CS 3750 Machine Learning
 Lecture 7

Monte Carlo methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Monte Carlo inference

- Let us assume we have a probability distribution $P(\mathrm{X})$ represented e.g. using BBN or MRF, and want calculate $P(\mathrm{X}=\mathrm{x}) \quad(P(\mathrm{x})$ in short $)$
- We can use exact probabilistic inference, but it may be hard to calculate
- Monte Carlo approximation:
- Idea: The probability $P(\mathrm{x})$ is approximated using sample frequencies
- Idea (first method):
- Generate a random sample D of size M from $P(\mathrm{X})$
- Estimate P(x) as:

$$
\hat{P}_{D}(X=x)=\frac{M_{X=x}}{M}
$$

Absolute Error Bound

- Hoeffding's bound lets us bound the probability with which the estimate $\hat{P}_{D}(x)$ differs from $P(x)$ by more than ε

$$
P\left(\hat{P}_{D}(x) \notin[P(x)-\varepsilon, P(x)+\varepsilon]\right) \leq 2 e^{-2 M \varepsilon^{2}} \leq \delta
$$

The bound can be used to decide on how many samples are required to achieve a desired accuracy:

$$
M \geq \frac{\ln (2 / \delta)}{2 \varepsilon^{2}}
$$

Relative Error Bound

- Chernoff's bound lets us bound the probability of the estimate $\hat{P}_{D}(x)$ exceeding a relative error \mathcal{E} of the true value $P(x)$.

$$
P\left(\hat{P}_{D}(x) \notin P(x)(1+\in)\right) \leq 2 e^{-M P(x) \varepsilon^{2} / 3}
$$

- This leads to the following sample complexity bound:

$$
M \geq 3 \frac{\ln (2 / \delta)}{P(x) \varepsilon^{2}}
$$

Monte Carlo inference challenges

Two challenges:
\cdot How to generate \mathbf{N} (unbiased) examples from the target distribution $\mathrm{P}(\mathrm{X})$?

- Generating (unbiased) examples from $\mathrm{P}(\mathrm{X})$ may be hard, or very inefficient
-How to estimate the expected value of $f(x)$ for $p(x)$:

$$
E_{P}[f]=\sum_{x} P(x) f(x) \quad E_{P}[f]=\int_{x} p(x) f(x) d x
$$

- We can estimate this expectation by generating samples $x[1]$, ..., $\mathrm{x}[\mathrm{M}]$ from P , and then estimating it as:

$$
\hat{\Phi}=\hat{E}_{P}[f]=\frac{1}{M} \sum_{m=1}^{M} f(x[m])
$$

Monte Carlo inference challenges

The estimate:
-Based on M samples samples $x[1], \ldots, x[M]$ generated from P,

$$
\hat{\Phi}=\hat{E}_{P}[f]=\frac{1}{M} \sum_{m=1}^{M} f(x[m])
$$

- Using the central limit theorem, the estimate $\hat{\Phi}$ follows the normal distribution with variance:

$$
\frac{\sigma^{2}}{M}
$$

- where

$$
\sigma^{2}=\int_{x} p(x)\left[f(x)-E_{P}(f(x))\right]^{2} d x
$$

is the variance of $f(x)$

Central limit theorem

- Central limit theorem:

Let random variables $X_{1}, X_{2}, \cdots X_{n}$ form a random sample from a distribution with mean μ and variance σ^{2}, then if the sample n is large, the distribution

$$
\sum_{i=1}^{n} X_{i} \approx N\left(n \mu, n \sigma^{2}\right) \quad \text { or } \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right)
$$

Effect of increasing the sample size n on the sample mean:

Example: Monte Carlo for BBNs

- Sample generation: BBN sampling of the joint is easy
- One sample gives one assignment of values to all variables
- Example:

Examples can be generated in a top down manner, following the links

- MC approximation for BBN joint estimates:
- The probability is approximated using sample frequencies
$\tilde{P}(B=T, J=T)=\frac{N_{B=T, J=T} \longleftarrow \text { \# samples with } B=T, J=T}{N \longleftarrow}$

BBN sampling example

CS 3750 Advanced Machine Learning

BBN sampling example

BBN sampling example

CS 3750 Advanced Machine Learning

BBN sampling example

BBN sampling example

CS 3750 Advanced Machine Learning

BBN sampling example

BBN sampling example

CS 3750 Advanced Machine Learning

Monte Carlo approaches

- MC approximation of conditional probabilities:
- The probability is approximated using sample frequencies
- Example:

$$
\tilde{P}(B=T \mid J=T)=\frac{N_{B=T, J=T}}{N_{J=T} \longleftarrow \text { \# samples with } B=T, J=T} \text { \# samples with } J=T
$$

- Rejection sampling:
- Generate samples from the full joint by sampling BBN
- Use only samples that agree with the condition, the remaining samples are rejected
- Problem: many samples can be rejected

