Learning Models of Similarity: Metric and Kernel Learning

Eric Heim, University of Pittsburgh
Features MUST be “good” for a model to perform a task!
Standard Machine Learning Pipeline

Manually-Tuned Features → Machine Learning Model → Desired Output for Task
Standard Machine Learning Pipeline

Learned Model of Similarity → Machine Learning Model → Desired Output for Task
How to Learn a Similarity Model?

• Inputs:
 • Objects as Features
 • \(x_i \in \mathbf{X} \subset \mathbb{R}^d \)
 • Constraints
 • Similarity/Dissimilarity
 • \(x_i, x_j \in S \), \(x_i, x_k \)
 • Set/class membership
 • \(x_i \in A \), \(x_j \in B \)
 • Relative
 • \(x_i \) is more similar to \(x_j \) than \(x_k \)

• Tasks
 • Classification, regression, clustering, ranking, etc.

• Methods:
 • What we will focus on throughout the talk.
Outline

• Methods
 • Mahalanobis Distance Metric Learning
 • Kernel Learning
 • Multiple Kernel Learning

• Current Trends
 • Representation Learning
• Mahalanobis Distance:
 \[d_\Sigma(x, y) = (x - y)^T \Sigma^{-1} (x - y) \]

• Generalized Mahalanobis Distance Metric:
 \[d_M(x, y) = (x - y)^T M (x - y) \]

• \(d_M \) defines the squared Euclidean distance after a linear transformation.
 \[
 d_M(x, y) = (x - y)^T M (x - y) \\
 = (x - y)^T L^T L (x - y) \\
 = (Lx - Ly)^T (Lx - Ly) \\
 = d^2(Lx, Ly)
 \]

• If we learn \(M \) so that the distances between observed points are “good”, then the same distance metric can be applied to unobserved points.

• Note: \(M \) must be positive semidefinite (PSD) (\(M \in S_{d\times d}^+ \))
MMC (Xing et al., 2003)

• **Main idea**: If initial features are bad for clustering, provide an easy way to refine space given feedback.

• **Input**:

\[\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \in \mathbb{R}^d \]

\[S = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are similar}\} \]

\[D = \{(x_k, x_l) | x_k \text{ and } x_l \text{ are dissimilar}\} \]

• **Output**:

\[\mathbf{M} \in S_+^{d \times d} \]
MMC (Xing et al., 2003)

\[
\max_M \sum_{(x_k, x_l) \in D} d_M(x_k, x_l)
\]

\[
\sum_{(x_i, x_j) \in S} d_M(x_i, x_j) \leq 1, M \in S_{+}^{d \times d}
\]

Algorithm:

1. Take objective gradient step w.r.t. \(M \)
2. Iterate until \(M \) converges
 1. Project \(M \) onto feasible region of similarity constraints
 2. Project \(M \) onto PSD cone
3. Iterate 1-2 until convergence
MMC (Xing et al., 2003)

\[
\begin{aligned}
\text{max} & \quad \sum_{(x_k, x_l) \in D} d_M(x_k, x_l) \\
\text{s.t} & \quad \sum_{(x_i, x_j) \in S} d_M(x_i, x_j) \leq 1, \quad M \in S^{dx}_{+}
\end{aligned}
\]

Algorithm:

1. Take objective gradient step w.r.t. M
2. Iterate until M converges
 1. Project M onto feasible region of similarity constraints
 2. Project M onto PSD cone \((O(d^3)\) operation)
3. Iterate 1-2 until convergence
LMNN (Weinberger et al., 2005)

• **Main idea**: Learn a metric for k nearest neighbor classification, but without having constraints over every pair of points.
 • Instead, ensure local neighborhoods contain only objects of the same class.

