Probabilistic PCA & extensions

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Principal Component Analysis

- Used to transform observed data matrix \mathbf{X} ($N \times d$) into \mathbf{Y} ($N \times q$) (find the q principal components)
 - Fairly simple solution:
 1. Centralize the \mathbf{X}
 2. Calculate the covariance matrix \mathbf{C} of \mathbf{X}
 3. Calculate the eigenvectors of the \mathbf{C}
 4. Select the dimensions that correspond to the q highest eigenvalues
 - Big win for linear algebra.
Limitations of PCA

- PCA is a simple linear algebra transformation, it does not produce a probabilistic model for the observed data.
 - A probabilistic model can be very useful

- The variance-covariance matrix needs to be calculated
 - Can be very computation-intensive for large datasets with a high # of dimensions
- Does not deal properly with missing data
 - Incomplete data must either be discarded or imputed using ad-hoc methods
- Outlying data observations can unduly affect the analysis

Probabilistic PCA model

- Enables comparison with other probabilistic techniques
- Facilitates statistical testing
- Maximum-likelihood estimates can be computed for elements associated with principal components
- Permits the application of Bayesian methods
- Extends the scope of PCA
 - Multiple PCA models can be combined as a probabilistic mixture
 - PCA projections can be obtained when some data values are missing
- Can be utilized as a constrained Gaussian density model
 - Classification
 - Novelty detection
Latent variable models

- Offer a lower dimensional representation of the data and their dependencies
- Latent variable model:
 - y: observed variables (d-dimensions)
 - x: latent variables (q-dimensions)
 - $q < d$

Observed variables (y) $d = 7$
(Data)

Latent variables (x) $q = 2$
(Hidden variables, underlying concepts)

Note: Observed variables become independent of each other given latent factors

Observed variables (y) $d = 7$
(Data)
Factor analysis

- **Latent variable model with a linear relationship:**
 \[y \sim Wx + \mu + \epsilon \]
 - \(W \) is a \(d \times q \) matrix that relates observed variables \(y \) to the latent variables \(x \)
 - Latent variables: \(x \sim N(0, I) \)
 - Error (or noise): \(\epsilon \sim N(0, \psi) \) – Gaussian noise
 - Location term (mean): \(\mu \)

Then:
\[y \sim N(\mu, Cy) \]
- where \(Cy = WW^T + \psi \) is the covariance matrix for observed variables \(y \)
- the model’s parameters \(W, \mu \) and \(\psi \) can be found using maximum likelihood estimate

Probabilistic PCA (PPCA)

- A special case of the factor analysis model
 - Noise variances constrained to be equal (\(\psi_i = \sigma^2 \))
 \[y \sim Wx + \mu + \epsilon \]
 - Latent variables: \(x \sim N(0, I) \)
 - Error (or noise): \(\epsilon \sim N(0, \sigma^2 I) \) (isotropic noise model)
 - Location term (mean): \(\mu \)

Then:
\[y|x \sim N(WX + \mu, \sigma^2 I) \]
- \[y \sim N(\mu, Cy) \]
 - where \(Cy = WW^T + \sigma^2 I \) is the covariance matrix of \(y \)

- Normal PCA is a limiting case of probabilistic PCA, taken as the limit as the covariance of the noise becomes infinitesimally small (\(\psi = \lim_{\sigma^2 \to 0} \sigma^2 I \))
Illustration of probabilistic PCA

Latent variables (x) q = 2
(hidden variables, underlying concepts)

\[x \sim N(\theta, I) \]

\[\text{Remapping: } Wx \]
\[(\text{Weight matrix: } W) \]
\[+ \]
\[\mu \] (location parameter)
\[+ \]
\[\text{Random error (noise): } \epsilon \]
\[\epsilon \sim N(0, \sigma^2 I) \]

\[y = Wx + \mu + \epsilon \]
\[y \sim N(\mu, WW^T + \sigma^2 I) \]

Parameters of interest: \(W \) (weight matrix), \(\sigma^2 \) (variance of noise)

PPCA (Maximum likelihood PCA)

- Log-likelihood for the Gaussian noise model:
 \[L = -\frac{N}{2} \left\{ d \ln(2\pi) + \ln|C_y| + \text{tr}(C_y^{-1}S) \right\} \]
 \[C_y = WW^T + \sigma^2 \]

