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Abstract

Bayesian networks have become one of the most popular probabilistic tech-
niques in Al, largely due to the development of several efficient inference
algorithms. In this paper we describe a heuristic method for constructing
Bayesian networks. Our construction method relies on the relationship
between Bayesian networks and decomposable models, a special kind of
graphical model. We explain this relationship and then show how it can
be used to facilitate model construction. Finally, we describe an imple-
mented computer program that illustrates these ideas.

1 Introduction

Relationships among symptoms, evidence and diseases are often so complex
that they can be described only by very general models. Such models can eas-
ily be constructed within the framework of probability theory. Several papers
in defense of applying probability theory to Al appeared in the early 1980s
(e.g. [2, 18]), and since then probability theory has been widely accepted as a
framework for representing and reasoning about uncertain knowledge. Early
objections to the use of probability theory were directed mainly at its high
computational complexity. But recently many highly effective representations
and algorithms have been developed which, together with the continuously in-
creasing power of computers, has led to numerous commercial applications of
probability theory. Two examples serve to demonstrate the popularity of prob-
abilistic models: probability theory is used in the on-line help system in Mi-
crosoft’s Windows—95 operating system [8]; and Finn Jensen’s book Introduc-
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tion to Bayesian Networks [10] was the top-selling Expert Systems book in May
19951,

Bayesian networks, a particular kind of probabilistic model, have become one
of the most popular probabilistic technique used in Al for several reasons. Being
based on probability theory, they inherit many of the efficient methods and
strong results of mathematical statistics. Moreover, numerous efficient methods
for their application to inference have been developed [7].

Although in this paper we briefly discuss these inference techniques, we
focus mainly on a method for constructing Bayesian networks utilizing both the
knowledge of experts and information from data bases.

2 Notation

We consider only finite domains. Let X = {Xy,...,X,} denote a vector of
n variables taking their values from finite sets X;,...,X,,, respectively. In
this model we do not distinguish between variables representing symptoms and
evidence from those representing diagnoses; from this point of view the model
is completely symmetric.

A Bayesian network for the system of variables X is defined to be an acyclic
directed graph whose nodes are the indices {1,...,n}, and a system of con-
ditional probability distributions {Q;(X;[{X; };epa(s)) }iz1, Where pa(i) denotes
the parents of node i: pa(i) is the set of graph nodes from which there is an
edge to node .

A Bayesian network represents the joint n—dimensional probability distribu-
tion Q()?) which is the product of the conditional distributions assigned to the
nodes:

n
QUX) = [T Qi(Xi [ {Xj}jepati)):
i=1
It can be shown that this joint distribution is the only one that is consistent
with the given set of conditional probability distributions and simultaneously
whose dependence structure reflects all the conditional independence relations
given by the underlying graph?.

Let us consider a simple example, which resembles the well-known example
discussed in [17]. The five variables in the domain are described in Table 1,
the Bayesian network is defined by the graph in Figure 1, and the conditional
distributions are listed in Table 2. This Bayesian network represents the 5—
dimensional distribution

Q(X1, ..., X5) = Q1(X1)Q2(X2)Q3(Xs3 | X1)Qa(Xa | X1, X2)Q5(X5 | X3, X4)

1Information provided by the Internet Book Shop Mailing Services.

2 Consistency means that for all i = 1,...,n, Q(X; | { X} jepati)) = Qi(Xs [{X 5} jepaa))-
The reader not acquainted with the necessary theory can take as definitional that a Bayesian
network represents the joint distribution given by the product of the given conditional
distributions.




whose values are listed in Table 3.

variable meaning values
X, patient is smoker 0 =no, 1 =yes
X5 family history of cancer 0 =no, 1 =yes
X3 patient has bronchitis 0 =no, 1 =yes
X4 patient has lung cancer 0 =no, 1 =yes
X5 X-ray indicates disease 0 =no, 1 =yes

Table 1: Variables and their values.
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Figure 1: Directed graph of a Bayesian network.
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Table 2: Conditional probability distributions.