Likelihood weighting

- Avoids inefficiencies of rejection sampling
- Idea: generate only samples consistent with an evidence (or conditioning event)
- If the value is set no sampling
- Problem: using simple counts is not enough since these may occur with different probabilities
- Likelihood weighting:
- With every sample keep a weight with which it should count towards the estimate

$$
\tilde{P}(B=T \mid J=T)=\frac{\sum_{\text {samples with } B=T \text { and } J=T} W_{B=T}}{\sum_{\text {samples with any value of } B \text { and } J=T} W_{B=x}}
$$

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

BBN likelihood weighting example

Second sample

BBN likelihood weighting example

BBN likelihood weighting example

Second sample

BBN likelihood weighting example

BBN likelihood weighting example

Second sample

BBN likelihood weighting example

Likelihood weighting

- Assume we have generated the following M samples:

- If we calculate the estimate:

$$
P(B=T \mid J=T, M=F)=\frac{\text { \#sample_with }(B=T)}{\text { \#total_sample }}
$$

a less likely sample from $P(X)$ may be generated more often.

- For example, sample than in $P(X)$

is generated more often
- So the samples are not consistent with $P(X)$.

Likelihood weighting

- Assume we have generated the following M samples:

How to make the samples consistent?
Weight each sample by probability with which it agrees with the conditioning evidence $P(e)$.

Likelihood weighting

- How to compute weights for the sample?
- Assume the query $P(B=T \mid J=T, M=F)$
- Likelihood weighting:
- With every sample keep a weight with which it should count towards the estimate

$$
\begin{gathered}
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{i=1}^{M} 1\left\{B^{(i)}=T\right\} w^{(i)}}{\sum_{i=1}^{M} w^{(i)}} \\
\tilde{P}(B=T \mid J=T, M=F)=\frac{\sum_{\text {samples wiht } B=T \text { and } J=T, M=F} w_{B=T} w_{B=x}}{\text { samples with any value of } B \text { and } J=T, M=F}
\end{gathered}
$$

Likelihood weighting

- Assume M samples where evidence is enforced:

- We can use $P(e)$ to weight each sample and correct the bias.
- The correct estimate is then:

$$
\tilde{P}(A=T \mid J=T, M=F)=\frac{\sum_{i=1}^{M} 1\left\{A^{(i)}=T\right\} w^{(i)}}{\sum_{i=1}^{M} w^{(i)}}
$$

Importance Sampling

- An approach for estimating the expectation of a function $f(x)$ relative to some distribution $\mathrm{P}(\mathrm{X})$ (target distribution)
- generally, we can estimate this expectation by generating samples $\mathrm{x}[1], \ldots, \mathrm{x}[\mathrm{M}]$ from P , and then estimating

$$
E_{P}[f]=\frac{1}{M} \sum_{m=1}^{M} f(x[m])
$$

- However, we might prefer to generate samples from a different distribution Q (proposal or sampling distribution) instead, since it might be impossible or computationally very expensive to generate samples directly from P .
- Q can be arbitrary, but it should dominate P, i.e.
$\mathrm{Q}(\mathrm{x})>0$ whenever $\mathrm{P}(\mathrm{x})>0$

Unnormalized Importance Sampling

- Since we generate samples from Q instead of P,
- we need to adjust our estimator to compensate for the incorrect sampling distribution.

$$
E_{p(X)}[f(X)]=E_{Q(x)}\left[f(x) \frac{P(x)}{Q(x)}\right]
$$

- So we can use standard estimator for expectations relative to Q .
- Method: We generate a set of M samples $D=\{x[1], \ldots, x[M]\}$ from Q, and estimate:

$$
\hat{E}_{D}(f)=\frac{1}{M} \sum_{m=1}^{M} f(x[m]) \frac{P(x[m])}{Q(x[m])}
$$

Importance sampling

- This is an unbiased estimator: its mean for any data set is precisely the desired value
$w(x)=P(x) / Q(x) \quad$ - a weighting function, or a correction weight
- We can estimate the distribution of the estimator around its mean: as $\mathrm{M} \rightarrow \infty$

$$
E_{Q(X)}[f(X) w(X)]-E_{P(X)}[f(X)] \propto N\left(0 ; \sigma_{Q}{ }^{2} / M\right)
$$

where $\quad \sigma_{Q}{ }^{2}=\left[E_{Q(X)}\left[(f(X) w(X))^{2}\right]\right]-\left(E_{Q(X)}[f(X) w(X)]\right)^{2}$

$$
\sigma_{Q}{ }^{2}=\left[E_{Q(X)}\left[(f(X) w(X))^{2}\right]\right]-\left(E_{P(X)}[f(X)]\right)^{2}
$$