- Maximum likelihood estimates for the above:
 - \(\mu \): mean of the data
 - \(S \) (sample covariance matrix of the observations \(Y \)):
 \[S = \frac{1}{N} \sum_{n=1}^{N} (Y_n - \mu)(Y_n - \mu)^T \]

- MLE’s for \(W \) and \(\sigma^2 \) can be solved in two ways:
 - closed form (Tipping and Bishop)
 - EM algorithm (Roweis)

\(\text{Tr}(A) = \text{sum of diagonal elements of } A \)
Probabilistic PCA

The likelihood is maximized when:

\[W_{ML} = U_q (\sqrt{\Lambda_q - \sigma^2 I}) R \]

- For \(W = W_{ML} \) the maximum \(U_q \) is a \(d \times q \) matrix where the \(q \) column vectors are the principal eigenvectors of \(S \).
- \(\Lambda_q \) is a \(q \times q \) diagonal matrix with corresponding eigenvalues along the diagonal.
- \(R \) is an arbitrary \(q \times q \) orthogonal rotation matrix.
- Max likelihood estimate for \(\sigma^2 \) is:

\[\sigma^2_{ML} = \frac{1}{d - q} \sum_{j=q+1}^{d} \lambda_j \]

- To find the most likely model given \(S \), estimate \(\sigma^2_{ML} \) and then \(W_{ML} \) with \(R = I \), or you can employ the EM algorithm.

Derivation of MLEs

- \(L = -\frac{N}{2} \{ d \ln(2\pi) + \ln|C| + \text{tr}[C^{-1}S]\} \)
 - The first derivative of \(LL \) with respect to \(W \):
 - \(\frac{dL}{dW} = -N(C^{-1}SC^{-1}W - C^{-1}W) \)
 - The stationary points are \(SC^{-1}W = W \).
 - Non-trivial case: \(W \neq 0, C \neq S \)
 - SVD: \(W = ULVT \), \(U \): \(d \times q \) orthonormal vectors, \(L \): \(q \times q \) matrix of singular values, \(V \): \(q \times q \) orthogonal matrix,
 - \(C^{-1}W = W(\sigma^2 I + L^2) \)
 - At the stationary points:
 - \(SUL(\sigma^2 I + L^2)V^T = ULVT \)
 - \(SUL = U(\sigma^2 I + L^2)L \)
 - Column vectors of \(U \), \(u_q \), are eigenvectors of \(S \), with eigenvalue \(\lambda_j \) such that \(\sigma^2 + l_j^2 = \lambda_j \)
 - \(l_j^2 = (\lambda_j - \sigma^2)^{1/2} \)
 - (substitute into SVD) \(W = U_q (A_q - \sigma^2 I) R \)
 - \(U_q \): \(d \times q \) with \(q \) column eigenvectors \(u_q \) of \(S \)
 - \(A_q: \lambda_1, \ldots, \lambda_q \) (eigenvalues of \(u_q \)), or \(\sigma^2 \) (corresponding \(d-q \) “discarded” rows of \(W \))
 - \(R \): arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a re-parametrization)
Derivation of MLEs (cont)

• Substitute above results into the original likelihood expression
• \(-L = -N/2\{d \ln(2\pi) + \Sigma \ln(\lambda_j) + \Sigma j + (d - q)\ln \sigma^2 + q\} \)
 \(\lambda_1\ldots\lambda_q\), are \(q\) non-zero eigenvalues of \(u_j\) and \(\lambda_{q+1}\ldots\lambda_d\), are zero
• Taking derivative of above with respect to \(\sigma^2\) and solving for zero gives:
 \[\sigma^2_{ML} = \frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_j \]

Dimensionality Reduction in pPCA

• So, how do we use this to reduce the dimensionality of data?
• Consider the dimensionality reduction process in terms of the distribution of latent variables, conditioned on the observation:
 \[x|y \sim N(M^{-1}W^T(y - \mu), \sigma^2 M^{-1}) \]
• This can be summarized by its mean:
 \[\langle x_n | y_n \rangle = M^{-1}W_{ML}^T(y_n - \mu) \]
• Intuitively, the optimal reconstruction of \(y_n\) should be \(W_{ML} \langle x_n | y_n \rangle + \mu\). However, it is not. For \(\sigma^2 > 0\) it is not an orthogonal projection of \(y_n\).
• If we consider the limit as \(\sigma^2 \to 0\), the projection \(W_{ML} \langle x_n | y_n \rangle\) does become orthogonal and is equivalent to conventional PCA, but then the density model is singular and thus undefined.
• Optimal reconstruction of the observed data may still be obtained from conditional latent mean:
 \[y_n = W_{ML}(W_{ML}^TW_{ML})^{-1}W_{ML}^T <x_n|y_n> + \mu \]
Motivation behind using E-M for PCA

