LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING

----Changsheng Liu
10-30-2014
Agenda

- Semi Supervised Learning
- Topics in Semi Supervised Learning
 - Label Propagation
 - Local and global consistency
 - Graph Kernels by Spectral Transforms
 - Gaussian field and Harmonic Function
- Reference
Semi Supervised Learning

- **Semi-supervised learning** is a class of **supervised learning** tasks and techniques that also make use of unlabeled data for training - typically a small amount of labeled data with a large amount of unlabeled data.

- Why
 - Labeled data is hard to get
 - Expensive, human annotation, time consuming
 - May require experts
 - Unlabeled data is cheap
Why unlabeled data helps [1]

- assuming each class is a coherent group (e.g. Gaussian)
- with and without unlabeled data: decision boundary shift
Label Propagation[2]

- Assumption
 - Closer data points tend to have similar class labels.

- General Idea
 - A node’s labels propagate to neighboring nodes according to their proximity
 - Clamp the labels on the labeled data, so the labeled data could act like a sources that push out labels to unlabeled data.
Set up

- Input x, label y
- Labeled data $(x_1, y_1), (x_2, y_2) \ldots (x_l, y_l)$
- Unlabeled data $(x_{l+1}, y_{l+1}) \ldots (x_{l+u}, y_{l+u})$
- $l << u$

- Weight $w_{ij} = \exp \left(-\frac{d_{ij}^2}{\sigma^2} \right) = \exp \left(-\frac{\sum_{d=1}^{D} (x_{i}^d - x_{j}^d)^2}{\sigma^2} \right)$
Probabilistic Transition Matrix

- Allow larger edge weight to propagate labels easier
 \[T_{ij} = P(j \rightarrow i) = \frac{w_{ij}}{\sum_{k=1}^{l+u} w_{kj}} \]
- \(T_{ij} \) is the probability to jump from node \(j \) to \(i \)
- Normalized \(T \)

\[T_{ij} = \frac{T_{ij}}{\sum_k T_{ik}} \]

For example:

<table>
<thead>
<tr>
<th></th>
<th>0.3</th>
<th>0.2</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.7</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

The probability node 3 jump to Node 1 is 0.5
The probability node 2 jump to Node 3 is 0.7
Matrix Y

- Define $(l+u) \times C$ label matrix Y, whose ith row representing label probability distribution of node x_i.
 - $Y_{ij}=1$, if the class of x_i is c_j, else 0, for labeled data.
 - The initialization of row of Y corresponding to unlabeled data is not important.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Node 1 is labeled as label 2.

The label distribution of node 3. For example, 0.7 is the probability that node 3 is label 1.
Algorithm

- 1 Propagate \(Y \leftarrow TY \)
 - Labels spread information along local structure

- 2 Row normalize \(Y \)
 - Keep proper distribution over classes

- 3 Clamp the labeled data, Repeat from step 1 until \(Y \) converges
 - Keep originally labeled points
Convergence

- **The first two steps** \(Y \leftarrow \tilde{T}Y \)

- **Split T** \(\tilde{T} = \begin{bmatrix} \tilde{T}_{ul} & \tilde{T}_{lu} \\ \tilde{T}_{ul} & \tilde{T}_{uu} \end{bmatrix} \)

- **Yu** \(Y_U \leftarrow \tilde{T}_{uu}Y_U + \tilde{T}_{ul}Y_L \)

- **General from** \(Y_U = \lim_{n \to \infty} \tilde{T}_{uu}^nY^0 + \sum_{i=1}^{n} \tilde{T}_{uu}^{(i-1)}\tilde{T}_{ul}Y_L \)

- **\(\tilde{T} \) is row normalized, \(\tilde{T}_{uu} \) is submatrix of \(\tilde{T} \)**

\[\exists \gamma < 1, \sum_{j=1}^{u} \tilde{T}_{uu_{ij}} \leq \gamma, \forall i = 1 \ldots u \]
Consider the row sum

\[
\sum_j \tilde{T}_{uu_{ij}}^n = \sum_j \sum_k \tilde{T}_{uu_{ik}}^{(n-1)} \tilde{T}_{uu_{kj}}
\]

\[
= \sum_k \tilde{T}_{uu_{ik}}^{(n-1)} \sum_j \tilde{T}_{uu_{kj}}
\]

\[
\leq \sum_k \tilde{T}_{uu_{ik}}^{(n-1)} \gamma
\]

\[
\leq \gamma^n
\]

\[
Y_U = (I - \tilde{T}_{uu})^{-1} \tilde{T}_{ul} Y_L
\]

No need to iterate!
Parameter Setting

- How to choose parameter σ
 - First, use a heuristic method. Finding a minimum spanning tree over all data points with Euclidean distances d_{ij} with Kruskal’s Algorithm (The famous greedy algorithm in data structure).
 - Choose the first tree edge that connect two components with different labeled points. The length is d_0.
 - Set $\sigma = d_0/3$
The effect of σ
Optimizing σ

- Single parameter σ controls spread of labels
 - For $\sigma \to 0$, classification of unlabeled points dominated by nearest labeled point
 - For $\sigma \to \infty$, class probabilities just become class frequencies (no information from label proximity)
- Can minimize entropy of class labels
 - $H = -\sum_{ij} Y_{ij} \log Y_{ij}$
 - Leads to confident classifications
 - However, minimum entropy at $\sigma = 0$
Optimizing σ (cont)

- Add uniform transition component ($U_{ij} = 1/N$) to T
 $$\tilde{T} = \varepsilon U + (1 - \varepsilon)T$$

- For small σ, uniform component dominates
 - Minimum entropy no longer at $\sigma = 0$

- Use $\sigma_1 \ldots \sigma_N$ to scale each dimension independently

- Perform gradient descent with respect to σ’s in order to minimize entropy
 $$\frac{\partial H}{\partial \sigma_d} = \sum_{i=L+1}^{L+U} \sum_{c=1}^{C} \frac{\partial H}{\partial Y_{ic}} \frac{\partial Y_{ic}}{\partial \sigma_d}$$
Rebalancing Class Proportions

- How should we assign classes to unlabeled points?
 - Could choose most likely class
 - ML method does not explicitly control class proportions
- Suppose we want labels to fit a known or estimated distribution over classes
 - Normalize class mass — scale columns of Y_U to fit class distribution and then pick ML class
 - Does not guarantee strict label proportions
 - Perform label bidding — each entry $Y_U(i,c)$ is a “bid” of sample i for class c
 - Handle bids from largest to smallest
 - Bid is taken if class c is not full, otherwise it is discarded
Experiment result

- 3 bands dataset and Spring dataset

Figure 1: The 3 Bands dataset. Labeled data are color symbols and unlabeled data are dots in (a). kNN ignores unlabeled data structure, while label propagation uses it.

Figure 2: The Springs dataset.
Learning with local and global consistency[4]

- The key to semi-supervised learning
 - Nearby points are likely to have the same label
 - Points on the same structure (cluster or manifold) are likely to have the same label
A toy example

Figure 1: Classification on the two moons pattern. (a) toy data set with two labeled points; (b) classifying result given by the SVM with a RBF kernel; (c) k-NN with $k = 1$; (d) ideal classification that we hope to obtain.
Design a classifying function which is sufficiently smooth with respect to the intrinsic structure
Algorithm

1. Form the affinity matrix W defined by $W_{ij} = \exp\left(-\|x_i - x_j\|^2/2\sigma^2\right)$ if $i \neq j$ and $W_{ii} = 0$.

2. Construct the matrix $S = D^{-1/2} W D^{-1/2}$ in which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of W.

3. Iterate $F(t + 1) = \alpha SF(t) + (1 - \alpha) Y$ until convergence, where α is a parameter in $(0, 1)$.

4. Let F^* denote the limit of the sequence $\{F(t)\}$. Label each point x_i as a label $y_i = \arg\max_{j \leq c} F^*_{ij}$.

Receive information from its neighbour

Retain Initial information
Convergence

- The sequence \(\{F(t)\} \) converges, suppose \(F(0) = Y \)

\[
F^* = (1 - \alpha)(I - \alpha S)^{-1}Y
\]

The proof is similar to Label Propagation
Regularization Framework (A different perspective)

\[Q(F) = \frac{1}{2} \sum_{i,j=1}^{n} W_{ij} \left\| \frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}} \right\|^2 + \mu \sum_{i=1}^{n} \| F_i - Y_i \|^2 \]

Smoothness term, capture the local variations, a good function should not change too much between nearby points.

Fitting constraints, loss function, a good classifying function should not change too much from initial label assignment.
Regularization Framework

Property of Laplacian Matrix

\[
\frac{1}{2} \sum_{i,j=1}^{n} W_{ij} \left\| \frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}} \right\|^2 = f^T D^{-1/2} L_{sym} D^{-1/2} f
\]

\[
L_{sym} = D^{-1/2} LD^{-1/2} = I - D^{-1/2} W D^{-1/2}
\]

- Differentiating \(Q(F) \) with respect to \(F \)

\[
\frac{\partial Q}{\partial F} \bigg|_{F=F^*} = F^* - SF^* + \mu (F^* - Y) = 0
\]

- \(F^* - \frac{1}{1+\mu} SF^* - \frac{\mu}{1+\mu} Y = 0 \)

- \(\alpha = \frac{1}{1+\mu}, \text{ and } \beta = \frac{\mu}{1+\mu} \)

- \((I - \alpha S) F^* = \beta Y \)

- \(I - \alpha S \) is invertible, \(F^* = \beta (I - \alpha S)^{-1} Y \)
Experiment

Figure 2: Classification on the pattern of two moons. The convergence process of our iteration algorithm with t increasing from 1 to 400 is shown from (a) to (d). Note that the initial label information are diffused along the moons.
Graph Kernels by Spectral Transforms[5]

- Graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target function.
- Eigenvectors with small eigenvalues are smooth, and ideally represent large cluster structures within the data.
Smoothness

- Consider the Laplacian L

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector $f \in \mathbb{R}^n$ we have
 \[f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2. \]

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1.

4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.
Semi-supervised learning creates a smooth function over unlabeled points:

\[f : [n] \rightarrow \mathbb{R}, \]

\[f^T L f = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^2 \]

- Generally, smooth if \(f(i) \approx f(j) \) for pairs with large \(W_{ij} \)
- The smoothness of an eigenvector is

\[\phi_i^T L \phi_i = \lambda_i \]

Eigenvectors with smaller eigenvalues are smoother.
The complete orthonormal set of eigenvectors $\phi_1, \phi_2, \ldots, \phi_n$

$$L = \sum_{i=1}^{n} \lambda_i \phi_i \phi_i^T$$
Different weightings (i.e. spectral transforms) of Laplacian eigenvalues leads to different smoothness measures.

We want a kernel K that respects smoothness:

- Define using eigenvectors of Laplacian (ϕ) and eigenvalues of K (μ)

$$K = \sum_{i=1}^{N} \mu_i \phi_i \phi_i^T$$

- Can also define in terms of a spectral transform of Laplacian eigenvalues

$$K = \sum_{i=1}^{N} r(\lambda_i) \phi_i \phi_i^T$$
Types of Transforms

- \(r(\lambda_i) \) is a non-negative and decreasing transform

 Regularized Laplacian \(r(\lambda) = \frac{1}{\lambda + \varepsilon} \)

 Diffusion Kernel \(r(\lambda) = \exp\left(-\frac{\sigma^2}{2} \lambda\right) \)

 1-step Random Walk \(r(\lambda) = (\alpha - \lambda), \alpha \geq 2 \)

 p-step Random Walk \(r(\lambda) = (\alpha - \lambda)^p, \alpha \geq 2 \)

 Inverse Cosine \(r(\lambda) = \cos(\lambda \pi / 4) \)

 Step Function \(r(\lambda) = 1 \) if \(\lambda \leq \lambda_{cut} \)

- Reverses order of eigenvalues, so smooth eigenvectors have larger eigenvalues in \(K \)

- **Is there an optimal transform?**

We need to find a regularizer here
Kernel Alignment

- Assess fitness of a kernel to training labels
- Empirical kernel alignment compares kernel matrix K_{tr} for training data to target matrix T for training data
 - $T_{ij} = 1$ if $y_i = y_j$, otherwise $T_{ij} = -1$
 - Alignment measure computes cosine between K_{tr} and T
 \[
 \hat{A}(K_{tr}, T) = \frac{\langle K_{tr}, T \rangle_F}{\sqrt{\langle K_{tr}, K_{tr} \rangle_F \langle T, T \rangle_F}}
 \]
 \[
 \langle M, N \rangle_F = Tr(MN)
 \]
 Frobenius Product
- Find the optimal spectral transformation $r(\lambda_i)$ using the kernel alignment notion
Convex Optimization