As just mentioned, Q(X7y,...,X5) is unique, and it is consistent with the
given conditional distributions and the requirements on the dependence struc-
ture of the represented distribution. In the example, this fact implies that
Q(X1, ..., Xs) encodes the following conditional independences:

e X, is independent from X; and X3 (written [X» Lo X3, X3]), meaning
that we assume that family history of cancer influences neither whether



X, =0 X, =1
Xo=0] Xo=1 | Xo=0] Xo=1

.0 X5 =0 050274 | 0.10584 | 0.1029 | 0.02058

a0 += 5 I'X5=10.01026 | 0.00216 | 0.0021 | 0.00042
3= -1 X;=0 00108 |0.0108 |0.014 |[0.0056
4+ X;=11]00162 [0.0162 | 0.021 0.0084

.0 X;=010.0456 | 0.0096 | 0.036 0.0072

o1 TN TX = 0.0114 [0.0024 | 0.009 0.0018
3= -1 X5 =0 [0.0006 |0.0006 | 0.003 0.0012
4+ Xs;=110.0024 [0.0024 | 0.012 0.0048

Table 3: Joint 5b—dimensional probability distribution.

a person 1s a smoker or suffers from bronchitis. Of course in reality these
factors may well not be independent. For example, it may be that one’s
tendency to smoke is influenced by the fact that one’s relatives suffered
from cancer. But Q(X7y,..., X5) contains this independence relationship
because it is encoded in the Bayesian network.

o [X3 Lo X9, X4|X1]: in determining whether a patient suffers from bron-
chitis, her family history of cancer supplies no information, and neither
does the fact that she has lung cancer if it is already known whether she
smokes. This independence is conditional because the analysis of a per-
son’s chance of getting lung cancer depends on the analysis of whether she
smokes which in turn depends on whether she has bronchitis.

o [X5 Lo X1, Xo| X3, X4]

Naturally, several more independence relations follow from these: [X; Lo Xo],
(X4 Lo X3]X1, X5], and so forth.

Finally, note that the 5—dimensional distribution Q(X7, ..., X5) represented
by the Bayesian network of this example can be stored in computer memory
with 12 probabilities (namely, the values shown in Table 2). In contrast, Ta-
ble 3 illustrates that a general 5—dimensional distribution of binary variables is
determined by 31 probabilities; in the general case, an n—dimensional distribu-
tion requires storage that grows exponentially in n. Thus a major advantage
of Bayesian networks is that they compactly represent distributions over large
state spaces.?

3Note that we take advantage of the fact that the probabilities of a distribution sum to
one. Although a polynomial amount of additional storage is needed to represent the graph
itself, this requirement is negligible as n becomes large.



3 Inference in Bayesian networks

In probabilistic applications, one typically uses a distribution to represent knowl-
edge of some area of interest, and the problem is to determine what can be
concluded from this distribution. Thus methods for using such distributions for
inference have been developed. In terms of probability theory, we need effective
procedures for computing arbitrary conditional probability distributions. Due
to their popularity, several such techniques have been developed for Bayesian
networks.

For example, Shachter has developed two transformations on a Bayesian
network (node deletion and edge reversal) that produce a smaller network rep-
resenting a marginal of the original distribution, thus yielding the required con-
ditional probabilities almost directly [19, 20, 21]. Another approach is based
on Lauritzen and Spiegelhalter’s well-known method of local computation that
transforms the original Bayesian network into a decomposable model that is more
suitable for computations than Bayesian networks [17].

Although these and similar techniques are applicable in realistic problems,
their performance varies when applied to different Bayesian networks. It is diffi-
cult to give general principles for determining which methods are most suitable
for a particular situation. Nevertheless, they all operate on the same underly-
ing probability distribution and therefore the results—the required conditional
probabilities—are the same.

In this paper we will not analyze these aspects of Bayesian network theory;
the reader is referred to the literature cited above and to [7, 10]. Rather, we will
discuss a technique for constructing probabilistic models. Nevertheless, because
decomposable models play an important role in the process of constructing
Bayesian networks, we now describe Lauritzen and Spiegelhalter’s approach in
more detail.

4 Decomposable models

In contrast to the directed graphs that define a Bayesian networks, in the sequel
we model the domain with undirected graphs. Moreover, graphs with loops or
multiple edges are are not allowed.

A clique of a graph G= (V| F) is a maximal subset of nodes such that every
pair of clique nodes are connected by an graph edge. A graph is triangulated if
every cycle with length greater than three has a chord, a pair of non-consecutive
nodes is connected by an edge.

From our point of view, an important property of triangulated graphs is the
fact that the cliques of a triangulated graph can be enumerated in such a way



that the ordering C, ..., C,, meets the running inlersection property [7]:

i—1
Vi<i<m 31<j<i GnlJG G
k=1

Given such an ordering, we define B; = C; N U;{;_zll Cr for 1l <i:<m.

We can now define the concept of a probability distribution being decom-
posable with respect to a triangulated graph. Assume a triangulated graph
G=(V,E)ywithV ={1,...,n}. Let Cy,...,Cy, be the cliques of GG and (with-
out loss of generality) assume that these cliques are ordered to meet the running
intersection property. We say that the distribution Q()?) i1s decomposable with
respect to G if

m
QLX) = [TRUX  Yyecnn { X }jen.).
i=1
The importance of the concept of decomposability lies in two facts. First,
a decomposable distribution is uniquely defined by its marginals for the sets of
variables corresponding to the cliques of the respective graph. The second fact
is that the joint distribution can be expressed as a product of its marginals

m

o) = [Tatsee) L@t = LGS

Note that the marginal Q({X; };ep,) for B; = 0 equals constant 1, and we have

QUXjjecnm X tjen) = QX ecnn,)

for B; = 0 as well.

To find an undirected graph with respect to which the distribution repre-
sented by a Bayesian network is decomposable, Lauritzen and Spiegelhalter’s
method transforms the original directed graph first into an undirected moral
graph and then into a triangulated graph. Moralization involves connecting all
nodes having a common child by undirected edges and then unorienting the
original edges. Triangularization of a graph is the process of adding new edges
to an undirected graph to get a triangulated graph; Tarjan and Yannakakis’
algorithm [22] has been widely used.

The goal of this paper is not to teach the reader the method of local com-
putations; the reader is referred to [7, 17]. We do not therefore describe the
equations according to which the original conditional probabilities are trans-
formed into a set of distributions on the cliques C, ..., C,,. Nevertheless, let
us illustrate the process for the simple example introduced in Section 2.

Moralization of the graph from Figure 1 leads to the graph in Figure 2. This
graph does not contain a chordless cycle of length greater than three (there are

two cycles of length four: (1,3,5,4) and (1, 3,4, 2), with chords (3,4) and (1,4)




respectively; and one cycle of length five, (1,3,5,4,2) having two chords, (1,4)
and (3,4)) and thus the graph is also triangulated. The respective distributions
are uniquely defined by the three 3—dimensional distributions listed in Table 4.

Figure 2: Moral graph of the Bayesian network from Figure 1.

Q(X1=0,X2=0, X4=0) = 0.57 Q(X1=0,X2=0,X,=1)=0.03
Q(X1=0,X,=1,X,=0) = 0.12 Q(X1=0,X,=1,X,=1) = 0.03
Q(Xl Il,XQIO,X4IO) == 015 Q(Xl Il,XQIO,X421) == 005
Q(X1=1,X,=1,X,=0) = 0.03 Q(X1=1,X,=1X,=1) = 0.02
Q(X1=0,X3=0,X,=0) = 0621  Q(X1=0,X3=0, X4=1) = 0.054
Q(X1=0,X5=1,X4=0)=0.069  Q(X1=0,X35=1,X4=1)=0.006
Q(X1=1,X3=0,X,=0)=0.126  Q(X;=1,X3=0,X4=1) = 0.049
Q(X1=1,X3=1,X,=0)=0.054 Q(X;=1,X3=1X,=1)=0.021
Q(X3=0,X,=0, X5=0) = 0.73206 Q(X5=0, X4=0, X5=1) = 0.01494
Q(X3=0,X4=1,X;=0)=0.0412 Q(X3=0,X4=1,X5=1) = 0.0618
Q(X3=1,X4=0,X5=0)=0.0984 Q(X3=1,X,=0, X5=1) = 0.0246
Q(X3=1,X4=1,X;=0)=0.00p4 Q(X3=1,X4=1,X5=1)=0.0216

Table 4: 3—dimensional distributions defining the decomposable model.

Just as every Bayesian network can be converted into a decomposable model,
a decomposable model can always be expressed in the form of a Bayesian net-
work. To do so, the nodes of the decomposable model (i.e. the indices of the
variables) are ordered so that the corresponding ordering of the cliques meets
the running intersection property:

,..kk+1,..,004+1,...,..., ....n .
N et Nt N’ N
ol C2\ B> C3\Bs Cwm\Bm

The parents of node ¢ are then those nodes which are adjacent to i in the original
decomposable model and which are before ¢ in the constructed ordering. The



conditional distributions are directly computed from the marginal distributions
assigned to the decomposable model.