- Naïve PCA and MLE PCA computation-heavy for high dimensional data or large data sets
- PCA does not deal properly with missing data
 - E-M algorithm estimates ML values of missing data at each iteration
- Naïve PCA uses simplistic way (distance² from observed data) to access covariance
 - Sensible PCA (SPCA) defines a proper covariance structure whose parameters can be estimated through the E-M algorithm

E-M algorithm (review)

- Iterative process to estimate parameters consisting of two steps for each iteration
 - Expectation (data step): complete all hidden and missing variables \(\Theta \) (or latent variables) from current set of parameters \(\Theta \)
 - Maximization (likelihood step): Update set of parameters \(\Theta' \), using MLE, from complete set of data from previous step \(\Theta \)
- Likelihood obtained from MLEs guaranteed to improve in successive iterations
- Continue iterations until negligible improvement is found in likelihood
EM algorithm for normal PCA

- Amounts to an iterative procedure for finding subspace spanned by the q leading eigenvectors without computing covariance
- E-step: $X = (WTW)^{-1}WTY$
 - Fix subspace and project data, y, into it to give values of hidden states x
 - Known: Y: d-dimensional observed data
 - Unknown (latent): X: q-dimensional unknown states
- M-step: $W_{\text{new}} = YX^TXX^T^{-1}$
 - Fix values of hidden states and choose subspace orientation that minimizes squared reconstruction errors

EM algorithm and missing data

Data with missing obs filled out: x, Complete data (with blanks not filled out): y

E-step (fill in missing variables):
- If data point y is complete, then $y^* = y$ and x^* is found as usual
- If the data point y is not complete, x^* and y^* are the solution to the least squares problem. Compute x by projecting the observed data y into the current subspace.
 - For each (possibly incomplete) point y, find the unique pair of points (x^*, y^*) that minimize the norm $||Wx^*-y^*||$.
 - Constrain x^* to be in the current principal subspace and y^* in the subspace defined by known info about y
 - If y can be completely solved in system of equations, set corresponding column of X to x^* and the corresponding column of Y to y^*
 - Otherwise, QR factorization can be used on a particular constraint matrix to find least squares solution
E-M algorithm and missing data
(E-step)

\[
W = \begin{pmatrix}
1 & 1 \\
1 & 0.5 \\
2 & 1
\end{pmatrix} \\
X = \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} \\
Y = \begin{pmatrix}
3 \\
1 \\
?
\end{pmatrix}
\]

\(Wx = y\)

\[
x_1 + x_2 = 3 \\
x_1 + 0.5x_2 = 1 \\
2x_1 + x_2 = y
\]

\[\text{s}olve\]

\[
X^* = \begin{pmatrix}
-1 \\
4
\end{pmatrix} \\
Y^* = \begin{pmatrix}
3 \\
1 \\
2
\end{pmatrix}
\]

Set \(x = (-1, 4)\), \(y = (3, 1, 2)\), proceed to M-step

If two elements are missing in \(Y\), then we use QR factorization to find the pair \((x^*, y^*)\) with the least squares of the norm \(||Wx^*-y^*||\), according to the constraints specified in the set of equations \(Wx = y\).

EM for probabilistic PCA
(Sensible PCA - SPCA)

- Probabilistic PCA model:
 - \(Y \sim N(\mu, WW^T + \sigma^2 I)\)
- Similar to normal PCA model, the differences are:
 - We do not take the limit as \(\sigma^2\) approaches 0
 - During EM iterations, data can be directly generated from the SPCA model, and the likelihood estimated from the test data set
 - Likelihood much lower for data far away from the training set, even if they are near the principal subspace
- EM algorithm steps implemented as follows:
 - **E:** \(\beta = W^T(WW^T + \sigma^2 I)^{-1} <x_n|y_n> = \beta(Y-\mu)\), \(\Sigma_x = nI - n\beta W + <x_n|y_n><x_n|y_n>^T\)
 - Log-likelihood in terms of weight matrix \(W\), and a centered observed data matrix \(Y-\mu\), noise covariance \(\sigma^2 I\), and conditional latent mean \(<x_n|y_n>\)
 - **M:** \(W^{new} = (Y-\mu)<x_n|y_n>^T \Sigma_x^{-1}, \sigma^2^{new} = trace[XX^T - W<x_n|y_n>(Y-\mu)^T]/n^2\)
 - Differentiate LL in terms of \(W\) and \(\sigma^2\) and set to zero.
Advantages of using EM algorithm in probabilistic PCA models

