CS 441 Discrete Mathematics for CS Lecture 12

Functions

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Functions

• <u>Definition</u>: Let A and B be two sets. A function from A to B, denoted **f**: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

CS 441 Discrete mathematics for CS

Functions

Definition: Let A and B be two sets. A function from A to B, denoted f: A → B, is an assignment of exactly one element of B to each element of A. We write f(a) = b to denote the assignment of b to an element a of A by the function f.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f a function?

CS 441 Discrete mathematics for CS

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume f is defined as:
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f a function?
- Yes. since f(1)=c, f(2)=a, f(3)=c. each element of A is assigned an element from B

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as
 - $1 \rightarrow c$
 - $1 \rightarrow b$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is g a function?

CS 441 Discrete mathematics for CS

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 2:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
- Assume g is defined as
 - $1 \rightarrow c$
 - $1 \rightarrow b$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is g a function?
- No. g(1) = is assigned both c and b.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- 0 **→** ?

CS 441 Discrete mathematics for CS

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$
- 1→ ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$
- 1 → 1
- $2 \rightarrow ?$

CS 441 Discrete mathematics for CS

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$

 $3 \rightarrow ?$

- 1 → 1
- $2 \rightarrow 2$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Representing functions

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:
- $0 \rightarrow 0$

 $3 \rightarrow 0$

• 1> 1

 $4 \rightarrow ?$

• $2 \rightarrow 2$

CS 441 Discrete mathematics for CS

Representations of functions:

- 1. Explicitly state the assignments in between elements of the two sets
- 2. Compactly by a formula. (using 'standard' functions)

Example 3:

- $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$
- Define h: $A \rightarrow B$ as:
 - $h(x) = x \mod 3$.
 - (the result is the remainder after the division by 3)
- Assignments:

• $0 \rightarrow 0$

 $3 \rightarrow 0$

1 → 1

4 → 1

• $2 \rightarrow 2$

...

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important sets in discrete math

<u>Definitions</u>: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?

CS 441 Discrete mathematics for CS

Important sets in discrete math

Definitions: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important sets in discrete math

<u>Definitions</u>: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is <u>the</u> image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f?

Important sets in discrete math

<u>Definitions</u>: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f? $\{1,2,3\}$
- Codomain of f?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Important sets in discrete math

Definitions: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f? {1,2,3}
- Codomain of f? {a,b,c}
- Range of f?

Important sets in discrete math

Definitions: Let f be a function from A to B. We say that A is the **domain** of f and B is the **codomain** of f. If f(a) = b, we say that **b is the image of a** and **a is a pre-image of b**. **The range of f** is the set of all images of elements of A. Also, if f is a function from A to B, we say f maps A to B.

Example: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Assume f is defined as: $1 \rightarrow c$, $2 \rightarrow a$, $3 \rightarrow c$
- What is the image of 1?
- $1 \rightarrow c$ c is the image of 1
- What is the pre-image of a?
- $2 \rightarrow a$ 2 is <u>a</u> pre-image of a.
- Domain of f? $\{1,2,3\}$
- Codomain of f? {a,b,c}
- Range of f? {a,c}

CS 441 Discrete mathematics for CS

M. Hauskrecht

Image of a subset

<u>Definition</u>: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$ and $f: 1 \to c, 2 \to a, 3 \to c$
- Let $S = \{1,3\}$ then image f(S) = ?

CS 441 Discrete mathematics for CS

Image of a subset

<u>Definition</u>: Let f be a function from set A to set B and let S be a subset of A. The image of S is a subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that $f(S) = \{ f(s) \mid s \in S \}$.

Example:

- Let A = $\{1,2,3\}$ and B = $\{a,b,c\}$ and f: $1 \to c$, $2 \to a$, $3 \to c$
- Let $S = \{1,3\}$ then image $f(S) = \{c\}$.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternative: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

CS 441 Discrete mathematics for CS

Injective function

<u>Definition</u>: A function f is said to be **one-to-one**, **or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an **injection if it is one-to-one**.

Alternate: A function is one-to-one if and only if $f(x) \neq f(y)$, whenever $x \neq y$. This is the contrapositive of the definition.

Not injective

Injective function

CS 441 Discrete mathematics for CS

M. Hauskrecht

Injective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one?

CS 441 Discrete mathematics for CS

Injective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- · Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since f(1) = f(3) = c, and $1 \neq 3$.

Example 2: Let $g: Z \to Z$, where g(x) = 2x - 1.

• Is g is one-to-one (why?)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Injective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $-1 \rightarrow c$
 - $-2 \rightarrow a$
 - $-3 \rightarrow c$
- Is f one to one? No, it is not one-to-one since f(1) = f(3) = c, and $1 \neq 3$.

Example 2: Let $g: Z \to Z$, where g(x) = 2x - 1.

- Is g is one-to-one (why?)
- Yes.
- Suppose g(a) = g(b), i.e., 2a 1 = 2b 1 => 2a = 2b $\Rightarrow a = b$.

CS 441 Discrete mathematics for CS

Surjective function

<u>Definition</u>: A function f from A to B is called **onto**, or **surjective**, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b.

Alternative: all co-domain elements are covered

CS 441 Discrete mathematics for CS

M. Hauskrecht

Surjective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f onto?

CS 441 Discrete mathematics for CS

Surjective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f onto?
- No. f is not onto, since $b \in B$ has no pre-image.

Example 2: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h onto function?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Surjective functions

Example 1: Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$

- Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow c$
- Is f an onto?
- No. f is not onto, since $b \in B$ has no pre-image.

Example 2: $A = \{0,1,2,3,4,5,6,7,8,9\}, B = \{0,1,2\}$

- Define h: A \rightarrow B as h(x) = x mod 3.
- Is h an onto function?
- Yes. h is onto since a pre-image of 0 is 6, a pre-image of 1 is 4, a pre-image of 2 is 8.

CS 441 Discrete mathematics for CS

Bijective functions

<u>Definition</u>: A function f is called **a bijection** if it is **both one-to-one and onto**.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bijective functions

Example 1:

- Let $A = \{1,2,3\}$ and $B = \{a,b,c\}$
 - Define f as
 - $1 \rightarrow c$
 - $2 \rightarrow a$
 - $3 \rightarrow b$
- Is f is a bijection? **Yes.** It is both one-to-one and onto.
- **Note:** Let f be a function from a set A to itself, where A is finite. f is one-to-one if and only if f is onto.
- This is not true for A an infinite set. Define $f: Z \to Z$, where f(z) = 2 * z. f is one-to-one but not onto (3 has no pre-image).

CS 441 Discrete mathematics for CS

Bijective functions

Example 2:

- Define $g: W \to W$ (whole numbers), where $g(n) = \lfloor n/2 \rfloor$ (floor function).
 - $0 \rightarrow [0/2] = [0] = 0$
 - $1 \rightarrow [1/2] = [1/2] = 0$
 - $2 \rightarrow [2/2] = [1] = 1$
 - $3 \rightarrow [3/2] = [3/2] = 1$
- ...
- Is g a bijection?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Bijective functions

Example 2:

- Define $g: W \to W$ (whole numbers), where $g(n) = \lfloor n/2 \rfloor$ (floor function).
 - $0 \to [0/2] = [0] = 0$
 - $1 \rightarrow [1/2] = [1/2] = 0$
 - $2 \rightarrow [2/2] = [1] = 1$
 - $3 \rightarrow [3/2] = [3/2] = 1$
- •
- Is g a bijection?
 - No. g is onto but not 1-1 (g(0) = g(1) = 0 however 0 ≠ 1.

CS 441 Discrete mathematics for CS