CS 441 Discrete Mathematics for CS Lecture 14

Integers and division

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Integers and division

- Integers:
 - Z integers {..., -2,-1, 0, 1, 2, ...}
 - Z⁺ positive integers $\{1, 2, ...\}$
- Part of discrete math that concerns integers and their properties are studied within the **number theory**
- Here, in this course we study the property of divisibility.

CS 441 Discrete mathematics for CS

Primes

Definition: A **prime** is a positive integer greater than 1 that is divisible only by 1 and by itself.

Examples: 2, 3, 5, 7, 11, ...

Why are primes important?

Fundamental theorem of Arithmetic:

 Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

• 12 =

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Definition: A **prime** is a positive integer greater than 1 that is divisible only by 1 and by itself.

Examples: 2, 3, 5, 7, 11, ...

Why are primes important?

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 =

CS 441 Discrete mathematics for CS

Primes

Definition: A **prime** is a positive integer greater than 1 that is divisible only by 1 and by itself.

Examples: 2, 3, 5, 7, 11, ...

Why are primes important?

Fundamental theorem of Arithmetic:

• Any positive integer greater than 1 can be expressed as a product of prime numbers.

Examples:

- 12 = 2*2*3
- 21 = 3*7
- Process of finding out factors of the product: factorization.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that **a divides b** if there is an integer c such that b = ac. When a divides b we say that **a is a** *factor* **of b** and that **b is** *multiple* **of a**. The fact that a divides b is denoted as **a** | **b.**

Examples:

• 4 | 24 True or False?

CS 441 Discrete mathematics for CS

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that **a divides b** if there is an integer c such that b = ac. When a divides b we say that **a is a** *factor* **of b** and that **b is** *multiple* **of a**. The fact that a divides b is denoted as **a** | **b**.

Examples:

- 4 | 24 True or False? True
 - 4 is a factor of 24
 - 24 is a multiple of 4
- 3 | 7 True or False?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Division

Definition: Assume 2 integers a and b, such that a =/0 (a is not equal 0). We say that a divides b if there is an integer c such that b = ac. When a divides b we say that a is a factor of b and that b is multiple of a. The fact that a divides b is denoted as a | b.

Examples:

- 4 | 24 True or False ? True
 - 4 is a factor of 24
 - 24 is a multiple of 4
- 3 | 7 True or False? False

CS 441 Discrete mathematics for CS

Divisibility

All integers divisible by d>0 can be enumerated as:

Properties:

- Let a, b, c be integers. Then the following hold:
 - 1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$
 - 2. if a | b then a | bc for all integers c
 - 3. if $a \mid b$ and $b \mid c$ then $a \mid c$

Proof of 1: if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Divisibility

All integers divisible by d>0 can be enumerated as:

Properties:

- Let a, b, c be integers. Then the following hold:
 - 1. if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$
 - 2. if a | b then a | bc for all integers c
 - 3. if a | b and b | c then a | c

Proof of 1: if $a \mid b$ and $a \mid c$ then $a \mid (b + c)$

- from the definition of divisibility we get:
- b=au and c=av where u,v are two integers. Then
- (b+c) = au + av = a(u+v)
- Thus a divides b+c.

CS 441 Discrete mathematics for CS

<u>Definition</u>: A positive integer p greater than 1 is called **a** *prime*, if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not a prime is called **a** *composite*.

Factorization of composites to primes:

- $100 = 2*2*5*5 = 2^2*5^2$
- 99 = ...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

<u>Definition</u>: A positive integer p greater than 1 is called a *prime*, if the only positive factors of p are 1 and p. A positive integer that is greater than 1 and is not a prime is called a *composite*.

Factorization of composites to primes:

- $100 = 2*2*5*5 = 2^2*5^2$
- $99 = 3*3*11 = 3^2*11$

Important question:

• How to determine whether the number is a prime or a composite?

CS 441 Discrete mathematics for CS

• How to determine whether the number is a prime or a composite?

A simple approach:

• Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find a proper divisor then n is a prime.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

A simple approach:

- Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.
- Is this the best we can do?

CS 441 Discrete mathematics for CS

 How to determine whether the number is a prime or a composite?

A simple approach (1):

- Let n be a number. To determine whether it is a prime we can test if any number x < n divides it. If yes it is a composite. If we test all numbers x < n and do not find the proper divisor then n is a prime.
- Is this the best we can do?
- No. The problem here is that we try to test all the numbers. But this is not necessary.
- Every composite factorizes to a product of primes. So it is sufficient to test only the primes x < n to determine the primality of n.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find the proper divisor then n is a prime.

CS 441 Discrete mathematics for CS

• How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find the proper divisor then n is a prime.
- If *n* is relatively small the test is good because we can enumerate (memorize) all small primes
- But if *n* is large there can be larger not obvious primes

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

• How to determine whether the number is a prime or a composite?

Approach 2:

- Let n be a number. To determine whether it is a prime we can test if any prime number x < n divides it. If yes it is a composite. If we test all primes x < n and do not find the proper divisor then n is a prime.
- If *n* is relatively small the test is good because we can enumerate (memorize) all small primes
- But if *n* is large there can be larger not obvious primes

Example: Is 91 a prime number?

- Easy primes 2,3,5,7,11,13,17,19 ..
- But how many primes are there that are smaller than 97

CS 441 Discrete mathematics for CS

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

CS 441 Discrete mathematics for CS

Theorem: If n is a composite then n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes and composites

Theorem: If n is a composite that n has a prime divisor less than or equal to \sqrt{n} .

Approach 3:

• Let *n* be a number. To determine whether it is a prime we can test if any prime number $x < \sqrt{n}$ divides it.

Example 1: Is 101 a prime?

- Primes smaller than $\sqrt{101} = 10.xxx$ are: 2,3,5,7
- 101 is not divisible by any of them
- Thus 101 is a prime

Example 2: Is 91 a prime?

- Primes smaller than $\sqrt{97}$ are: 2,3,5,7
- 91 is divisible by 7
- Thus 91 is a composite

CS 441 Discrete mathematics for CS

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Primes

Question: How many primes are there?

Theorem: There are infinitely many primes.

Proof by Euclid.

- Proof by contradiction:
 - Assume there is a finite number of primes: $p_1,p_2,\,\ldots p_n$
- Let $Q = p_1 p_2 ... p_n + 1$ be a number.
- None of the numbers $p_1, p_2, ..., p_n$ divides the number Q.
- This is a contradiction since we assumed that we have listed all primes.

CS 441 Discrete mathematics for CS

Division

Let a be an integer and d a positive integer. Then there are unique integers, q and r, with $0 \le r < d$, such that

$$a = dq + r$$
.

Definitions:

- a is called the **dividend**,
- d is called the divisor,
- q is called the quotient and
- r the **remainder** of the division.

Relations:

• $q = a \operatorname{div} d$, $r = a \operatorname{mod} d$

CS 441 Discrete mathematics for CS