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Abstract

We describe a model of document citation
that learns to identify hubs and authorities
in a set of linked documents, such as pages
retrieved from the world wide web, or papers
retrieved from a research paper archive. Un-
like the popular HITS algorithm, which re-
lies on dubious statistical assumptions, our
model provides probabilistic estimates that
have clear semantics. We also find that
in general, the identified authoritative docu-
ments correspond better to human intuition.

1. Introduction

Bibliometrics has been described as a “series of tech-
niques that seek to quantify the process of written
communication” (Tkpaahindi, 1985). Tt typically at-
tempts to give quantified answers to questions involv-
ing the relationships among documents, or authors and
documents: “Who are the authoritative authors in this
field?” “What are the seminal papers?” “How many
distinct communities are studying this subject?” and
others (see White & McCain, 1989, for details). Tradi-
tionally, the statistics upon which this quantification
is based are citations in scientific literature; with the
advent of the world wide web, it has become popular
to apply bibliometric techniques to the hyperlinks of
web pages (Kleinberg, 1997; Larson, 1996) or even web
page browsing patterns (Turnbull, 1996).

Recent applications to the web have caused a resur-
gence of interest in bibliometrics, especially when used
in conjunction with information retrieval. Information
retrieval is primarily concerned with identifying the
“most relevant” document for a query; with the ex-
plosion in the size of the web however, users are often
swamped by thousands of “equally relevant” pages.
The challenge now faced by search engines is finding
the pages that are most relevant and authoritative.

1.1 HITS and PCA

Although Larson (1996) pioneered the application of
bibliometrics to the web, the most well known and
popular bibliometric algorithm for the web is Klein-
berg’s “Hypertext-Induced Topic Selection” (HITS)
algorithm and its variations (Bharat & Henzinger,
1998; Kleinberg, 1997). The process begins with a
matrix M of document-citation pairs. Entry M;; is
nonzero iff document ¢ cites document j or, equiva-
lently, if ¢ contains a hyperlink to j.

Traditionally, one generates the co-citation matrix
M'M or bibliographic coupling matrix M M’ and at-
tempts to identify correlations. These correlations
are identified in the form of principal components (or
eigenvectors) of the matrix, each of which corresponds
to a “community” of roughly similar citation patterns.

HITS uses an iterative process (Golub & Loan, 1989)
to identify the principal eigenvector (and principal
community) of the matrix. The extent of this vec-
tor in a document’s dimension is called the “loading”
of the document on the vector. The loading of a doc-
ument on the principal eigenvector of M’M is inter-
preted as the “authority” of that document within the
community — how likely 1t is to by cited within that
community. Document loading on the principal eigen-
vector of M M’ is interpreted as its “hub” value in the
community — how many authoritative documents it
cites within the community.

Because only the largest eigenvector is extracted, all
but the principal community are ignored. It is possi-
ble for other, only slightly smaller communities to be
skipped over, giving their “authoritative” documents
no credit for their authority (see Figure 1). This prob-
lem 1s endemic in Information Retrieval, where syn-
onyms in query or answer documents may cause re-
trieval of documents from multiple, unrelated topics.

This problem can be easily corrected. More traditional
bibliometric methodology often employ principal com-



Figure 1. A weakness of the HITS algorithm is its focus
on the single largest eigenvector when conveying authority.
Here, eigenvectors EV1 and EV2 correspond to two orthog-
onal communities identified by co-citation factor analysis.
Document x has great authority in in community EV2, by
dint of its projection onto that axis. The community repre-
sented by EV1 is slightly larger however, so EV1 becomes
the principal eigenvector. The projection of x onto EV1
is minimal, so it will be given little authority by HITS,
despite the authority it commands along EV2.

ponents analysis (PCA) to extract multiple eigenvec-
tors. PCA is a form of linear factor analysis: each of
the eigenvectors serves as a factor that can be com-
bined linearly with others and blurred with noise to
“explain” variations in the data (R. Gorsuch, 1983).
These multiple factors (eigenvalues) correspond to the
largest bibliographic communities in M’'M and M M’:
documents that are heavily loaded on them command
authority or hub value within their community.

