Sets and set operations

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Set

- **Definition**: A set is a (unordered) collection of objects. These objects are sometimes called **elements** or **members** of the set. (Cantor's naive definition)

- **Examples**:
 - **Vowels in the English alphabet**

 \[V = \{ \text{a, e, i, o, u} \} \]

 - **First seven prime numbers**.

 \[X = \{ 2, 3, 5, 7, 11, 13, 17 \} \]
Representing sets

Representing a set:
1) Listing the members.
2) Definition by property, using set builder notation
\(\{x | x \text{ has property } P \} \).

Example:
- Even integers between 50 and 63.
 1) \(E = \{50, 52, 54, 56, 58, 60, 62\} \)
 2) \(E = \{x | 50 \leq x < 63, \text{x is an even integer}\} \)

If enumeration of the members is hard we often use ellipses.

Example: a set of integers between 1 and 100
- \(A = \{1,2,3, \ldots, 100\} \)

Important sets in discrete math

- **Natural numbers:**
 - \(N = \{0,1,2,3, \ldots\} \)

- **Integers**
 - \(Z = \{\ldots, -2,-1,0,1,2, \ldots\} \)

- **Positive integers**
 - \(Z^+ = \{1,2,3, \ldots\} \)

- **Rational numbers**
 - \(Q = \{p/q | p \in Z, q \in Z, q \neq 0\} \)

- **Real numbers**
 - \(R \)
Special sets

- **Special sets:**
 - The universal set is denoted by \(U \): the set of all objects under the consideration.
 - The empty set is denoted as \(\emptyset \) or \{ \}.

Venn diagrams

- A set can be visualized using **Venn Diagrams**:
 - \(V=\{ A, B, C \} \)
A Subset

- **Definition:** A set \(A \) is said to be a **subset** of \(B \) if and only if every element of \(A \) is also an element of \(B \). We use \(A \subseteq B \) to indicate **\(A \) is a subset of \(B \)**.

- Alternate way to define \(A \) is a subset of \(B \):
 \[
 \forall x \ (x \in A) \rightarrow (x \in B)
 \]

Empty set/Subset properties

Theorem \(\emptyset \subseteq S \)

- **Empty set is a subset of any set.**

Proof:
- Recall the definition of a subset: all elements of a set \(A \) must be also elements of \(B \): \(\forall x \ (x \in A) \rightarrow (x \in B) \).
- We must show the following implication holds for any \(S \)
 \[
 \forall x \ (x \in \emptyset) \rightarrow (x \in S)
 \]
- ?
Empty set/Subset properties

Theorem $\emptyset \subseteq S$

- Empty set is a subset of any set.

Proof:

- Recall the definition of a subset: all elements of a set A must be also elements of B: $\forall x (x \in A \implies x \in B)$.
- We must show the following implication holds for any S

 $\forall x (x \in \emptyset \implies x \in S)$

- Since the empty set does not contain any element, $x \in \emptyset$ is always **False**
- Then the implication is **always True**.

End of proof

Subset properties

Theorem: $S \subseteq S$

- Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x (x \in A \implies x \in B)$.
- Applying this to S we get:

 $\forall x (x \in S \implies x \in S)$ …
Subset properties

Theorem: $S \subseteq S$

- Any set S is a subset of itself

Proof:

- the definition of a subset says: all elements of a set A must be also elements of B: $\forall x (x \in A \rightarrow x \in B)$.
- Applying this to S we get:
- $\forall x (x \in S \rightarrow x \in S)$ which is trivially True
- End of proof

Note on equivalence:

- Two sets are equal if each is a subset of the other set.

A proper subset

Definition: A set A is said to be a **proper subset** of B if and only if $A \subseteq B$ and $A \neq B$. We denote that A is a proper subset of B with the notation $A \subset B$.

![Diagram of sets A and B within set U](image)
A proper subset

Definition: A set A is said to be a proper subset of B if and only if $A \subseteq B$ and $A \neq B$. We denote that A is a proper subset of B with the notation $A \subset B$.

Example: $A = \{1,2,3\}$ $B = \{1,2,3,4,5\}$
Is: $A \subset B$? Yes.
Cardinality

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say S is a finite set and that n is the **cardinality of** S. The cardinality of S is denoted by $|S|$.

Examples:
- $V=\{1, 2, 3, 4, 5\}$

 $|V| = ?$

- $A=\{1, 2, 3, 4, \ldots, 20\}$

 $|A| = ?$
Cardinality

Definition: Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say S is a finite set and that n is the **cardinality of S**. The cardinality of S is denoted by $|S|$.

Examples:
- $V = \{1, 2, 3, 4, 5\}$
 $|V| = 5$
- $A = \{1, 2, 3, 4, ..., 20\}$
 $|A| = 20$
- $|\emptyset| = 0$
Infinite set

Definition: A set is **infinite** if it is not finite.

Examples:
- The set of natural numbers is an infinite set.
 \[N = \{0, 1, 2, 3, \ldots \} \]
- The set of reals is an infinite set.

Power set

Definition: Given a set \(S \), the **power set** of \(S \) is the set of all subsets of \(S \). The power set is denoted by \(P(S) \).

Examples:
- Assume an empty set \(\emptyset \)
- What is the power set of \(\emptyset \)? \(P(\emptyset) = ? \)
Power set

Definition: Given a set S, the power set of S is the set of all subsets of S. The power set is denoted by $P(S)$.

Examples:
- Assume an empty set \emptyset
- What is the power set of \emptyset? $P(\emptyset) = \{\emptyset\}$
- What is the cardinality of $P(\emptyset)$? $|P(\emptyset)| = 1$.
- Assume set $\{1\}$
- $P(\{1\}) = ?$
Power set

Definition: Given a set S, the power set of S is the set of all subsets of S. The power set is denoted by $P(S)$.

Examples:
- Assume an empty set \emptyset.
- What is the power set of \emptyset? $P(\emptyset) = \{ \emptyset \}$
- What is the cardinality of $P(\emptyset)$? $|P(\emptyset)| = 1$.

- Assume set $\{1\}$
- $P(\{1\}) = \{ \emptyset, \{1\} \}$
- $|P(\{1\})| = 2$
Power set

- \(P(\{1\}) = \{\emptyset, \{1\}\} \)
- \(|P(\{1\})| = 2\)

- Assume \(\{1,2\}\)
- \(P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}\)
- \(|P(\{1,2\})| = ?\)
Power set

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$

- Assume $\{1,2\}$
- $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|P(\{1,2\})| = 4$

- Assume $\{1,2,3\}$
- $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- $|P(\{1,2,3\})| = ?$
Power set

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $|P(\{1\})| = 2$

- Assume $\{1,2\}$
- $P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $|P(\{1,2\})| = 4$

- Assume $\{1,2,3\}$
- $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- $|P(\{1,2,3\})| = 8$

- If S is a set with $|S| = n$ then $|P(S)| = 2^n$.

N-tuple

- Sets are used to represent unordered collections.
- Ordered-n tuples are used to represent ordered collections.

Definition: An ordered n-tuple $(x_1, x_2, ..., x_N)$ is the ordered collection that has x_1 as its first element, x_2 as its second element, ..., and x_N as its N-th element, $N \geq 2$.

Example:

- Coordinates of a point in the 2-D plane $(12, 16)$
Cartesian product

Definition: Let S and T be sets. The **Cartesian product of S and T**, denoted by $S \times T$, is the set of all ordered pairs (s,t), where $s \in S$ and $t \in T$. Hence,

$$S \times T = \{ (s,t) \mid s \in S \land t \in T \}.$$

Examples:

- $S = \{1,2\}$ and $T = \{a,b,c\}$
- $S \times T = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$
- $T \times S = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$
- Note: $S \times T \neq T \times S$!!!!