisor of 91 and 287 must also be a divisor of 14:
+ 287- 3*91=14
 Why?[ak-3bk]=14 - (a-3b)k=14 -> (a-3b)=14/k
(must be an integer and thus k divides 14 ]

(2) Any divisor of 91 and 14 must also be a divisor of 287

* Why? 287=3bk+dk > 287=k(3b+d) - 287 /k=3b+d)
< 287/k must be an integer
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Euclid algorithm

Assume two numbers 287 and 91. We want gcd(287,91).
* First divide the larger number (287) by the smaller one (91)
* We get 287 =3*91 +14

(1) Any divisor of 91 and 287 must also be a divisor of 14:
« 287 - 3*%91 =14
 [ak—3bk]=14 > (a-3b)k=14 -> (a-3b) = 14/k (must be
an integer and thus k divides 14 ]

(2) Any divisor of 91 and 14 must also be a divisor of 287

 Why? 287=3bk+dk > 287=k(3b+d) > 287/k=(3b
+d) € 287/k must be an integer

e But then gcd(287.91) = gcd(91.14)
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Euclid algorithm

* We know that gcd(287,91) = gcd(91,14)
» But the same trick can be applied again:
» gcd(91,14)
* 91 =14*%6+7
* and therefore
— gcd(91,14)=gcd(14,7)

* And one more time:
— ged(14,7) =7
— trivial
* The result: gcd(287,91) = ged(91,14)=gcd(14,7) =7
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Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

. gcd(666,558) 666=1%558 + ...

CS 441 Discrete mathematics for CS M. Hauskrecht




Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

. 2cd(666,558) 666=1%558 + 108
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Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

. gcd(666,5

= gcd(558,108) 558=...%108 + ...
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Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

: gcd(666,5

= gcd(558,108) 558=4 %108 + 18

CS 441 Discrete mathematics for CS

M. Hauskrecht

Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

. gcd(666,5

, e
-gcd<55
O

= gcd(108,18) 108=... *18 + ...
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Euclid algorithm

Example 1:
* Find the greatest common divisor of 666 & 558

: gcd(666,5

. /
= ged(558,108) sss=44108)(13 )
D=

= gcd(108,18) 108=6*18 + 0
=18
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Euclid algorithm
Example 2:

* Find the greatest common divisor of 286 & 503:

. gcd(503,286) 503=
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Euclid algorithm

Example 2:
* Find the greatest common divisor of 286 & 503:

. cd(503,286) 503=1%286 + 217
—gcd(286, 217) 286=
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Euclid algorithm
Example 2:

* Find the greatest common divisor of 286 & 503:

. gcd(503,286) 503=1%286 + 217
=gcd(286, 217) 286=1*217 + 69
=ged(217, 69) 217 =
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Euclid algorithm

Example 2:
* Find the greatest common divisor of 286 & 503:

. cd(503,286) 503=1%286 + 217
—gcd(286, 217) 286=1%217 + 69
—gcd(217, 69) 217 =3*%69 + 10
= 0¢d(69,10) 69 =
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Euclid algorithm
Example 2:

* Find the greatest common divisor of 286 & 503:

. pcd(503,286) 503=1%286 + 217
—gcd(286, 217) 286=1%217 + 69
—gcd(217, 69) 217 = 3*69 + 10
= gcd(69,10) 69 =6%10 +9

=gcd(10,9) 10=
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Euclid algorithm

Example 2:
* Find the greatest common divisor of 286 & 503:

* 2cd(503,286) 503=1*286 + 217
=gcd(286, 217) 286=1*217 + 69
=gcd(217, 69) 217 =3*%69 + 10
= gcd(69,10) 69 =6*10 +9

=gcd(10,9) 10=1*9 + 1

=gcd(9,1) =1

CS 441 Discrete mathematics for CS

M. Hauskrecht