1.2 Statistical Assumptions of PCA

Despite the attractiveness and simplicity of PCA and
the HITS algorithm, they have a serious shortcoming:
they are built on a faulty statistical foundation. PCA
and HITS minimize the distortion of the factored ap-
proximation to M M’ — the mean squared difference
between observed and approximated values. This cor-
responds to making the assumption that all random
variation in citation rates is due to Gaussian noise.

Unfortunately, the Gaussian is particulary ill-suited
to modelling citation rates: it is symmetric about its
mean and is able to generate citation frequencies that
are less than zero, or arbitrarily large. A noise model
which 1s better suited to modelling citation counts is
the multinomial distribution. In this paper, we intro-
duce a bibliometric method for identifying hub and au-
thority documents based on this probabilistic model of
citation. Mathematically, the model is almost identical
to PLSI (Hofmann, 1999), which provides a probabilis-

tic interpretation of term-document relationships.

2. A Latent Variable Model of Citation

Our model of citation is based on a two-way factor
analysis that is, in most respects, identical to the “as-
pect model” used by Hofmann (1999) and others. Hof-
mann’s PLSI is a probabilistic analogue of Latent Se-
mantic Indexing (LSI); we therefore call our approach
“PHITS,” as it is a probabilistic analogue of the HITS
algorithm.

The model attempts to explain two sets of observables
(in our case documents and citations) in terms of a
small number of common, but unobserved variables
(also called aspects or factors). In bibliometrics, these
factors are typically identified with individual research
area, or “communities”.

Statistically, we can describe the model as a genera-
tive process, borrowing notation from Hofmann (see
Figure 2). A document d € D is generated with some
probability P(d). The factor, or topic z € Z asso-
ciated with d is chosen probabilistically according to
P(z|d). Given the factor, citations ¢ € C' are generated
probabilistically according to P(c|z).!

P(d) . P(Zld). P(cIZ.

Figure 2. Factored statistical model of document citation.
Given a set of document-citation pairs (d,¢), we can

describe the likelihood of each pair as

P(d,c)
P(cld) =

P(d)P(c|d), where (1)
> Plefz)P(z]d),

summing over all factors which could have produced
the citation. The total likelihood L of the observed
citations matrix M 1s then described as

LMy= [ Pde). (2)

(d,c)eM

The process of building a model that “explains” a set
of observations then reduces to the problem of finding
values for P(d), P(z|d) and P(e¢|z) that maximize the
likelihood L(M) of the observed data.

'In practice, C' and D both refer to documents in the
corpus, and the sets may be identical. We keep them sep-
arate notationally to reinforce different roles they play in
the model: membership in C' is conveyed by being cited,
membership in D) is conveyed by citing.



2.1 Mixture Models vs. Factored Models

It is important to briefly distinguish the factored
model used here from probabilistic mixture models.
In a mixture model, each example is assumed to come
from one of a set of latent sources (e.g., a document is
either about z; or z3). Credit for the example may be
distributed among several sources because of ambigu-
ity, but the model insists that only one of the candidate
sources 18 the true origin of the example. In contrast,
the factored model assumes that all examples come
from a combination of sources — without any ambi-
guity, the model can assert that a document is half z;

and half zo.

2.2 Maximizing Model Likelihood

To find a maximally likely model, we again borrow
from Hofmann, using a “tempered” version of the EM
algorithm (Hofmann, 1999). We make use of Bayes
rule to reformulate Equation 1 in terms of the latent
variable z:

P(d, )= P(z)P(c|z) P(d]z). (3)

We then alternate steps of computing expectations of
P(z|d, ¢) with steps of re-estimating P(z), P(c|z) and
P(d|z) to maximizing the data likelihood. Beginning
with an arbitrary values of P(z), P(ec|z) and P(d|z),
and given some fairly gentle assumptions, this iteration
is guaranteed to converge to a locally optimal likeli-
hood solution (Dempster et al., 1977). Unlike PCA,
however, there are no guarantees on the global opti-
mality of the resulting solution.
The expectation step consists of computing
P(eld, ¢) = P(z)P(d|z)P(c|2) ’ 4)
2o P()P(d]2") P(cl]z)

for each z, d, and ¢ — the expectation that a particular
document-citation pair is “explained” by factor z.