Importance sampling

- When $f(X)=1$, the variance is simply the variance of the weighting function $\mathrm{P}(\mathrm{X}) / \mathrm{Q}(\mathrm{X})$. Thus, the more different Q is from P, the higher is the variance of the estimator.
- In general, the lowest variance is achieved when

$$
Q(X) \propto|f(X)| P(X)
$$

- We should avoid cases where our sampling probability $\mathrm{Q}(\mathrm{X}) \ll \mathrm{P}(\mathrm{X}) \mathrm{f}(\mathrm{X})$ in any part of the space, as these cases can lead to very large or even infinite variance.
- Problem with unnormalized IS: P is assumed to be known

Normalized Importance Sampling

- When P is only known up to a normalizing constant α
- We have access to a function $P^{\prime}(\mathrm{X})$, such that P^{\prime} is not a normalized distribution, but $P^{\prime}(\mathrm{X})=\alpha P(\mathrm{X})$
- In this context, we cannot define the weights relative to P, so we

$$
\begin{aligned}
& \text { define: } \\
& \begin{aligned}
& w(X)=\frac{P^{\prime}(X)}{Q(X)} \\
E_{P(X)}[f(X)]= & \sum_{x} P(x) f(x)=\sum_{x} Q(x) f(x) \frac{P(X)}{Q(x)}=\frac{1}{\alpha} \sum_{x} Q(x) f(x) \frac{P^{\prime}(x)}{Q(x)} \\
= & \frac{1}{\alpha} E_{Q(x)}[f(X) w(X)]=\frac{E_{Q(X)}[f(X) w(X)]}{E_{Q(X)}[w(X)]} \\
\text { Why? } \quad & E_{Q(X)}[w(X)]=\sum_{x} Q(x) \frac{P^{\prime}(x)}{Q(x)}=\sum_{x} P^{\prime}(x)=\alpha
\end{aligned}
\end{aligned}
$$

Importance sampling

- Using an empirical estimator for both the numerator and denominator, we can estimate:

$$
\hat{E}_{D}(f)=\frac{\sum_{m=1}^{M} f(x[m]) w(x[m])}{\sum_{m=1}^{M} w(x[m])}
$$

- Although the normalized estimator is biased, its variance is typically lower than that of the unnormalized estimator. This reduction in variance often outweighs the bias term.
- So normalized estimator is often used in place of the unnormalized estimator, even in cases where P is known and we can sample from it effectively.

Proposal Distribution for estimating conditional probabilities in BBNs

Assume a Bayesian Network

- We want to calculate $\mathrm{P}(\mathrm{x} \mid \mathrm{e})$
- This is hard if we need to go opposite the links and account for the effect of evidence on nondescendants
Objective: generate examples efficiently using a simpler proposal distribution $\mathrm{Q}(\mathrm{x})$
Solution: a mutilated belief network (Koller, Friedman 2009)
- Idea:
- Avoid propagation of evidence effects to non-descendants;
- Disconnect all variables in the evidence from their parents

Mutilated Belief network

- Assume we want to calculate $\mathrm{P}(\mathrm{x} \mid \mathrm{B}=\mathrm{T}, \mathrm{J}=\mathrm{T})$ in the Alarm network
- Use $\mathrm{B}=\mathrm{T}$ and $\mathrm{J}=\mathrm{T}$ to build a mutilated network

Original network

Mutilated network

Mutilated Belief network

- Assume the evidence is $J=j^{*}$ and $B=b^{*}$
- Original network (target distribution):

$$
P\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P\left(b^{*}\right) P(e) P\left(a \mid b^{*}, e\right) P\left(j^{*} \mid a\right) P(m \mid a)
$$

- Mutilated network (proposal distribution):
$Q\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P(e) P\left(a \mid b^{*}, e\right) P(m \mid a)$
- Note that $w(x)=\frac{P(x)}{Q(x)}=P\left(b^{*}\right) P\left(j^{*} \mid a\right)$

Mutilated Belief network

- Assume the evidence is $\mathrm{J}=\mathrm{j} *$ and $\mathrm{B}=\mathrm{b}^{*}$
- Original network:

$$
P\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P\left(b^{*}\right) P(e) P\left(a \mid b^{*}, e\right) P\left(j^{*} \mid a\right) P(m \mid a)
$$

- Mutilated network:

$$
Q\left(E=e, A=a, M=m, J=j^{*}, B=b^{*}\right)=P(e) P\left(a \mid b^{*}, e\right) P(m \mid a)
$$

- Note that $w(x)=\frac{P(x)}{Q(x)}=P\left(b^{*}\right) P\left(j^{*} \mid a\right)$

So importance sampling with a proposal distribution based on mutilated network is equal to likelihood weighting

Original network

Data-Dependent Likelihood Weighting

- Question: When to stop? How many samples do we need to see?
- Intuition: not every samples contribute equally to the quality of the estimate. A sample with high weight is more compatible with the evidence e, and may provide us with more information.
- Solution: We stop sampling when the total weight of the generated particles reaches a pre-defined value.
- Benefits: It allows early stopping in cases where we were lucky in our random choice of samples.