5 Iterative proportional fitting procedure

We now use this ability to transform a decomposable model into a Bayesian
network as the basis of a simple data-based method for constructing Bayesian
networks. Our method requires only knowledge regarding which variables are
highly dependent on each other; this can be measured by, for example, informa-
tion-theoretic measures such as mutual information or informational content.

Assume a system of oligodimensional distributions {P({X; };ep,)})_, over
the sets of variables Dy, ..., D,. An oligodimensional distribution 1s a distribu-
tion over a “reasonably” small set of highly mutually-dependent variables. As-
sume further that the Dy collectively cover the variables: | J,_, D, = {1,...,n}.

To find an n—dimensional probability distribution Q()?) having the given
distributions for its marginals—z.e. a distribution such that

QU{Xj}jen,) = Pl({X;}jen,)

for each f—one can use the well known Ilterative Proportional Fitting Procedure
(IPFP), proposed as early as 1940 by W. E. Deming and F. F. Stephan [6].

The mathematical description of this procedure 1s simple. IPFP is an itera-
tive process, computing from an initial uniform n—dimensional probability distri-
bution Ry a sequence of distributions Ry, Rs, ... of the same dimensions, where
the sequence converges to the distribution R* that has the required marginals.
The reader is referred to [5] for a description of the theoretical properties of
IPFP.

Each iterative step corresponds to an adjustment of one marginal distri-
bution. The order in which marginals are adjusted is regularly rotated, as
expressed in the following recurrent formula

—

Ri(X) = Pe({X; tyep, ) Ri-1({X; }iep,[{X; }jep,)

fori=1,2,...and £ =14 ((¢ — 1) mod r).

Note that as described so far IPFP computes the values of an n—dimensional
distributions, which in general has severe computational complexity. Fortu-
nately, an effective implementation of this procedure has been designed which
represents all the distributions—the R; as well as the resulting limit distribu-
tion R*—as decomposable models [11, 14]. TPFP can thus be applied even
in domains involving tens (and in special cases even hundreds) of variables.
Moreover, we can take advantage of the fact that the result of this process is a
decomposable model.



6 Constructing Bayesian networks

In the previous two sections we described how IPFP can be used to construct a
decomposable model from a set of oligodimensional distributions, and how the
resulting decomposable model can then be translated to a Bayesian network. To
complete the task of constructing a model, one must determine the dependence
structure of the model. In this section we describe a method for doing so.

We deal here only with the situation in which one starts with a set of
empirically-gathered data, such as a list of symptoms and diseases observed
among some population of patients. The goal of the process is to build a
Bayesian network that describes this data and compare alternative networks. It
is important to note that we are not proposing to entirely automate this proce-
dure. Although such techniques have been studied, we focus here on the more
modest goal of building a system that can partielly automate the process.

The first step involves collecting raw data from the domain. This data is in
the form of a series of data vectors, each describing one patient’s diagnoses and
symptoms as well as the results of various laboratory tests. In our example,
the vectors indicate whether the respective patients smoke, suffer from bronchi-
tis and lung cancer, have a family history of cancer, and the results of X-ray
examinations.

These data are then used to compute probability distributions. As a simple
approach, we can assume that the empirical frequencies can be used to estimate
the underlying probabilities. Although this approach is often used, we must
point out that there are numerous difficulties concerning missing data values
[?]. In particular, if missing values are treated improperly, then the computed
system of oligodimensional distributions might be such that there does not exist
a joint distribution having the given distributions as its marginals.

In some situations, the designer knows the structure of the desired Bayesian
network. Then the only problem is to compute estimates of the respective
conditional probability distributions. In this case, it is reasonable to use existing
statistical techniques to handle missing values and similar problems. However,
this situation is very rare. Often the designer must first decide among plausible
alternative structures.

6.1 Choosing a structure

It can be very difficult to select the best among several alternative structures.
We propose as a criterion for evaluating different models the Kullback-Leibler
divergence (cross-entropy) between P(-), the empirical distribution defined by
the data, and Q(-), the distribution represented by the model [16]. This diver-
gence is defined

C(P.Q)= Y P(@)log, %



It is not difficult to show that C'(P, @) can be expressed as follows:

¢(p,Q)

Z P(%)log, P(&) — Z Z P(%)log, Qi(xil{z)}jepai)))

H(P(X1,...,X0))

_Zn: 2. Plei{eiliepai)los, Qi(mﬁ;}igepa@)

i=1 z;{v;}epa(i)

+ 3 H(P(X)),

where H(P(-)) denotes the Shannon entropy of the distribution P(-). Tt has
been shown [16, Theorem 7] that the Kullback-Leibler divergence C'(P, @) is a
monotonically decreasing function of

Z We(Qi(Xi, {X; }jepati)))s
=1
where

WP(Qi(Xi’ {Xj }jEpa(i)))
- Z Pz, {l’j}jEPa(i))lng Qi(x”jjiigepa(i)).

7i,{%;} jepa(i)

It is worth mentioning that this formula can be used directly in spite of the fact
that it contains the unknown distribution P because only its oligodimensional
marginals P(z;,{;j};jepa(i)) are actually used, and they can be reasonably-well
estimated from the data.

Finally, note that the larger the sum

wW(Q) = Z We(Qi(Xi, { X }jepaii))),

the smaller the Kullback-Leibler divergence C(P, @) and therefore the closer the
distribution @) 1s to the distribution P which generated the data. For this reason,
the value W(Q) is used to evaluate suitability of the corresponding Bayesian
network as an approximation of the (unknown) distribution P.

6.2 Manual construction of decomposable models

Finally, the designer chooses the best Bayesian network as follows:

10



1. Select small groups D, of variables which appear to be highly dependent
on each other. The groups should be small so that the data vectors yield
accurate estimates of probability distributions for these groups; statistical
theory can be consulted to determine how small the distributions need to
be in order to achieve a desired level of accuracy.

2. Compute oligodimensional probability distributions P, for the given sets
of variables D,. For each this distribution P,({Xj;};ep,) compute its in-
formational content:

P({z; }ien,)

IP({XYjen )= 3 Prl{ws)en,)logs -5 ot
JED, J

{z;}jen,

3. Now, the experimental nature of the process begins. Repeatedly select
a subset of the oligodimensional distributions (preferring those with high
informational content), and apply the Iterative Proportional Fitting pro-
cedure to them. The resulting decomposable models can then be trans-
formed into Bayesian networks.

4. Having constructed several networks, choose one according to the criterion
described in the previous section.

7 Probabilistic Model Editor

The Probabilistic Model Editor (PME) [15] is a computer system designed to
realize the ideas developed in this paper. PME allows one to import data
vectors from a domain, build and manipulate oligodimensional distributions,
and construct and compare decomposable models.

Oligodimensional distributions can be imported directly or they can be esti-
mated from a set of data vectors. PME can directly convert a set of oligodimen-
sional distributions into a decomposable model if they already constitute such
a model. Alternatively, IPFP can be run to convert a set of oligodimensional
distributions into a decomposable model. Finally, decomposable models can be
compared by comparing the respective W (Q) values.

PME can convert a decomposable model into a Bayesian network. Although
PME provides no facilities for evaluating Bayesian networks, PME can save a
Bayesian network in the format that is used by HUGIN system [10, Chapter
10]. In this sense PME and HUGIN offer complementary services: HUGIN
offers a range of tools for evaluating Bayesian networks, while PME facilitates
their comparison and construction.

PME provides several extensions to IPFP that facilitate research on model
construction. For example, rather than starting with a uniform distribution,
PME’s implementation of IPFP can be instructed to start with an arbitrary de-
composable model that has the same underlying structure. A second extension

11



permits manual modification of the graph in order to force a desired triangular-
ization. Several extensions have also been made concerning IPFP’s termination
condition, permitting the system to detect some cases in which IPFP will prov-
ably never converge.

A number of further extensions have been implemented. Although not nec-
essarily useful in real applications, these extensions are likely to be helpful to
the model-construction research community. For example, PME allows one to
use a decomposable model as a simulator to generate data vectors, or to ex-
plicitly compute the (potentially very large) joint distribution encoded by a
decomposable model.

The Probabilistic Model Editor is fully implemented in C++, and runs in
the Microsoft Windows environment. Executables, complete source code, data
files for the example described in this paper, and a detailed user manual are all
available on request.
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