Using these values, new maximum likelihood estimates
are derived for the conditional likelihoods of the ob-
servables:

Zd,c P(Z|d’ C)

S S A E TR B
P(C|Z) de(zw’ C) (7)

2oaer Pl2ld, )

Repeated computation of Equation 4 interleaved with
Equations 5—7 monotonically increases the total likeli-

hood of the observed data L(M).

In addition to the basic EM algorithm, we also apply
Hofmann’s tempering variation: we “temper” the as-
signment of factors with a parameter g by replacing
Equation 4 with

[P()P(d]z) P(el2))”
. [P(=!)P(d]2)P(c]")])

We run EM beginning with a value g = 1, iterate un-
til the data likelihood improvement is negligible, then
slowly reduce § and repeat (see Hofmann, 1999, for
details).? We use a hard lower limit on 3; the best
value to use for that limit appears to vary with the
size and connectivity of the corpus.

P(z|d,¢) = (8)

3. Experiments

We test our model on two corpora. The first i1s in
the traditional bibliometric domain of citations among
scientific papers; the second is on a set of hyperlinked
documents retrieved from the world wide web.

3.1 Citation Communities in Cora

Cora (McCallum et al., 1999; McCallum et al., 2000)
is an online archive of computer science research pa-
pers. The archive was built automatically using a com-
bination of smart spidering to efficiently find online
papers in PostScript format, information extraction
to identify paper titles, authors, abstracts and refer-
ences, and statistical text classification to categorize
the papers into a Yahoo-like topic hierarchy with ap-
proximately 70 leaf categories. The archive contains
approximately 30,000 papers, and over 1 million links
to roughly 200,000 distinct documents.

We can use the subtopic categorization of Cora as a
form of objective test set. Since Cora classifies papers
according to text content, its classifications are inde-
pendent of the citation patterns between documents.
If the research areas identified by Cora’s classifications
do indeed represent distinct communities (which may
or may not cite each other), we can hope that our
algorithm can recover these communities from cita-
tion patterns, and identify the most influential papers
within each community.

To test this hypothesis, we selected a subset of the
Cora database, the papers under the “Machine Learn-
ing” category. This category 1s subdivided into
7 subtopics: Case-Based Reasoning, Genetic Algo-
rithms, Neural Networks, Probabilistic Methods, Re-
inforcement Learning, Rule Learning and Theory. We

?Data likelihood is measured using a form of leave-one-
out validation, where each P(z|d,c) is evaluated without
counting the occurrence of the (d, ¢) pair in question.



identified each of the 4240 documents and 38,372 ci-
tations in these subtopics and used them as training
data for the PHITS algorithm.

We asked the system to extract 7 factors from the data,
and seeded the model randomly by setting P(d|z):
each document received uniform membership in all
factors except one chosen at random, which received
“double” weight. The citations from each document
were given a corresponding distribution in P(c|z), and
P(z) was set to be uniform. We began with a temper-
ing value of § = 1 and decreased it by a multiple of
0.9 every 20 iterations, or whenever the improvement
in model likelihood fell below 0.00001L. We termi-
nated the algorithm after a maximum of 40 iterations
for efficiency — although likelihood generally contin-
ued to increase beyond this point, we found that the
increase had little effect on the factors or orderings of
the most probable citations.

3.1.1 INTERPRETING THE RESULTS

Kleinberg’s HITS algorithm grants authority to a doc-
ument proportional to the magnitude of its component
in the largest eigenvector of the co-citation matrix.
While indicative of the influence that document has
on others aligned with the eigenvector, no probabilis-
tic interpretation is possible using this model.

Given a fully probabilistic model, there are a number
of similar statistics we could use to measure the im-
portance of a document given a factor (i.e. within a
community of citations). The simplest analog to “au-
thority” is the conditional probability P(c|z). This
indicates how likely a document ¢ is to be cited from
within community z. Table 1 lists the documents with
highest P(c|z) for each of the 7 learned factors. The
PHITS recovery of the original categories is remark-
ably accurate; more importantly, several generally rec-
ognized authoritative papers for each category appear
at the top.

The traditional HITS algorithm also extracts some au-
thoritative papers for each of its categories, but there
1s less of a clear distinction between categories, and the
list contains a number of papers that are not generally
considered authorities. Interestingly, HITS identifies
as authoritative a category which does not appear ex-
plicitly in Cora: classical statistics.

3.1.2 ALTERNATIVE STATISTICS

Tt is worth noting that P(e|z) is only one of the statis-
tics which may be computed with the probabilistic
model. It corresponds to how authoritative a docu-
ment 1s considered to be from within a community.

This is entirely distinct from the question of which
community the document itself 1s in — a seminal the-
ory paper, for example, may be authoritative in many
other fields. To find community membership, we sim-
ply compute

_ P(2)P(:)
> Plel=)

according to Bayes rule. This quantity can be used
to classify documents according to communities. For
example, the paper “T'D Learning of Game Evaluation
Functions with Hierarchical Neural Architectures,” by
Wiering (1995), has factor probabilities

)

0.566 Reinforcement Learning
0.027 Rule Learning

0.239 Neural Networks

0.026 Theory

0.026 Probabilistic Reasoning
0.072 Genetic Algorithms
0.044 Logic

indicating that as we would expect, it is primarily a
mix of reinforcement learning and neural networks,
with marginal membership in other communities.

Beyond classification, there is another interesting use
of P(z|c) — by examining the authority of documents
which have one dominating factor, we can identify pa-
pers which are topic-specific authorities. We can, for
example, look at which theory papers are most au-
thoritative with respect to the Neural Network (NN)
community by examining

argmaz.P(clz = NN) : P(z = Theorylc) > 0.9.
(10)
The paper which maximizes this quantity is “Decision
Theoretic Generalizations of the PAC Model for Neu-

ral Net and other Learning Applications,” by Haussler
(1992).



Table 1. (top) Highest ranked documents in Machine Learning, according to PHITS’ computation of p(c|z), the prob-
ability of a citation ¢ being referenced from a document in this factor. Labels in parentheses were attached manually,
corresponding to one of the 7 original topic labels from Cora. (bottom) Highest ranked documents in Machine Learning,
according to HITS’ eigenvector computation. Labels in parentheses were attached manually, corresponding when possible
to topic labels from Cora — “Classical Statistics” is a category not explicitly represented in Cora.

Top citations by P(c|z), computed by PHITS algorithm:

factor 1 | (Reinforcement Learning)

0.0108 Learning to predict by the methods of temporal differences. Sutton

0.0066 Neuronlike adaptive elements that can solve difficult learning control problems. Barto et al
0.0065 Practical Issues in Temporal Difference Learning. Tesauro.

factor 2 | (Rule Learning)

0.0038 Explanation-based generalization: a unifying view. Mitchell et al

0.0037 Learning internal representations by error propagation. Rumelhart et al

0.0036 Explanation-Based Learning: An Alternative View. DeJong et al

factor 3 | (Neural Networks)

0.0120 Learning internal representations by error propagation. Rumelhart et al

0.0061 Neural networks and the bias-variance dilemma. Geman et al

0.0049 The Cascade-Correlation learning architecture. Fahlman et al

factor 4 | (Theory)

0.0093 Classification and Regression Trees. Breiman et al

0.0066 Learnability and the Vapnik-Chervonenkis dimension, Blumer et al

0.0055 Learning Quickly when Irrelevant Attributes Abound. Littlestone

factor 5 | (Probabilistic Reasoning)

0.0118 Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Pearl.

0.0094 Maximum likelihood from incomplete data via the em algorithm. Dempster et al

0.0056 Local computations with probabilities on graphical structures... Lauritzen et al

factor 6 | (Genetic Algorithms)

0.0157 Genetic Algorithms in Search, Optimization, and Machine Learning. Goldberg

0.0132 Adaptation in Natural and Artificial Systems. Holland

0.0096 Genetic Programming: On the Programming of Computers by Means of Natural Selection. Koza
factor 7 | (Logic)

0.0063 Efficient induction of logic programs. Muggleton et al

0.0054 Learning logical definitions from relations. Quinlan.

0.0033 Inductive Logic Programming Techniques and Applications. Lavrac et al

Top citations by eigenvector:

factor 1 | (Genetic Algorithms)

0.0492 How genetic algorithms work: A critical look at implicit parallelism. Grefenstette
0.0490 A theory and methodology of inductive learning. Michalski

0.0473 Co-evolving parasites improve simulated evolution as an optimization procedure. Hills
factor 2 | (Genetic Algorithms)

0.00295 | Induction of finite automata by genetic algorithms. Zhou et al

0.00295 | Implementation of massively parallel genetic algorithm on the MasPar MP-1. Logar et al
0.00294 | Genetic programming: A new paradigm for control and analysis. Hampo

factor 3 | (Reinforcement Learning/Genetic Algorithms)

0.256 Learning to predict by the methods of temporal differences. Sutton

0.238 Genetic Algorithms in Search, Optimization, and Machine Learning. Angeline et al
0.178 Adaptation in Natural and Artificial Systems. Holland

factor 4 | (Neural Networks)

0.162 Learning internal representations by error propagation. Rumelhart et al
0.129 Pattern Recognition and Neural Networks. Lawrence et al

0.127 Self-Organization and Associative Memory. Hasselmo et al

factor 5 | (Rule Learning)

0.0828 Irrelevant features and the subset selection problem, Cohen et al

0.0721 Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Holte
0.0680 Classification and Regression Trees. Breiman et al

factor 6 | (Rule Learning)

0.130 Classification and Regression Trees. Breiman et al

0.0879 The CN2 induction algorithm. Clark et al

0.0751 Boolean Feature Discovery in Empirical Learning. Pagallo

factor 7 | ([Classical Statistics?])

1.5-132 | Method of Least Squares. Gauss

1.5-132 | The historical development of the Gauss linear model. Seal
1.5-132 | A Treatise on the Adjustment of Observations. Wright




Another measure we might want is an indication of
what documents are “characteristic” of a community.
This concept is distinct from both membership and
raw probability: a poorly-cited document that has ex-
clusive membership in one community is not character-
istic of that community; neither is a heavily-cited doc-
ument, if 1t is equally heavily-cited by all other com-
munities. Identifying heavily-cited documents that are
community-specific is a matter of computing the prod-
uct of the terms: char;; = P(z;]¢i) - P(esz5).

The probabilistic equivalent of “hubs” are found via
the same route. P(d|z) is the probability, given some
factor z, that document d contains a reference to
it. The more factor-specific references d makes, the
greater P(d|z) will be. As such, this probability serves
the same function as a hub score. Just as with cita-
tions, we can compute the membership P(z|d) of a doc-
ument, or its characteristic probability P(z|d)- P(d|z).

3.2 Authoritative Web Documents

The primary domain considered by Kleinberg (1997)
was hyperlinked documents on the world wide web. In-
deed, as the number web pages “relevant” to a given
search engine query has exploded, the need for a means
of identifying authoritative pages has grown more cru-
cial. Comparing the performance of HITS and PHITS
in this domain reveals some interesting contrasts.

We began by gathering a set of documents and links
following the HITS methodology:

1. Tssue a query to Altavista (www.altavista.com)
and define the pages it returns as a “root set.”

2. Add to the root set all pages with links pointing
to the root set, and all pages pointed to by the
root set. This defines the “base set.”

3. Remove “intrinsic” links — links between two
sites sharing the same top level domain. Keep
all other links between members of the base set.

The base set and its remaining hyperlinks are the doc-
uments and citations to which we apply PHITS.

Here, we describe results for the “jaguar” query con-
sidered in Kleinberg’s paper; we have obtained similar
results with other queries described in that paper.3
Issuing an Altavista query on the terms “jaguar” and
“Jjaguars” yielded a base set of 5276 links between 2372
web pages.

In Kleinberg’s results, the dominating communities
were for the Atari Jaguar product, the Jaguars football

*The original link sets used by Kleinberg are not pub-
licly available, and the topology of the web has changed
substantially in the three years since those experiments, so
it is not surprising that our results differ.

team, and the Jaguar automobile. Oddly, the princi-
pal eigenvector (magnitude 729) returned by HITS in-
volves services in Cincinnati — dominated by a clique
of sites from a single domain:

Principal eigenvector (magnitude 729.84)
0.224 | http://www.gannett.com

0.224 | http://homefinder.cincinnati.com
0.224 | http://cincinnati.com /freetime/movies
0.224 | http://autofinder.cincinnati.com

The cause of this behavior is the Cincinnati Enquirer
newspaper, which has many articles about the Cincin-
nati Bengals and their rival, the Jacksonville Jaguars.
Each article contains the same set of pointers to ser-
vices provided by the newspaper, leading these to dom-
inate the link set.

The second eigenvector is dominated by the home
pages of technology news agencies — authoritative in
their fields, but not obviously associated with jaguars:

Third eigenvector (magnitude 358.39)

0.0003 | http://www.cmpnet.com

0.0003 | http://www.networkcomputing.com
0.0002 | http://www.techweb.com/news
0.0002 | http://www.byte.com

In fact, it is not until the third eigenvector (magnitude
294) that the Jaguars football team appears:

Third eigenvector (magnitude 294.25)
0.781 | http://www.jaguarsnfl.com
0.381 | http://www.nfl.com

0.343 | http://jaguars.jacksonville.com
0.174 | http://www.nfl.com/jaguars

The Jaguar automobile appears at the negative end of
the fourth eigenvector (magnitude 169), and the Atari
product is nowhere to be found (a victim of progress).

The same data, run on PHITS, exhibits very different
behavior. Run with two factors (which should capture
the two largest components), we find that the Jack-
sonville Jaguars and the Jaguar automobile do dom-
inate the two factors. However, unlike HITS, these
two topics are not segregated into one factor each, but
interleaved in both:

Top citations by P(c|z):

Factor 1

0.0440 | http://www.jaguarsnfl.com -
0.0252 | http://jaguars.jacksonville.com -
0.0232 | http://www.jag-lovers.org -
0.0200 | http://www.nfl.com -

0.0167 | http://www.jaguarcars.com -
Factor 2

0.0367 | http://www.jaguarsnfl.com -
0.0233 | http://www.jag-lovers.org -
0.0210 | http://jaguars.jacksonville.com -
0.0201 | http://www.nfl.com -

0.0161 | http://www.jaguarcars.com -




Running with more or fewer factors yields a similar
result: while we 1dentify what are arguably the most
authoritative pages returned by the query, PHITS has
not separated them into distinct factors. This high-
lights a distinction between the PCA-based HITS al-
gorithm and ours. PCA forms orthogonal eigenvectors.
Probabilistically, there is no requirement that citations
belong to exclusively one factor. In the above example,
PHITS appears to have found that it can maximize the
likelihood of the observed data by adopting a shared
representation.

In this case, our complaint should not be with the
factoring, but with our choice of a factored model
over a mixture model (Section 2.1). In the case of
the “jaguars” query, we would expect each page to be
about one of the four major categories — we don’t ac-
tually expect to see any web pages that are a 50%/50%
mix of British cars and Atari computers. As such, a
traditional mixture model would be appropriate for
first clustering the disjoint topics, after which PHITS
could be applied to tease apart the different factors
and authoritative web pages in each cluster.

There is another alternative, if we insist on orthogo-
nality in the factored model. We could augment the
the likelihood maximization process with constraints
leading to an independent components analysis (Bell
& Sejnowski, 1996) consistent with the probabilistic
model. These approaches are the subject of work in
progress.

4. Discussion

The factored probabilistic model of citations described
here has both advantages and disadvantages with re-
spect to the traditional linear factorization. The most
important advantage is that, since it is based on prob-
abilities, the estimates it provides have a clear in-
terpretation: where the traditional model provides
scalar magnitudes of authority, our model estimates
actual probabilities. These probabilities have well-
understood semantics, and may be combined and ma-
nipulated to provide answers to quantitative biblio-
metric questions.

Subjectively, the authorities extracted by our prob-
abilistic model seem to correspond better to human
intuition than those extracted by PCA and the HITS
model. On citation data, it robustly recovers estab-
lished categories much better than PCA. On web links,
it recovers the intuitive communities, but frequently
mixes their representation. Part of difference may
be due to mismatch in the statistical model, but an-
other factor may be that citations are more “inten-

tional” than web links — www.microsoft.com/ie ap-
pears uniformly authoritative across all topics on the
web because so many pages carry the linked banner
“This page best viewed with Internet Explorer.” Aside
from enforcing factor orthogonality, a means of weight-
ing the authority of a page by its relevance (determined
by word content) should alleviate these spurious asso-
ciations. See the end of this section for our current
work 1n this area.

Beyond unintended mixing of communities, there are
several minor disadvantages to the current probabilis-
tic model, most of which are the subject for future
research. First, unlike the eigenvector model derived
from PCA, the EM-based training of PHITS is not
guaranteed to identify a globally “optimal” factoring.
The performance of the EM procedure is dependent
on the starting point of the optimization, and may get
stuck in local optima with poor overall performance.

Empirically, we observe some variation in the factors
and corresponding authorities between runs, but the
primary trends are fairly constant. We have not ob-
served noticeably “bad” fits in any of our experiments,
but we have no guarantee that we’re not missing a
“perfect” global fit somewhere. Other than perform-
ing multiple restarts on the fitting procedure, there is
little that can be done to address this shortcoming.
Another interesting possibility is to begin by comput-
ing the PCA-based model, and use those factors to
seed the probabilistic model.

Another shortcoming of the probabilistic model is
that, in the present implementation, we must decide a
priori on the number of factors to model. PCA per-
mits extracting successive factors iteratively and ob-
serving their magnitude. By looking for a tapering-
off in the magnitude of the extracted factors (called
a “scree test”), one can estimate when all significant
factors have been extracted.

Roughly the same may be accomplished with a prob-
abilistic model, although the process trades compu-
tational expense for the risk of getting stuck in local
maxima. Given a factored probabilistic model, one can
select a factor to “split” into subfactors. The subfac-
tors can be re-fit, and the resulting increase in model
likelihood examined. Using a model selection criterion
such as AIC (Akaike, 1990) or BIC (Schwarz, 1978),
one can determine whether the increase in likelihood
justifies the split. If so, the split is kept, another fac-
tor is selected for splitting, and the process is repeated.
The danger here, as with all hierarchical techniques, is
that an early split which appears optimal may eventu-
ally lead to suboptimal splits later on. Automatically
identifying the “right” number of factors, and learn-



ing a hierarchy of increasingly specific factors are two
extensions of this work that we are exploring.

Computationally, the approaches are comparable.
Running in MATLAB with sparse matrix routines on
a Pentium ITI-550, HITS required approximately 5 sec-
onds to compute anywhere between 2-5 factors. On
the same machine, PHITS, required 4 seconds to com-
pute 2 factors, and 12 seconds to compute 5 factors.

A final advantage of the probabilistic factored model
over the traditional one is that it provides a foundation
for building a unified probabilistic model of the con-
tent and connections of linked documents. Hofmann’s
PLSI performs a two way term-document factoring.
Our model performs a two way document-citation fac-
toring. It is mathematically straightforward to com-
bine these models into a single three way factoring
that relates terms, citations and documents in a uni-
fied probabilistic framework. We are currently devel-
oping a system which implements this factoring, and
hope to soon report results from its use.
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