- Convex set
- Convex function
- Convex Optimization
 - Linear Programming
 - Minimize $c^Tx + d$
 - Subject to $Gx \leq h$
 - $Ax=b$
 - Quadratically Constrained Quadratic Programming
 - Minimize $\frac{1}{2}x^TPx + c^Tx + d$
 - Subject to $\frac{1}{2}x^TQ_ix + r_i^Tx + s_i \leq 0$
 - $Ax=b$
Kernel alignment between K_{tr} and T is a convex function of kernel eigenvalues μ_i.
- No assumption on parametric form of transform $r(\lambda_i)$

Need K to be positive semi-definite
- Restrict eigenvalues of K to be ≥ 0

Leads to computationally efficient Quadratically Constrained Quadratic Program
- Minimize convex quadratic function over smaller feasible region
- Both objective function and constraints are quadratic
- Complexity comparable to linear programs
Impose Order Constraints

- We would like to keep decreasing order on spectral transformation
 - Smooth functions are preferred – bigger eigenvalues for smoother eigenvectors
- An order constrained semi-supervised kernel K is the solution to the following convex optimization problem.

$$
\begin{align*}
\max_K & \quad \hat{A}(K_{tr}, T) \\
\text{subject to} & \quad K = \sum_{i=1}^{n} \mu_i K_i \\
& \quad \mu_i \geq 0 \\
& \quad \text{Tr}(K) = 1 \\
& \quad \mu_i \geq \mu_{i+1}, \quad i = 1 \ldots n - 1
\end{align*}
$$
Improved Order Constraints

- Constant eigenvectors act as a bias term in the graph kernel
 - $\lambda_1 = 0$, corresponding eigenvector ϕ_i is constant
 - Need not constrain bias terms

- Improved Order constrains
 - Ignore the constant eigenvectors
 - $\mu_i \geq \mu_{i+1}, i = 1 \ldots n-1$, and ϕ_i not constant
Now define class labeling f in terms of a Gaussian over continuous space, instead of random field over discrete label set.

Distribution on f is a Gaussian field

$$p_{\beta}(f) = \frac{e^{-\beta E(f)}}{Z_{\beta}}$$

$$Z_{\beta} = \int_{f|_{L=f_i}} \exp(-\beta E(f)) df$$

Useful for multi-label problems (NP-hard for discrete random fields)

ML configuration is now unique, attainable by matrix methods, and characterized by harmonic functions.
Harmonic Energy

- “Energy” of solution labeling f is defined as:
 \[E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2 \]

 Nearby points should have similar labels

- Solution which minimizes $E(f)$ is harmonic

 - $\Delta f = 0$ for unlabeled points, where $\Delta = D - W$ (combinatorial Laplacian)
 - $\Delta f = f_i$ for labeled points
 - Value of f at an unlabeled point is the average of f at neighboring points
 \[f(j) = \frac{1}{d_j} \sum_{i \sim j} w_{ij} f(i), \text{ for } j = L+1, \ldots, L+U \]
 \[f = D^{-1}Wf \]
Harmonic Solution

- As before, split problem into:

 \[f = \begin{bmatrix} f_l \\ f_u \end{bmatrix}, \quad W = \begin{bmatrix} W_{ll} & W_{lu} \\ W_{ul} & W_{uu} \end{bmatrix}, \quad P = D^{-1}W \]

- Solve using \(\Delta f = 0, \ f|_L = f_l \):

 \[f_u = (D_{uu} - W_{uu})^{-1}W_{ul}f_l = (I - P_{uu})^{-1}P_{ul}f_l \]

- Can be viewed as heat kernel classification, but independent of time parameter
Summary

- Label Propagation
 - Propagate and clamp data
- Local and global consistency
 - Allow \(f(X_i) \) to be different from \(Y_i \), but penalize it
 - Introduce a balance between labeled data fit and graph energy
- Graph Kernels by Spectral Transforms
 - Smoothness, using eigenvector of Laplacian to keep smooth
 - Use kernel alignment
- Gaussian field and Harmonic Function
 - The label is discrete (Gaussian)
Reference

[2] Zhu, Ghahramani Learning from labeled and unlabeled data

[4] Zhou at al Learning with Local and Global Consistency