- **Convergence:**
 - Tipping and Bishop showed (1997) that the only stable local extremum is the *global maximum* at which the true principal subspace is found

- **Complexity:**
 - Methods that explicitly compute the sample covariance matrix have complexities $O(nd^2)$
 - EM algorithm does not require computation of sample covariance matrix, $O(dnq)$
 - Huge advantage when $q << d$ (# of principal components is much smaller than original # of variables)

EM algorithm for PPCA (illustration)

Example: 38 observations (with 18 data points each) from *Tobamovirus* data set (Ripley, 1996)

- **Standard PCA** (on complete data)
- **Probabilistic PCA** (using EM algorithm) with 20% missing values

3 clusters
Other methods for PCA

- Power iteration methods
 - Iteratively update eigenvector estimates through repeated multiplication by matrix to be diagonalized
 - Extremely inefficient to calculate explicitly ($O(nq^2)$)
 - E-M algorithm provides efficient way to obtain sample covariance matrix, without explicitly calculating it
 - Iterative methods to compute SVD are closely related to the EM algorithm
- Learning methods for the principal subspace
 - Sanger’s and Oja’s rule
 - Typically require more iterations and the learning parameter to be set by hand

Mixtures of probabilistic PCAs

- A combination of local probabilistic PCA models
- Multiple plots may reveal more complex data structures than a PCA projection alone
- Applications:
 - Image compression (Dony and Haykin 1995)
 - Visualization (Bishop and Tipping, 1998)
- Clustering mechanisms of mixture PPCA:
 - Local linear dimensionality reduction
 - Semi-parametric density estimation
Mixtures of probabilistic PCAs

- $\text{LL} = \sum_{n=1}^{N} \ln \{p(y_n)\} = \sum_{n=1}^{N} \ln \{\sum_{i=1}^{M} \pi_i p(y_n|i)\}$

 • $p(y|i)$ is a single PPCA model and π_i is the corresponding mixing proportion
 • Different mean vectors μ_i, weighting matrices W_i, and noise error parameters σ_i^2 for each of M probabilistic PCA models
- An iterative EM algorithm can be used to solve for parameters
- Guaranteed to find a local maximum of the log-likelihood

Information Recovery

- PCA minimizes the sum of squared distances from x to its back-projection from the lower dimensional space.

- However,
 - This loss function is not a good fit when the data are not real-valued
 - Using standard PCA will do a bad job reconstructing these types of data
PCA’s weakness

- PCA assumes a Gaussian distribution for the random variable x.

- Gaussian noise is added to the samples from the Gaussian distribution.
PCA’s weakness

- For real-valued data this is not a problem in general.

PCA’s weakness

- The loss function is appropriately measured in both directions
PCA’s weakness

- What if the noise is known to be all positive?

Which loss function to use?

- Maybe a different loss function is better, but which?
Exponential PCA

- **General idea:**
 - Extend PCA to include the entire family of exponential family distributions.
 - The unique properties of the modelling distribution for features determines the loss function for that data component automatically.
 - There’s a trick which allows easy optimization of the loss function.

Exponential Family Distributions

- Exponential Family distributions can be rewritten as:
 \[P(x \mid \Theta) = P_0(x)e^{\Theta G(\Theta)} \]
 - \(x \) is your data in the high-dimensional space
 - \(\Theta \) is the natural (or canonical) parameterization of the distribution
 - \(P_0(x) \) is a constant (not dependent on \(\Theta \))
 - \(G(\Theta) \) is the partition function (assures a valid distribution)
Exponential Family Distributions

• Gaussian (unit variance)

\[P(x \mid \mu) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}} = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} e^{x\mu - \frac{\mu^2}{2}} \]

• General form:

\[P(x \mid \Theta) = P_0(x)e^{x\Theta - G(\Theta)} \]

\[\Theta = \mu \]

\[G(\Theta) = \mu^2/2 \]

Exponential Family Distributions

• Bernoulli

\[P(x \mid \Theta) = \pi^x (1 - \pi)^{(1-x)} = 1e \]

• General Form:

\[P(x \mid \Theta) = P_0(x)e^{x\Theta - G(\Theta)} \]

\[\Theta = \log \left(\frac{\pi}{1-\pi} \right) \]

\[G(\Theta) = \log \left(\frac{1+e^{\log \left(\frac{\pi}{1-\pi} \right)}}{1-e^{\log \left(\frac{\pi}{1-\pi} \right)}} \right) \]
Exponential Family Distributions

• Basic idea: With manipulation, you only need $P_0(x)$, Θ and $G(\Theta)$ to define an exponential distribution.
• Now take the log of $P(x \mid \Theta)$:

$$P(x \mid \Theta) = P_0(x)e^{x\Theta - G(\Theta)}$$

$$\log P(x \mid \Theta) = \log(P_0(x)) + x\Theta - G(\Theta)$$

• $G(\Theta)$ is the cummulant function of $P(x \mid \Theta)$
• This means that $VG(\Theta)$ is the expected value of x.

So what?

• For any model Θ, we can find the expectation of the data x given Θ.

• We compare the expectation to the observed data to measure how much our model is losing in the representation.

• In this way, $G(\Theta)$ can be seen as a sort of information loss function.
Optimization

- If we want a better model, we need the information loss from that model to be lower.

- It would be cool if we could maximize $\log(p(x|\Theta))$, since it gets penalized for loss.

- Turns out that a dual problem exists for optimizing the loglikelihood.

Bregman Divergence

- Your model: p (a set of parameters)
- You want to know: is q (a set of parameters for a similar model) a better fitting model?

- Assume a convex differentiable projection function F defined on a convex space → projects to a convex space

- Bregman divergence:

$$D^F_F(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle.$$

- the difference between the value of F at point p and the value of the first-order Taylor expansion of F around point q evaluated at point p

Strategy: the distance in the new convex space represents the loss. Optimizing the distance results in better estimates of expectation parameters for the model.
Bregman Divergence

- The function F is derived from $G(\Theta)$ as a dual problem (Azoury & Warmuth, 2001):
 \[
 F(g(\Theta)) + G(\Theta) = g(\Theta)\Theta \\
 g(\Theta) = \nabla_\Theta G(\Theta)
 \]

- The dual creates a “link” function g which maps between natural and expectation parameter space

 Derivatives:
 \[
 f'(x) = g^{-1}(x) \\
 f'(x) = F'(x)
 \]

Bregman Divergence

\[
D^F_F(p, q) = F(p) - F(q) - \{\nabla F(q), p - q\}.
\]

F is guaranteed to be convex due to its construction from a G function in the exponential family.
Bregman Divergence

\[D^F_{\theta}(p, q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle. \]

\(F(\Theta) \)

\(p \) is our current set of natural parameters.

We determine a new set of natural parameters \(q \) and project it onto the convex hull.

\[D^F_{\theta}(p, q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle. \]
Bregman Divergence

\[D^q_F(p, q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle. \]

The slope of \(F \) at \(F(q) \) is measured.

The Bregman distance \(B_F \) is higher if \(q \) is at a more convex point than \(p \).

The bigger the distance, the better \(q \) is at providing an expectation closer to the data \(x \).
Bregman Divergence

- For exponential family the function F is derived from $G(\Theta)$ as a dual problem (Azoury & Warmuth, 2001):

\[
F(g(\Theta)) + G(\Theta) = g(\Theta)\Theta
\]

\[
g(\Theta) = \nabla_{\theta} G(\Theta)
\]

- The dual creates a “link” function g which maps between natural and expectation parameter space

 Derivatives:

\[
f(x) = g^{-1}(x)
\]

\[
f'(x) = F'(x)
\]

Bregman Divergence & Loglikelihood

- For the exponential family of distributions, the loglikelihood of data given model is related to a Bregman Divergence.
 - The divergence depends on which type of exponential family distribution you pick
 - Different well-known divergences are obtainable with popular choices for $G(\Theta)$
How can it be?!