• **Input**:
 $$x_1, x_2, \ldots, x_n \in \mathbb{R}^d$$
 $$T = \{ \forall x_i (x_i, x_j) | x_j \text{ is a "target neighbor"} \}$$
 $$I = \{ \forall x_i (x_i, x_j, x_l) | x_j \text{ is a "target neighbor" and } x_l \text{ is an "impostor"} \}$$

• **Output**:
 $$M \in S_{+}^{d \times d}$$
LMNN (Weinberger et al., 2005)
LMNN (Weinberger et al., 2005)

\[\varepsilon_{\text{pull}}(\mathbf{M}) = \sum_{(x_i, x_j) \in T} d_M(x_i, x_j) \]

\[\varepsilon_{\text{push}}(\mathbf{M}) = \sum_{(x_i, x_j, x_l) \in I} [1 + d_M(x_i, x_j) - d_M(x_i, x_l)] \]

\[\min_{\mathbf{M}} (1 - \mu) \varepsilon_{\text{pull}}(\mathbf{M}) + \mu \varepsilon_{\text{push}}(\mathbf{M}) \]

s. t. \(\mathbf{M} \in S_{+}^{d \times d} \)

Algorithm (Works with \(\mathbf{L} \) not \(\mathbf{M} \)):

1. Take objective gradient step w.r.t. \(\mathbf{L} \)
2. Update impostor set
3. Iterate 1-2 until convergence
LMNN (Weinberger et al., 2005)

\[\varepsilon_{\text{pull}}(M) = \sum_{(x_i, x_j) \in T} d_M(x_i, x_j)\]

\[\varepsilon_{\text{push}}(M) = \sum_{(x_i, x_j, x_l) \in I} [1 + d_M(x_i, x_j) - d_M(x_i, x_l)]\]

\[
\min_{M} (1 - \mu) \varepsilon_{\text{pull}}(M) + \mu \varepsilon_{\text{push}}(M)
\]

s. t. \(M \in S_{+}^{d \times d} \)

Algorithm (Works with \(L \) not \(M \)):

1. Take objective gradient step w.r.t. \(L \)
2. Update impostor set every \(p \) iterations
3. Iterate 1-2 until convergence
Other Considerations

• Regularization?
 • Frobenius Norm
 • Trace (= trace/nuclear-norm)

• Can we learn \(\mathbf{M} \) directly without having to perform expensive projections onto PSD cone?
 • Yes!
 • Information-theoretic Metric Learning (ITML, Davis et al. 2007)
 • Uses Log-Determinant divergence measure as an objective and performs bregman-like projections to satisfy constraints
 • Maintains, low-rank and PSD without explicitly projecting.

• Kind of!
 • Linear Similarity Learning (Qamar, 2008; Chechik et al., 2009; Bellet et al., 2012; Cheng 2013)
 • Learn a generalized cosine similarity:
 \[
 K(x_i, x_j) = \frac{x_i^T \mathbf{M} x_j}{N(x_i, x_j)}
 \]
More Recent Topics in Metric Learning

• Non-linear metrics (Chopra, 2005; Salakhutdinov and Hinton, 2007; Xu et al., 2012; Kedem et al., 2012)

• Local Metric Learning (Weinberger and Saul, 2008; Noh et al., 2010; Wang et al., 2012; Xiong et al. 2012)

• Extensions (Parameswaran and Weinberger, 2010; Zhang and Yeung, 2010; McFee and Lankreit 2011)

• Few theoretical guarantees...

Kernels

\[k(x_i, x_j) = \langle x_i, x_j \rangle_k = \langle \phi(x_i), \phi(x_j) \rangle \]
\[\mathbf{K} \in \mathbb{R}^{n \times n}, \mathbf{K}^{ij} = \langle \phi(x_i), \phi(x_j) \rangle, \mathbf{K} \in \mathcal{S}_+^{n \times n} \]

• Common Kernel Types:
 • Linear: \(k(x_i, x_j) = x_i^T x_j \)
 • \(d \)-Degree Polynomial: \(k(x_i, x_j) = (x_i^T x_j + c)^d \)
 • Gaussian (RBF): \(k(x_i, x_j) = \exp(-\frac{\|x_i-x_j\|^2}{2\sigma^2}) \)

• Kernel Trick: Easy non-linear transformation
 • Even for Mahalanobis Distance Metrics!

\[k(x_i, x_j) = \exp(-\frac{d_M(x_i, x_j)}{2\sigma^2}) \]
Learning a Kernel Directly

• Can we learn a kernel directly from information that cannot be directly modeled by features?

