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Abstract

Bayesian networks have become one of the most popular probabilistic tech�

niques in AI� largely due to the development of several e�cient inference

algorithms� In this paper we describe a heuristic method for constructing

Bayesian networks� Our construction method relies on the relationship

between Bayesian networks and decomposable models� a special kind of

graphical model� We explain this relationship and then show how it can

be used to facilitate model construction� Finally� we describe an imple�

mented computer program that illustrates these ideas�

� Introduction

Relationships among symptoms� evidence and diseases are often so complex
that they can be described only by very general models� Such models can eas�
ily be constructed within the framework of probability theory� Several papers
in defense of applying probability theory to AI appeared in the early ����s
�e�g� �	� ��
�� and since then probability theory has been widely accepted as a
framework for representing and reasoning about uncertain knowledge� Early
objections to the use of probability theory were directed mainly at its high
computational complexity� But recently many highly e�ective representations
and algorithms have been developed which� together with the continuously in�
creasing power of computers� has led to numerous commercial applications of
probability theory� Two examples serve to demonstrate the popularity of prob�
abilistic models
 probability theory is used in the on�line help system in Mi�
crosoft�s Windows��� operating system ��
� and Finn Jensen�s book Introduc�

�This research was supported by grants GA �CR �����������	 GA �CR �����
��
��	 and
CEC CIPA����CT�������

�



tion to Bayesian Networks ���
 was the top�selling Expert Systems book in May
������

Bayesian networks� a particular kind of probabilistic model� have become one
of the most popular probabilistic technique used in AI for several reasons� Being
based on probability theory� they inherit many of the e�cient methods and
strong results of mathematical statistics� Moreover� numerous e�cient methods
for their application to inference have been developed ��
�

Although in this paper we brie�y discuss these inference techniques� we
focus mainly on a method for constructing Bayesian networks utilizing both the
knowledge of experts and information from data bases�

� Notation

We consider only �nite domains� Let �X � fX�� � � � � Xng denote a vector of
n variables taking their values from �nite sets X�� � � � �Xn� respectively� In
this model we do not distinguish between variables representing symptoms and
evidence from those representing diagnoses� from this point of view the model
is completely symmetric�

A Bayesian network for the system of variables �X is de�ned to be an acyclic
directed graph whose nodes are the indices f�� � � � � ng� and a system of con�
ditional probability distributions fQi�XijfXjgj�pa�i��g

n
i��� where pa�i� denotes

the parents of node i
 pa�i� is the set of graph nodes from which there is an
edge to node i�

A Bayesian network represents the joint n�dimensional probability distribu�
tion Q� �X� which is the product of the conditional distributions assigned to the
nodes


Q� �X� �
nY
i��

Qi�Xi j fXjgj�pa�i���

It can be shown that this joint distribution is the only one that is consistent
with the given set of conditional probability distributions and simultaneously
whose dependence structure re�ects all the conditional independence relations
given by the underlying graph��

Let us consider a simple example� which resembles the well�known example
discussed in ���
� The �ve variables in the domain are described in Table ��
the Bayesian network is de�ned by the graph in Figure �� and the conditional
distributions are listed in Table 	� This Bayesian network represents the ��
dimensional distribution

Q�X�� � � � � X�� � Q��X��Q��X��Q��X� jX��Q��X� jX�� X��Q��X� jX�� X��

�Information provided by the Internet Book Shop Mailing Services�
�Consistency means that for all i 
 �� � � � � n	 Q�Xi j fXjgj�pa�i�� 
 Qi�Xi j fXjgj�pa�i���

The reader not acquainted with the necessary theory can take as de�nitional that a Bayesian
network represents the joint distribution given by the product of the given conditional
distributions�

	



whose values are listed in Table ��

variable meaning values

X� patient is smoker � �no� � �yes
X� family history of cancer � �no� � �yes
X� patient has bronchitis � �no� � �yes
X� patient has lung cancer � �no� � �yes
X� X�ray indicates disease � �no� � �yes

Table �
 Variables and their values�
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�smoker � family history

�bronchitis � lung cancer

	 X�ray

Figure �
 Directed graph of a Bayesian network�

Q��X���� � ��	� Q��X���� � ��	
Q��X��� jX���� � ��� Q��X��� jX���� � ��	�

Q��X��� jX���� X���� � ���� Q��X��� jX���� X���� � ��	�
Q��X��� jX���� X���� � ��	 Q��X��� jX���� X���� � ���
Q��X��� jX���� X���� � ���	 Q��X��� jX���� X���� � ��	
Q��X��� jX���� X���� � ��� Q��X��� jX���� X���� � ���

Table 	
 Conditional probability distributions�

As just mentioned� Q�X�� � � � � X�� is unique� and it is consistent with the
given conditional distributions and the requirements on the dependence struc�
ture of the represented distribution� In the example� this fact implies that
Q�X�� � � � � X�� encodes the following conditional independences


� X� is independent from X� and X� �written �X� �Q X�� X�
�� meaning
that we assume that family history of cancer in�uences neither whether
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X� � � X� � �
X� � � X� � � X� � � X� � �

X� � �
X� � � ����	�� ������� ����	� ���	���

X� � �
X� � � �����	� ����	�� ����	� ������	

X� � �
X� � � ������ ������ ����� ������
X� � � �����	 �����	 ���	� ������

X� � �
X� � � ������ ������ ����� �����	

X� � �
X� � � ������ ����	� ����� ������

X� � �
X� � � ������ ������ ����� �����	
X� � � ����	� ����	� ����	 ������

Table �
 Joint ��dimensional probability distribution�

a person is a smoker or su�ers from bronchitis� Of course in reality these
factors may well not be independent� For example� it may be that one�s
tendency to smoke is in�uenced by the fact that one�s relatives su�ered
from cancer� But Q�X�� � � � � X�� contains this independence relationship
because it is encoded in the Bayesian network�

� �X� �Q X�� X�jX�

 in determining whether a patient su�ers from bron�
chitis� her family history of cancer supplies no information� and neither
does the fact that she has lung cancer if it is already known whether she
smokes� This independence is conditional because the analysis of a per�
son�s chance of getting lung cancer depends on the analysis of whether she
smokes which in turn depends on whether she has bronchitis�

� �X� �Q X�� X�jX�� X�


Naturally� several more independence relations follow from these
 �X� �Q X�
�
�X� �Q X�jX�� X�
� and so forth�

Finally� note that the ��dimensional distribution Q�X�� � � � � X�� represented
by the Bayesian network of this example can be stored in computer memory
with �	 probabilities �namely� the values shown in Table 	�� In contrast� Ta�
ble � illustrates that a general ��dimensional distribution of binary variables is
determined by �� probabilities� in the general case� an n�dimensional distribu�
tion requires storage that grows exponentially in n� Thus a major advantage
of Bayesian networks is that they compactly represent distributions over large
state spaces��

�Note that we take advantage of the fact that the probabilities of a distribution sum to
one� Although a polynomial amount of additional storage is needed to represent the graph
itself	 this requirement is negligible as n becomes large�
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� Inference in Bayesian networks

In probabilistic applications� one typically uses a distribution to represent knowl�
edge of some area of interest� and the problem is to determine what can be
concluded from this distribution� Thus methods for using such distributions for
inference have been developed� In terms of probability theory� we need e�ective
procedures for computing arbitrary conditional probability distributions� Due
to their popularity� several such techniques have been developed for Bayesian
networks�

For example� Shachter has developed two transformations on a Bayesian
network �node deletion and edge reversal� that produce a smaller network rep�
resenting a marginal of the original distribution� thus yielding the required con�
ditional probabilities almost directly ���� 	�� 	�
� Another approach is based
on Lauritzen and Spiegelhalter�s well�known method of local computation that
transforms the original Bayesian network into a decomposable model that is more
suitable for computations than Bayesian networks ���
�

Although these and similar techniques are applicable in realistic problems�
their performance varies when applied to di�erent Bayesian networks� It is di��
cult to give general principles for determining which methods are most suitable
for a particular situation� Nevertheless� they all operate on the same underly�
ing probability distribution and therefore the results�the required conditional
probabilities�are the same�

In this paper we will not analyze these aspects of Bayesian network theory�
the reader is referred to the literature cited above and to ��� ��
� Rather� we will
discuss a technique for constructing probabilistic models� Nevertheless� because
decomposable models play an important role in the process of constructing
Bayesian networks� we now describe Lauritzen and Spiegelhalter�s approach in
more detail�

� Decomposable models

In contrast to the directed graphs that de�ne a Bayesian networks� in the sequel
we model the domain with undirected graphs� Moreover� graphs with loops or
multiple edges are are not allowed�

A clique of a graph G� �V�E� is a maximal subset of nodes such that every
pair of clique nodes are connected by an graph edge� A graph is triangulated if
every cycle with length greater than three has a chord � a pair of non�consecutive
nodes is connected by an edge�

From our point of view� an important property of triangulated graphs is the
fact that the cliques of a triangulated graph can be enumerated in such a way
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that the ordering C�� � � � � Cm meets the running intersection property ��



� � � i � m � � � j � i Ci �
i���
k��

Ck � Cj�

Given such an ordering� we de�ne Bi � Ci �
Si��
k��Ck for � � i � m�

We can now de�ne the concept of a probability distribution being decom�
posable with respect to a triangulated graph� Assume a triangulated graph
G � �V�E� with V � f�� � � � � ng� Let C�� � � � � Cm be the cliques of G and �with�
out loss of generality� assume that these cliques are ordered to meet the running

intersection property� We say that the distribution Q� �X� is decomposable with

respect to G if

Q� �X� �
mY
i��

Q�fXjgj�CinBi jfXjgj�Bi��

The importance of the concept of decomposability lies in two facts� First�
a decomposable distribution is uniquely de�ned by its marginals for the sets of
variables corresponding to the cliques of the respective graph� The second fact
is that the joint distribution can be expressed as a product of its marginals

Q� �X� �
mY
i��

Q�fXjgj�Ci�
mY
i��

Q���fXjgj�Bi� �
mY
i��

Q�fXjgj�Ci�

Q�fXjgj�Bi�
�

Note that the marginal Q�fXjgj�Bi� for Bi � � equals constant �� and we have

Q�fXjgj�CinBi jfXjgj�Bi� � Q�fXjgj�CinBi�

for Bi � � as well�
To �nd an undirected graph with respect to which the distribution repre�

sented by a Bayesian network is decomposable� Lauritzen and Spiegelhalter�s
method transforms the original directed graph �rst into an undirected moral

graph and then into a triangulated graph� Moralization involves connecting all
nodes having a common child by undirected edges and then unorienting the
original edges� Triangularization of a graph is the process of adding new edges
to an undirected graph to get a triangulated graph� Tarjan and Yannakakis�
algorithm �		
 has been widely used�

The goal of this paper is not to teach the reader the method of local com�
putations� the reader is referred to ��� ��
� We do not therefore describe the
equations according to which the original conditional probabilities are trans�
formed into a set of distributions on the cliques C�� � � � � Cm� Nevertheless� let
us illustrate the process for the simple example introduced in Section 	�

Moralization of the graph from Figure � leads to the graph in Figure 	� This
graph does not contain a chordless cycle of length greater than three �there are
two cycles of length four
 ��� �� �� �� and ��� �� �� 	�� with chords ��� �� and ��� ��
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respectively� and one cycle of length �ve� ��� �� �� �� 	� having two chords� ��� ��
and ��� ��� and thus the graph is also triangulated� The respective distributions
are uniquely de�ned by the three ��dimensional distributions listed in Table ��
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h
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Figure 	
 Moral graph of the Bayesian network from Figure ��

Q�X���� X���� X���� � ���� Q�X���� X���� X���� � ����
Q�X���� X���� X���� � ���	 Q�X���� X���� X���� � ����
Q�X���� X���� X���� � ���� Q�X���� X���� X���� � ����
Q�X���� X���� X���� � ���� Q�X���� X���� X���� � ���	
Q�X���� X���� X���� � ���	� Q�X���� X���� X���� � �����
Q�X���� X���� X���� � ����� Q�X���� X���� X���� � �����
Q�X���� X���� X���� � ���	� Q�X���� X���� X���� � �����
Q�X���� X���� X���� � ����� Q�X���� X���� X���� � ���	�
Q�X���� X���� X���� � ����	�� Q�X���� X���� X���� � �������
Q�X���� X���� X���� � �����	 Q�X���� X���� X���� � ������
Q�X���� X���� X���� � ������ Q�X���� X���� X���� � ���	��
Q�X���� X���� X���� � ������ Q�X���� X���� X���� � ���	��

Table �
 ��dimensional distributions de�ning the decomposable model�

Just as every Bayesian network can be converted into a decomposable model�
a decomposable model can always be expressed in the form of a Bayesian net�
work� To do so� the nodes of the decomposable model �i�e� the indices of the
variables� are ordered so that the corresponding ordering of the cliques meets
the running intersection property


�� � � � � k� �z �
C�

� k � �� � � � � �� �z �
C�nB�

� �� �� � � �� �z �
C�nB�

� � � � � � � � � n� �z �
CmnBm

�

The parents of node i are then those nodes which are adjacent to i in the original
decomposable model and which are before i in the constructed ordering� The
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conditional distributions are directly computed from the marginal distributions
assigned to the decomposable model�

� Iterative proportional �tting procedure

We now use this ability to transform a decomposable model into a Bayesian
network as the basis of a simple data�based method for constructing Bayesian
networks� Our method requires only knowledge regarding which variables are
highly dependent on each other� this can be measured by� for example� informa�
tion�theoretic measures such as mutual information or informational content �

Assume a system of oligodimensional distributions fP��fXjgj�D�
�gr��� over

the sets of variables D�� � � � � Dr� An oligodimensional distribution is a distribu�
tion over a �reasonably� small set of highly mutually�dependent variables� As�
sume further that the D� collectively cover the variables


Sr
���D� � f�� � � � � ng�

To �nd an n�dimensional probability distribution Q� �X� having the given
distributions for its marginals�i�e� a distribution such that

Q�fXjgj�D�
� � P��fXjgj�D�

�

for each ��one can use the well known Iterative Proportional Fitting Procedure

�IPFP�� proposed as early as ���� by W� E� Deming and F� F� Stephan ��
�
The mathematical description of this procedure is simple� IPFP is an itera�

tive process� computing from an initial uniform n�dimensional probability distri�
bution R� a sequence of distributions R�� R�� � � � of the same dimensions� where
the sequence converges to the distribution R� that has the required marginals�
The reader is referred to ��
 for a description of the theoretical properties of
IPFP�

Each iterative step corresponds to an adjustment of one marginal distri�
bution� The order in which marginals are adjusted is regularly rotated� as
expressed in the following recurrent formula

Ri� �X� � P��fXjgj�D�
�Ri���fXjgj ��D�

jfXjgj�D�
�

for i � �� 	� � � � and � � � � ��i � �� mod r��
Note that as described so far IPFP computes the values of an n�dimensional

distributions� which in general has severe computational complexity� Fortu�
nately� an e�ective implementation of this procedure has been designed which
represents all the distributions�the Ri as well as the resulting limit distribu�
tion R��as decomposable models ���� ��
� IPFP can thus be applied even
in domains involving tens �and in special cases even hundreds� of variables�
Moreover� we can take advantage of the fact that the result of this process is a
decomposable model�
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� Constructing Bayesian networks

In the previous two sections we described how IPFP can be used to construct a
decomposable model from a set of oligodimensional distributions� and how the
resulting decomposable model can then be translated to a Bayesian network� To
complete the task of constructing a model� one must determine the dependence
structure of the model� In this section we describe a method for doing so�

We deal here only with the situation in which one starts with a set of
empirically�gathered data� such as a list of symptoms and diseases observed
among some population of patients� The goal of the process is to build a
Bayesian network that describes this data and compare alternative networks� It
is important to note that we are not proposing to entirely automate this proce�
dure� Although such techniques have been studied� we focus here on the more
modest goal of building a system that can partially automate the process�

The �rst step involves collecting raw data from the domain� This data is in
the form of a series of data vectors� each describing one patient�s diagnoses and
symptoms as well as the results of various laboratory tests� In our example�
the vectors indicate whether the respective patients smoke� su�er from bronchi�
tis and lung cancer� have a family history of cancer� and the results of X�ray
examinations�

These data are then used to compute probability distributions� As a simple
approach� we can assume that the empirical frequencies can be used to estimate
the underlying probabilities� Although this approach is often used� we must
point out that there are numerous di�culties concerning missing data values
��
� In particular� if missing values are treated improperly� then the computed
system of oligodimensional distributions might be such that there does not exist
a joint distribution having the given distributions as its marginals�

In some situations� the designer knows the structure of the desired Bayesian
network� Then the only problem is to compute estimates of the respective
conditional probability distributions� In this case� it is reasonable to use existing
statistical techniques to handle missing values and similar problems� However�
this situation is very rare� Often the designer must �rst decide among plausible
alternative structures�

��� Choosing a structure

It can be very di�cult to select the best among several alternative structures�
We propose as a criterion for evaluating di�erent models the Kullback�Leibler
divergence �cross�entropy� between P �	�� the empirical distribution de�ned by
the data� and Q�	�� the distribution represented by the model ���
� This diver�
gence is de�ned

