CS 441 Discrete Mathematics for CS Lecture 1

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 441 Discrete mathematics for CS

M. Hauskrecht

Course administrivia

Instructor: Milos Hauskrecht

5329 Sennott Square *milos@cs.pitt.edu*

TA: Jaing Zheng

6501 Sennott Square, *jzheng@cs.pitt.edu*

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs441/

CS 441 Discrete mathematics for CS

Logic

- Logic:
 - defines a formal language for logical reasoning
- A tool that helps us to understand how to construct a valid argument
- · Logic Defines:
 - the meaning of statements
 - the rules of logical inference

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)

CS 441 Discrete mathematics for CS

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - 5 + 2 = 8.
 - (F)
 - It is raining today.
 - ?

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - (either T or F)

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - . 9

CS 441 Discrete mathematics for CS

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - ?

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.

• ?

CS 441 Discrete mathematics for CS

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

CS 441 Discrete mathematics for CS

M. Hauskrecht

Composite statements

- More complex propositional statements can be build from the elementary statements using **logical connectives**.
- Logical connectives:
 - Negation
 - Conjunction
 - Disjunction
 - Exclusive or
 - Implication
 - Biconditional

CS 441 Discrete mathematics for CS

Negation

• <u>Defn</u>: Let p be a proposition. The statement "It is not the case that p." is another proposition, called the <u>negation of p</u>. The negation of p is denoted by ¬p and read as "not p."

• Examples:

- It is not the case that Pitt is located in the Oakland section of Pittsburgh.
- $-5+2 \neq 8$.
- 10 is **not** a prime number.
- It is **not** the case that buses stop running at 9:00pm.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Negation

- Negate the following propositions:
 - It is raining today.

• ?

CS 441 Discrete mathematics for CS

Negation

- Negate the following propositions:
 - It is raining today.
 - It is not raining today.
 - 2 is a prime number.
 - ?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Negation

- Negate the following propositions:
 - It is raining today.
 - It is not raining today.
 - 2 is a prime number.
 - 2 is not a prime number
 - There are other life forms on other planets in the universe.
 - ?

CS 441 Discrete mathematics for CS

Negation

- Negate the following propositions:
 - It is raining today.
 - It is not raining today.
 - 2 is a prime number.
 - 2 is not a prime number
 - There are other life forms on other planets in the universe.
 - It is not the case that there are other life forms on other planets in the universe.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Negation

 A truth table displays the relationships between truth values (T or F) of propositions.

р	¬р
Т	F
F	Т

CS 441 Discrete mathematics for CS

Conjunction

<u>Definition</u>: Let p and q be propositions. The proposition "p and q" denoted by p ∧ q, is true when both p and q are true and is false otherwise. The proposition p ∧ q is called the conjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh and 5 +
 2 = 8
- It is raining today and 2 is a prime number.
- -2 is a prime number and $5+2 \neq 8$.
- 13 is a perfect square and 9 is a prime.

CS 441 Discrete mathematics for CS

M. Hauskrecht

Disjunction

<u>Definition</u>: Let p and q be propositions. The proposition "p or q" denoted by p v q, is false when both p and q are false and is true otherwise. The proposition p v q is called the disjunction of p and q.

• Examples:

- Pitt is located in the Oakland section of Pittsburgh or 5 + 2
 = 8.
- It is raining today or 2 is a prime number.
- 2 is a prime number or $5 + 2 \neq 8$.
- 13 is a perfect square or 9 is a prime.

CS 441 Discrete mathematics for CS

Truth tables

- · Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p ∧ q	p ∨ q
Т	Т		
Т	F		
F	Т		
F	F		

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either \underline{p} or \underline{q} or both are true).

CS 441 Discrete mathematics for CS

M. Hauskrecht

Truth tables

- Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p ∧ q	p ∨ q
Т	Т	Т	
Т	F	F	
F	Т	F	
F	F	F	

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either \underline{p} or \underline{q} or \underline{both} are true).

CS 441 Discrete mathematics for CS

Truth tables

- · Conjunction and disjunction
- Four different combinations of values for p and q

р	q	p ∧ q	p ∨ q
Т	T	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

• NB: $p \lor q$ (the or is used inclusively, i.e., $p \lor q$ is true when either \underline{p} or \underline{q} or \underline{both} are true).

CS 441 Discrete mathematics for CS

M. Hauskrecht

Exclusive or

• <u>Definition</u>: Let p and q be propositions. The proposition "p exclusive or q" denoted by p ⊕ q, is true when exactly one of p and q is true and is false otherwise.

р	q	p ⊕ q
Т	Т	
Т	F	
F	Т	
F	F	

CS 441 Discrete mathematics for CS

Exclusive or

• <u>Definition</u>: Let p and q be propositions. The proposition "p exclusive or q" denoted by p ⊕ q, is true when exactly one of p and q is true and is false otherwise.

р	q	p ⊕ q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implication

- <u>Defn</u>: Let p and q be propositions. The proposition "p implies q" denoted by p → q is called implication. It is false when p is true and q is false and is true otherwise.
- In p → q, p is called the hypothesis and q is called the conclusion.

р	q	$p \rightarrow q$
Т	T	
Т	F	
F	Т	
F	F	

CS 441 Discrete mathematics for CS

- <u>Defn</u>: Let p and q be propositions. The proposition "p implies q" denoted by p → q is called implication. It is false when p is true and q is false and is true otherwise.
- In p → q, p is called the hypothesis and q is called the conclusion.

р	q	$p \rightarrow q$
T	Т	Т
Т	F	F
F	Т	Т
F	F	Т

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implication

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p
- Examples:
 - if the moon is made of green cheese then 2 is a prime.
 - What is the truth value?
 - if today is monday then 2 * 3 = 8.
 - What is the truth value?

CS 441 Discrete mathematics for CS

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if the moon is made of green cheese then 2 is a prime.
 - If F then T?
- if today is monday then 2 * 3 = 8.
 - What is the truth value?

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implication

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if the moon is made of green cheese then 2 is a prime.
 - T
- if today is monday then 2 * 3 = 8.
 - What is the truth value?

CS 441 Discrete mathematics for CS

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if the moon is made of green cheese then 2 is a prime.
 - T
- if today is monday then 2 * 3 = 8.
 - If T then F

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implication

- $p \rightarrow q$ is read in a variety of equivalent ways:
 - if p then q
 - p only if q
 - p is sufficient for q
 - q whenever p

• Examples:

- if the moon is made of green cheese then 2 is a prime.
 - T
- if today is friday then 2 * 3 = 8.
 - F

- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- The **inverse** of $.p \rightarrow q$ is $\neg p \rightarrow \neg q$
- Examples:
 - If it snows, the traffic moves slowly.
 - p: it snows q: traffic moves slowly.
 - $p \rightarrow q$
 - The converse:

If the traffic moves slowly then it snows.

• $q \rightarrow p$

CS 441 Discrete mathematics for CS

M. Hauskrecht

Implication

- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- The **inverse** of $.p \rightarrow q$ is $\neg p \rightarrow \neg q$
- Examples:
 - If it snows, the traffic moves slowly.
 - The contrapositive:
 - If the traffic does not move slowly then it does not snow.
 - $\neg q \rightarrow \neg p$
 - The inverse:
 - If does not snow the traffic moves quickly.
 - $\neg p \rightarrow \neg q$

CS 441 Discrete mathematics for CS