• The loglikelihood of the data given model can be rewritten as follows:

\[
- \log P(x | \Theta) = - \log(P_0(x)) - x\Theta + G(\Theta)
\]

\[
= - \log(P_0(x)) - x\Theta + [g(\Theta)\Theta - F(g(\Theta))]
\]

\[
= - \log(P_0(x)) - F(g(\Theta)) - x\Theta + g(\Theta)\Theta
\]

\[
= - \log(P_0(x)) - F(g(\Theta)) - \Theta \cdot (x - g(\Theta))
\]

\[
= - \log(P_0(x)) - F(g(\Theta)) - [g^{-1}(g(\Theta))] \cdot (x - g(\Theta))
\]

\[
= - \log(P_0(x)) + [F(x) - F(x)] - F(g(\Theta)) - [g^{-1}(g(\Theta))] \cdot (x - g(\Theta))
\]

\[
= - \log(P_0(x)) - F(x) + F(x) - F(g(\Theta)) - f(g(\Theta)) \cdot (x - g(\Theta))
\]

\[
= - \log(P_0(x)) - F(x) + B_F(x \| g(\Theta))
\]

Optimization

• Good news: Loglikelihood can be rewritten in terms of a Bregman divergence

\[
- \log(P(x | \Theta)) = - \log(P_0(x)) - F(x) + B_F(x \| g(\Theta))
\]

• Optimizing negative loglikelihood is commonly done in EM

• Only the Bregman divergence term depends on \(\Theta \), the rest can be ignored.
Exponential PCA

• **Problem:** Find Θ's which come close to the observed data points x. (Minimize loss)

• Express the Θ's in a lower dimensionality

• **Solution:** Find a basis with L principal axes, represent the Θ's as a linear combination of these axes which most closely approximate x.

Generalized Exponential PCA

• Natural parameters:
 \[\Theta = AV \]

• Finally, some dimensions
 – A is $n \times L$
 • (rows of A represent the lower dimensionality representation of a data point)
 – V is $L \times d$
 • (rows of V represent the principal axes of the model’s projection basis)
 – Your data X is $n \times d$
Generalized Exponential PCA

- Optimize the negative loglikelihood of a model given the data
 \[\log P(x | \Theta) = - \log (P_0(x)) - F(x) + B_F(x \| g(\Theta)) \]
 \[\Theta = AV \]
 - This is equivalent to maximizing a series of Bregman divergences over the individual components of data.
 - Changing the distribution which models the loglikelihood:
 - Changes the function \(G(\Theta)\), which
 - Changes the expectation parameters of the model, which
 - Changes the Bregman divergence which was derived from \(G(\Theta)\), which means
 - The loss function for the data is different (the Bregman distance between \(x\) and the expectation parameters \(g(\Theta)\))

Example

- Lets choose the Normal distribution
 - For a normal distribution, \(G(\Theta) = \Theta^2/2\)
 - Therefore,
 - \(g(\Theta) = G'(\Theta) = \Theta\); \(g^{-1}(x) = f(x) = x\); \(F(x) = x^2/2\)
 - Compute the Bregman divergence between \(x\) and \(g(\Theta)\):
 \[B_F(p \| q) = F(p) - F(q) - f'(q) \cdot (p - q) \]
 \[= F(x) - F(g(\Theta)) - f'(g(\Theta)) \cdot (x - g(\Theta)) \]
 \[= \frac{x^2}{2} - \frac{\Theta^2}{2} - \Theta \cdot (x - \Theta) \]
 \[= \frac{1}{2} x^2 - \frac{2}{2} \Theta x + \frac{1}{2} \Theta^2 \]
 \[= \frac{1}{2} (x - \Theta)^2 \quad B_F(x \| g(\Theta)) \text{ ends up being Euclidean distance!} \]
Example

- We want to optimize $\Theta = AV$ to fit the loss function.
- Algorithm:
 - Initialize $A, V = 0$
 - For data = 1:n
 - For $c = 1:L$
 - Initialize V_c randomly
 - Until convergence,
 - For $i = 1:n$,
 - $A_{ic} = \arg \min_{a \in \mathbb{R}} \sum_j B_F(x_{ij} \| g(A_{ic}v))$
 - For $j = 1:d$,
 - $v_{cj} = \arg \min_{v \in \mathbb{R}} \sum_i B_F(x_{ij} \| g(A_{ic}v))$

Summary:

- Use the generative model of PCA
- Extend PCA to use any partition function $G(\Theta)$
- Convert the negative loglikelihood into a Bregman divergence
- Optimize the negative loglikelihood using an alternating update procedure over the natural parameters.