C�P�Q� �
X

�x

P ��x� log�
P ��x�

Q��x�
�

�



It is not di�cult to show that C�P�Q� can be expressed as follows


C�P�Q� �
X
�x

P ��x� log� P ��x��
nX
i��

X
�x

P ��x� log�Qi�xijfxjgj�pa�i���

� H�P �X�� � � � � Xn��

�
nX
i��

X

xi�fxjgj�pa�i�

P �xi� fxjgj�pa�i�� log�
Qi�xijfxjgj�pa�i��

P �xi�

�
nX
i��

H�P �Xi���

where H�P �	�� denotes the Shannon entropy of the distribution P �	�� It has
been shown ���� Theorem �
 that the Kullback�Leibler divergence C�P�Q� is a
monotonically decreasing function of

nX
i��

WP �Qi�Xi� fXjgj�pa�i����

where

WP �Qi�Xi� fXjgj�pa�i���

�
X

xi�fxjgj�pa�i�

P �xi� fxjgj�pa�i�� log�
Qi�xijfxjgj�pa�i��

P �xi�
�

It is worth mentioning that this formula can be used directly in spite of the fact
that it contains the unknown distribution P because only its oligodimensional
marginals P �xi� fxjgj�pa�i�� are actually used� and they can be reasonably�well
estimated from the data�

Finally� note that the larger the sum

W �Q� �
nX
i��

WP �Qi�Xi� fXjgj�pa�i����

the smaller the Kullback�Leibler divergence C�P�Q� and therefore the closer the
distributionQ is to the distribution P which generated the data� For this reason�
the value W �Q� is used to evaluate suitability of the corresponding Bayesian
network as an approximation of the �unknown� distribution P �

��� Manual construction of decomposable models

Finally� the designer chooses the best Bayesian network as follows
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�� Select small groups D� of variables which appear to be highly dependent
on each other� The groups should be small so that the data vectors yield
accurate estimates of probability distributions for these groups� statistical
theory can be consulted to determine how small the distributions need to
be in order to achieve a desired level of accuracy�

	� Compute oligodimensional probability distributions P� for the given sets
of variables D�� For each this distribution P��fXjgj�D�

� compute its in�
formational content 


I�P��fXjgj�D�
�� �

X

fxjgj�D�

P��fxjgj�D�
� log�

P��fxjgj�D�
�Q

j�D�
P��xj�

�

�� Now� the experimental nature of the process begins� Repeatedly select
a subset of the oligodimensional distributions �preferring those with high
informational content�� and apply the Iterative Proportional Fitting pro�
cedure to them� The resulting decomposable models can then be trans�
formed into Bayesian networks�

�� Having constructed several networks� choose one according to the criterion
described in the previous section�

� Probabilistic Model Editor

The Probabilistic Model Editor �PME� ���
 is a computer system designed to
realize the ideas developed in this paper� PME allows one to import data
vectors from a domain� build and manipulate oligodimensional distributions�
and construct and compare decomposable models�

Oligodimensional distributions can be imported directly or they can be esti�
mated from a set of data vectors� PME can directly convert a set of oligodimen�
sional distributions into a decomposable model if they already constitute such
a model� Alternatively� IPFP can be run to convert a set of oligodimensional
distributions into a decomposable model� Finally� decomposable models can be
compared by comparing the respective W �Q� values�

PME can convert a decomposable model into a Bayesian network� Although
PME provides no facilities for evaluating Bayesian networks� PME can save a
Bayesian network in the format that is used by HUGIN system ���� Chapter
��
� In this sense PME and HUGIN o�er complementary services
 HUGIN
o�ers a range of tools for evaluating Bayesian networks� while PME facilitates
their comparison and construction�

PME provides several extensions to IPFP that facilitate research on model
construction� For example� rather than starting with a uniform distribution�
PME�s implementation of IPFP can be instructed to start with an arbitrary de�
composable model that has the same underlying structure� A second extension
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permits manual modi�cation of the graph in order to force a desired triangular�
ization� Several extensions have also been made concerning IPFP�s termination
condition� permitting the system to detect some cases in which IPFP will prov�
ably never converge�

A number of further extensions have been implemented� Although not nec�
essarily useful in real applications� these extensions are likely to be helpful to
the model�construction research community� For example� PME allows one to
use a decomposable model as a simulator to generate data vectors� or to ex�
plicitly compute the �potentially very large� joint distribution encoded by a
decomposable model�

The Probabilistic Model Editor is fully implemented in C��� and runs in
the Microsoft Windows environment� Executables� complete source code� data
�les for the example described in this paper� and a detailed user manual are all
available on request�
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