• Examples:
 • Survey data
 • Feedback through mouse clicks

• Yes!
Main Idea: Given *relative comparisons* between objects, learn a kernel that reflects these comparisons.

- **Relative Comparison**: “Object A is more similar to object B than object C is to object D”

Input:

\[C = \{(a, b, c, d) \mid a \text{ is more similar to } b \text{ than } c \text{ is to } d\} \]

Output:

\[K \in S_{+}^{n \times n} \]

No information about the objects other than \(C \)
GNMDS (Agarwal et al., 2007)

\[\min_{\mathbf{K}, \xi_{abcd}} \sum_{(a,b,c,d) \in C} \xi_{abcd} + \lambda \text{Trace}(\mathbf{K}) \]

s.t. \[d_\mathbf{K}(x_c, x_d) - d_\mathbf{K}(x_a, x_b) \geq 1 - \xi_{abcd} \]
\[\sum_{ab} \mathbf{K}^{ab} = 0, \mathbf{K} \in S^{nxn}_+ \]

\[d_\mathbf{K}(x_a, x_b) = \mathbf{K}^{aa} + \mathbf{K}^{bb} - 2\mathbf{K}^{ab} \]

• By learning \(\mathbf{K} \) we are implicitly learning \(\phi \)
 • Thus, we are implicitly learning an embedding of the objects in a kernel space.
Metric Learning vs. Direct Kernel Learning

• Metric Learning:
 • Learn a generating function Lx
 • Can be used on unobserved objects (inductive)
 • Does not guarantee satisfaction of all constraints

• Direct Kernel Learning
 • Learns a kernel K over observed objects
 • Cannot be used on unobserved objects (transductive)
 • Guarantees satisfaction of all constraints (McFee and Lanckreit 2011)
 • Given that constraints are consistent
The true goal of machine learning (in many people’s opinion)...

Create methods that can be used without ANY domain knowledge or expertise into the method.

For kernel methods the big hurdle is which kernel function to choose.
 • Linear? Polynomial? Gaussian? Something else?

Even with a choice of kernel, what is the best parameter setting?

Motivates Multiple Kernel Learning (MKL)
MKL, a brief history

• Choose kernel and parameterization through some criteria
 • Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004

• Transductive Setting (Lanckreit et al., 2004)
 • Learn a kernel directly that minimizes a cost function
 • SVM loss
 • Introduced the idea of learning a linear combination of predefined kernels.

• Goal of MKL:
 • Instead of finding the best single kernel, find the best combination of many different predefined kernels.

• Flood of papers afterward:
 • https://sites.google.com/site/xinxingxu666/mklsurvey
GMKL (Varma and Babu, 2009)

• **Input:**
 \[K_1, K_2, \ldots, K_m \in S_{+}^{n \times n} \]
 \[y_1, y_2, \ldots, y_n \]

• **Main Idea:** Create a framework for MKL for different kernel combinations, regularizers, and error functions.
 - Kernel combinations:
 - Sum: \(K = \sum_{i=1}^{m} d_i K_i \)
 - Product: \(K = \prod_{i=1}^{m} d_i K_i \)
 - More complicated combinations
 - Regularizers:
 - \(l_1: \|d\|_1 \)
 - \(l_2: \|d\|_2 \)
 - Error Functions:
 - SVM regression and classification
GMKL (Varma and Babu, 2009)

Algorithm:
1. \(i \leftarrow 0 \)
2. \(d^0 \leftarrow \text{random initialization} \)
3. repeat
4. \(K \leftarrow k(d^i) \)
5. Use any SVM solver with \(K \) to find dual variables
6. Update \(d^{i+1} \) with gradient of objective w.r.t \(d^i \)
7. \(i \leftarrow i + 1 \)
8. until converged
• Finding a good way to compare objects is vital to many machine learning tasks

• This process can be guided by:
 • Side information (constraints)
 • The task to be accomplished

• Models discussed:
 • Metrics
 • Kernels

• Different take on the problem: Representation Learning: