CS 3750 Machine Learning
Lecture 7

Monte Carlo methods

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 3750 Advanced Machine Learning

Monte Carlo inference

» Let us assume we have a probability distribution P(X)
represented e.g. using BBN or MRF, and want calculate

P(X=x) (P(x) in short)
* We can use exact probabilistic inference, but it may be hard to
calculate
* Monte Carlo approximation:
— ldea: The probability P(x) is approximated using sample
frequencies
* ldea (first method):
— Generate a random sample D of size M from P(X)

— Estimate P(x) as: _ M

PD(X =X) = I\;(IZX
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Absolute Error Bound

* Hoeffding’s bound lets us bound the probability with
which the estimate P, (x) differs from P (x) by more
than ¢

P (P, (X) 2[P(X)—¢& P(x)+&]) <262 < §

The bound can be used to decide on how many samples are
required to achieve a desired accuracy:

In(2/5)

M >
22

o

Relative Error Bound

* Chernoff’s bound lets us bound the probability of the estimate

P,(x) exceeding a relative error & of the true value P().
P (P, (x) & P(X)(1+ €)) < 2e MP(0es3
» This leads to the following sample complexity bound:

In(2/9)

M >3 5
P(x)e




Monte Carlo inference challenges

Two challenges:

*How to generate N (unbiased) examples from the target
distribution P(X) ?

— Generating (unbiased) examples from P(X) may be hard, or
very inefficient

*How to estimate the expected value of f(x) for p(x):
E-[f1=> P(x)f(x) E-[f1= p(x) f (x)dx

* We can estimate this expectation by generating samples x[1],
..., X[M] from P, and then estimating it as:

=E.[f]=--> F(xm)
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Monte Carlo inference challenges

The estimate:
*Based on M samples samples x[1], ..., X[M] generated from P,

=E.[f]=--> F(xm)

* Using the central limit theorem, the estimate ® follows the
normal distribution with variance:
2
o

M
— where 52 :J' PO f (X) - E, (f (x))]*dx

is the variance of f(x)
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Central limit theorem

* Central limit theorem:
Let random variables X, X,,--- X, form a random sample
from a distribution with mean # and variance o %, then if
the sample n is large, the distribution
n n
S X, ~N(uno?) o =3 X, xN(uo?/n)
i-L n =

Effect of increasing the sample size n on the sample mean:

™ n=100 u =0
"\ n=50 c2=4
/‘/ \/
-\ n =30
. e
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Example: Monte Carlo for BBNs

» Sample generation: BBN sampling of the joint is easy
— One sample gives one assignment of values to all variables

E . B E Examples can be generated
— Example: . :
A in a top down manner,
following the links
3 E M

* MC approximation for BBN joint estimates:

— The probability is approximated using sample frequencies
«— #samples with B=T,J =T
N B=T,J=T

PB=T,J=T)=
N <«— total # samples
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BBN sampling example

P(B) P(E)
T F T F
Burglary )| 0.001 0.999 Earthquake ) [0.002 0.998
P(A|B,E)
/ BE| T F
T T | 095 0.05
T F | 0.94 0.06
F T |029 071
F F | 0.0010.999
PUIA) \ P(M|A)
Al T F T F
T| 0.90 0.1 107 o3
F 005 0.9 F| 001 0.99
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BBN sampling example
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BBN sampling example

P(B) P(E)
T F T F
Burglary )|0.001 0.999 | ( Earthquake ) [0.002 0.998

F P(A|B,E) F
B E '
/ Sample:
T T |o9
T F |09 F F
F T |02
F F | 0.0 F
PUIA) \ F F
Al T F

T|0.90 0.1 1107 03
F| 0.05 0.95 Fl o001 099 =
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Monte Carlo approaches

* MC approximation of conditional probabilities:
— The probability is approximated using sample frequencies

— Example:
N N «— H#samples with B=T,J =T
_ _ _ WNB=T =T
PB=T|J=T)=———
NJ:Tq\

# samples with J =T

* Rejection sampling:
— Generate samples from the full joint by sampling BBN

— Use only samples that agree with the condition, the
remaining samples are rejected

* Problem: many samples can be rejected
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Likelihood weighting

* Avoids inefficiencies of rejection sampling
— ldea: generate only samples consistent with an evidence
(or conditioning event)
— If the value is set no sampling
* Problem: using simple counts is not enough since these may
occur with different probabilities
 Likelihood weighting:
— With every sample keep a weight with which it should
count towards the estimate

Wg_r
samples with B=T and J=T

PB=T|J=T)=
WB=x

samples with any value of Band J=T
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BBN likelihood weighting example

P(B) P(E)
T F T F
Burglary )|0.001 0.999 | ( Earthquake ) |0.002 0.998
T P(AIB,E)
/ BE| T F
T T | 095 0.05
T F | 0.94 0.06
F T |029 071
F F | 0.0010.999
PUIA) \ P(M|A)
Al T F T F
T| 0.90 0.1 - Tl 07 o3
F0.05 0.9 F|0.01 0.99
J=T (set 1) M = F (set !l
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BBN likelihood weighting example

P(B) P(E)
T F T F
0.001 0.999 | ( Earthquake ) [0.002 0.998
P(A|B,E) F
/ BE| T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 029 071
F F | 0.0010.999
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T|0.90 0.1 - 107 o3
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BBN likelihood weighting example

J=T (set 1)

P(B) P(E)
T F T F
0.001 0.999 | ( Earthquake ) |0.002 0.998
P(A|B,E) F
/ BE| T F
T T | 095 0.05
T F | 0.94 0.06 | <(mmm
F T |02 071
F F | 0.0010.999
PUIA) \ P(M|A)
T F T F
T|0.90 0.1 - 1107 o3
F]0.05 095 F| 0.01 0.99

M =F (set Il
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BBN likelihood weighting example

T P(AIB,E)
T
PQIA) P(M|A)
" F Al T F
T | 090 01 Tl 07 o3
1 0.05 0.95 F|0.01 0.99
J=T (set ! M = F (set !l
v
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BBN likelihood weighting example

P(B)

P(A|B,E)

PUIA) P(M]A)

r F T F

AN AL

T| 090 0.1 Tlo07 02

/*0.050.95%’0(099
J=T (set ! =F (set!!
TE——— W
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BBN likelihood weighting example

i

P(B)

P(AIB,

PUIA)

T F
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AIN A
T|.0.90 0.1 T! 0.7 *023
_#10.050.95 (#beo( .99
J=T (set !l =F (set !!
TE——— W

BBN likelihood weighting example

P(B) P‘E‘
- Evidence J=T,M=F

T in combination with B=T,E=F,A=T F
weight = 0.9*0.3=0.27

PUIA) P(M|A)

r F T F

AN s
T|.0.90 0.1 T! 0.7 *023
_#10.050.95 (#beo( .99
J=T (set !l =F (set !l
TE——— W
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BBN likelihood weighting example

Second sample

P(B)

Burglary

T F
0.001 0.999 | ( Earthquake ) [0.002 0.998

P(E)
T F

= P(A|B,E)
/ BE| T F

T T | o095 0.05

T F | 094 0.06

F T |0.29 071

F F | 0.0010.999

PUIA)

\ P(M|A)
Al T F Al T F

T] 0.90 0.1
F | 0.05 0.95

J=T (set 1)

0.7 0.3
0.01 0.99

M =F (set Il

n
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BBN likelihood weighting example

Second sample
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BBN likelihood weighting example

Second sample
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PUIA)

\ P(MIA)
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n
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BBN likelihood weighting example

Second sample

P(B) P(E)
T F T F
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BBN likelihood weighting example

Second sample

P(B) P‘E‘
P(A|B,E)
F
PUIA) P(M]A)
ANT F Al T F
\\
T 0\.00 0.1 T - 0.3
F | 0.050.95 F|0.01, 099

—F(set”

J=T(set ')
v
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BBN likelihood weighting example

Second sample

P(B) P‘E‘
P(A|B,
F
PUIA)
ANT F Al T F
T 0\.00 0.1 T\ 0.3
F | 0.050.95 E Lm»o feYe
J=T (set 1)) -F(set”
v
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BBN likelihood weighting example

Second sample
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P(B) P(E)
T F T F
0. 0.002 0.998
Evidence J=T,M=F
F in combination with B=F,E=F,A=F F
eight = 0.05*0.99=0.0495F
95 0.05
F Y Alarm T F | 0.94 0.06
F T | 029 071
F F | 0.0010.999
PUIA) P(M|A)
ANT F T F
T | 0%0 0.1 I
F g o.g5(*rho.3
J=T (set!1) = F (set !

Likelihood weighting

» Assume we have generated the following M samples:

» If we calculate the estimate:
P(B=T[J=T,M=F)= #sample _with(B=T)
#total _sample

a less likely sample from P(X) may be generated more
often.

* For example, sample is generated more often
than in P(X)

» So the samples are not consistent with P(X).

ow
N
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Likelihood weighting

» Assume we have generated the following M samples:

How to make the samples consistent?

Weight each sample by probability with which it agrees with
the conditioning evidence P(e).

<+ Weight 0.0495 <« Weight 0.27

ow
[35)

Likelihood weighting

» How to compute weights for the sample?
Assume the query  p(g=T|J=T,M =F)

Likelihood weighting:
— With every sample keep a weight with which it should
count towards the estimate

M
_ > ¥BY =Tw®
PB=T|J=TM=F)="t
Zw(i)
i=1

WB—T
samples with B=T and J=T ,M =F

PB=T|J=T,M=F)=
WB:X

samples with any value of Band J=T ,M=F
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Likelihood weighting

* Assume M samples where evidence is enforced:

00000
| | | |

PU=T,M=F|A=T) P(J=T,M=F|A=T) PU=T,M=F|A=T) P@=T,M=F|A=T) weights

* We can use P(e) to weight each sample and correct
the bias.

* The correct estimate is then:
M
_ > KAY =Tw®
PA=T|J=T,M=F)==
S w®

ow
aq

i=1

Importance Sampling

An approach for estimating the expectation of a function f(x)
relative to some distribution P(X) (target distribution)

generally, we can estimate this expectation by generating
samples X[1], ..., x[M] from P, and then estimating

E,[f1=0 3 (i)

However, we might prefer to generate samples from a different
distribution Q (proposal or sampling distribution) instead,
since it might be impossible or computationally very expensive
to generate samples directly from P.

Q can be arbitrary, but it should dominate P, i.e.
Q(x)>0 whenever P(x)>0

CS 3750 Advanced Machine Learning
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Unnormalized Importance Sampling

Since we generate samples from Q instead of P,

we need to adjust our estimator to compensate for the incorrect

sampling distribution.
P(x)
EooolF(X)]=Equlf(X)——]

Q(x)

So we can use standard estimator for expectations relative to Q.

Method: We generate a set of M samples D={x[1],...,.X[M]}
from Q, and estimate:

2 P(x[m])
Eo(f)=
o ()= mzl odm ])Q( x[m])

CS 3750 Advanced Machine Learning

Importance sampling

This is an unbiased estimator: its mean for any data set is
precisely the desired value

w(x)=P(x)/Q(x) - aweighting function, or a correction
weight

We can estimate the distribution of the estimator around its

mean:asM —> 0

Equol f (X)W(X)]=Epy [ F (X)]oc N(0; 0, /M)

where " = [Eqqy,[( f OOWOO) 1= (Eqqol f OOWOX)]?

o =[Equo[(F COWX))* 11— (Epp [ (X)])*

CS 3750 Advanced Machine Learning
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Importance sampling

* When f(X)=1, the variance is simply the variance of the
weighting function P(X)/Q(X). Thus, the more different Q is
from P, the higher is the variance of the estimator.

 In general, the lowest variance is achieved when
Q(X )| f(X)[P(X)

» We should avoid cases where our sampling probability
Q(X)<<P(X)f(X) in any part of the space, as these cases can lead
to very large or even infinite variance.

¢ Problem with unnormalized IS: P is assumed to be known

CS 3750 Advanced Machine Learning

Normalized Importance Sampling

» When P is only known up to a normalizing constant «

* We have access to a function P’(X), such that P* isnot a
normalized distribution, but P’(X)=a P(X)

« In this context, we cannot define the weights relative to P, so we
define:

_P(X)
")

_ _ POX)_1 L)
EP(X)[f(X)]—ZX‘,P(X)f(X) —ZX‘,Q(X)f(X) ) —aZX‘,Q(X)f(X) )
1 Equolf (X)w(X)]

== Eq[ F (X)W(X)]=—22
, Bl T (XJW(X)] o [W(X)]

Why? EQ(X)[MX)]:ZQ(x)F(;((XX))=ZP'(x)=a

CS 3750 Advanced Machine Learning
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Importance sampling

» Using an empirical estimator for both the numerator and
denominator, we can estimate:

s M (xImDw(x[m])
Fo()= > w(x[m])

 Although the normalized estimator is biased, its variance is
typically lower than that of the unnormalized estimator. This
reduction in variance often outweighs the bias term.

» So normalized estimator is often used in place of the unnormalized
estimator, even in cases where P is known and we can sample from
it effectively.
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Proposal Distribution for estimating conditional
probabilities in BBNs

Assume a Bayesian Network
» We want to calculate P(x|e)

» This is hard if we need to go opposite the links and account for the
effect of evidence on nondescendants

Objective: generate examples efficiently using a simpler proposal
distribution Q(X)

Solution: a mutilated belief network (Koller, Friedman 2009)

o ldea:
— Avoid propagation of evidence effects to non-descendants;
— Disconnect all variables in the evidence from their parents
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Mutilated Belief network

» Assume we want to calculate P(x|B=T,J=T) in the Alarm
network

e Use B=T and J=T to build a mutilated network

—>

‘

Original network Mutilated network

Mutilated Belief network

» Assume the evidence is J=j* and B=b*

» Original network (target distribution):
P(E=e,A=a,M =m,J = j*,B=b*)=P(b*)P(e)P(a| b*,e)P(j*|a)P(m| a)
» Mutilated network (proposal distribution):
Q(E=e,A=a,M =m,J = j*,B=b*)=P(e)P(a|b*,e)P(m|a)
* Notethat  w(x)=——=PH*)P(j*|a)

&_’ %

I\II i- |a+nt~|

urlglnal netWOTK A4
network
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Mutilated Belief network

Assume the evidence is J=j* and B=b*

Original network:

P(E=e,A=a,M =m,J = j*,.B=b*)=P(b*)P(e)P(a|b*,e)P(j*|a)P(m|a)
Mutilated network:

Q(E=e,A=a,M =m,J = j*,B=b*)=P(e)P(a|b*,e)P(m|a)

Note that _ PO _ piyp(ix
W(X) ) (b*)P(j*|a)

So importance sampling with a proposal distribution based
on mutilated network is equal to likelihood weighting

Originat network

network

Data-Dependent Likelihood Weighting

* Question: When to stop? How many samples do we need to
see?

« Intuition: not every samples contribute equally to the
quality of the estimate. A sample with high weight is more
compatible with the evidence e, and may provide us with
more information.

 Solution: We stop sampling when the total weight of the
generated particles reaches a pre-defined value.

* Benefits: It allows early stopping in cases where we were
lucky in our random choice of samples.
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