CS 3750 Machine Learning Lecture 5

Markov Random Fields III

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 3750 Advanced Machine Learning

Markov random fields

- MRF topics covered so far:
 - MRF definition and graphical representation
 - Variable elimination
 - Tree decomposition of MRFs
 - Conversion of BBNs to MRFs and Clique trees
 - Variable elimination on Clique trees
 - **Belief propagation** on Clique trees
- Today:
 - Variable elimination on Factor graphs
 - Learning of MRFs

Markov random fields

- · Probabilistic models with symmetric dependences.
 - Typically models spatially varying quantities

$$P(x) \propto \prod_{c \in cl(x)} \phi_c(x_c)$$

 $\phi_c(x_c)$ - A potential function (defined over factors)

- If $\phi_c(x_c)$ is strictly positive we can rewrite the definition in terms of a log-linear model :

$$P(x) = \frac{1}{Z} \exp \left(-\sum_{c \in cl(x)} E_c(x_c) \right)$$

- Energy function

- Gibbs (Boltzman) distribution

$$Z = \sum_{x \in \{x\}} \exp \left(-\sum_{c \in cl(x)} E_c(x_c) \right)$$

- A partition function

CS 3750 Advanced Machine Learning

Factor Graphs

- Explicit representation of factors
 - 2 types of nodes: factors and variables

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

Factor Graphs from Directed Graphs

$$p(\mathbf{x}) = p(x_1)p(x_2) \qquad f(x_3|x_1, x_2)$$

$$\int_{x_3}^{f}$$

$$f(x_1, x_2, x_3) = p(x_1)p(x_2)p(3|x_1, x_2)$$

$$f_a$$
 f_b
 f_a
 f_b

$$f_a(x_1) = p(x_1)$$
$$f_b(x_2) = p(x_2)$$

$$f_c(x_1, x_2, x_3) = p(x_3|x_1, x_2)$$

Factor Graphs from Undirected Graphs

$$f(x_1, x_2, x_3) = \psi(x_1, x_2, x_3)$$

$$f_a(x_1, x_2, x_3) f_b(x_2, x_3) = \psi(x_1, x_2, x_3)$$

The Sum-Product Algorithm (1)

Objective:

- i. to obtain an efficient, exact inference algorithm for finding marginals;
- ii. in situations where several marginals are required, to allow computations to be shared efficiently.

Key idea: Distributive Law

$$ab + ac = a(b + c)$$

The Sum-Product Algorithm (4)

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M)G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

Other vars in the factor

The Sum-Product Algorithm (5)

$$\mu_{f_s \to x}(x) = \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \left[\sum_{X_{sm}} G_m(x_m, X_{sm}) \right]$$
$$= \sum_{x_1} \dots \sum_{x_M} f_s(x, x_1, \dots, x_M) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$

The Sum-Product Algorithm (6)

$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \text{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})$$
$$= \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

The Sum-Product Algorithm (7)

Initialization

The Sum-Product Algorithm (8)

To compute local marginals:

- Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

Sum-Product: Example (1)

$\tilde{p}(\mathbf{x}) = f_a(x_1, x_2) f_b(x_2, x_3) f_c(x_2, x_4)$

Sum-Product: Example (2)

Markov Random Fields: learning

CS 3750 Advanced Machine Learning

Markov random fields

- · Probabilistic models with symmetric dependences.
 - Typically models spatially varying quantities

$$P(x) \propto \prod_{c \in cl(x)} \phi_c(x_c)$$

 $\phi_c(x_c)$ - A potential function (defined over factors)

- If $\phi_c(x_c)$ is strictly positive we can rewrite the definition as:

$$P(x) = \frac{1}{Z} \exp\left(-\sum_{c \in cl(x)} E_c(x_c)\right)$$
 - Energy function

- Gibbs (Boltzman) distribution

$$Z = \sum_{x \in \{x\}} \exp \left(-\sum_{c \in cl(x)} E_c(x_c) \right) - A \text{ partition function}$$

CS 3750 Advanced Machine Learning

Types of Markov random fields

- MRFs with discrete random variables
 - Clique potentials can be defined by mapping all cliquevariable instances to R
 - Example: Assume two binary variables A,B with values $\{a1,a2,a3\}$ and $\{b1,b2\}$ are in the same clique c. Then:

$$\phi_c(A,B) \cong$$

a1	b1	0.5
a1	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

- Next: Learning MRFs with discrete random vars

CS 3750 Advanced Machine Learning

An example of MRF

• Undirected Graph

• Full joint distribution
$$p(X) = \frac{1}{Z} \psi_1(X_1, X_2) \cdot \psi_2(X_2, X_3).$$

Parameters

$$\begin{split} & \psi_1(X_1=0,X_2=0), \psi_1(X_1=0,X_2=1), \\ & \psi_1(X_1=1,X_2=0), \psi_1(X_1=1,X_2=1), \\ & \psi_2(X_2=0,X_3=0), \psi_2(X_2=0,X_3=1), \\ & \psi_2(X_2=1,X_3=0), \psi_2(X_2=1,X_3=1). \end{split}$$

Assumptions

- · Complete data set
 - No hidden variables, no missing value
 - Independent identically distribution (IID)
- · Discrete model
- Known structure
- Parameter independency
- Maximum likelihood estimation
 - More difficult than that of Bayesian network
 - Decomposable or non-decomposable model

Notations

- V: set of nodes of the graph.
- X_u : the random variable associated with $u \in V$
 - x_u : an instantiation of X_u
- C: a subset of V,
 - X_C : set of variables indexed by C
 - x_c : an instantiation of X_C
 - x_V or x: an instantiation of all random variables
- *N*: number of samples in the data set *D*
 - n: Index of data. n = 1,2...N
- $D:(D_1, D_2, ..., D_N) = (x_{v,1}, x_{v,2}, ..., x_{v,N})$

Maximum likelihood estimation for MRF

• Full joint distribution

$$p(x_V \mid \theta) = \frac{1}{Z} \prod_C \psi_C(x_C), \quad Z = \sum_{x_C} \prod_C \psi_C(x_C)$$

Likelihood

$$p(D_n \mid \theta) = p(x_{V,n} \mid \theta) = \prod_{x_V} p(x_V \mid \theta)^{\delta(x_V, x_{V,n})}$$
$$\delta(x_V, x_{V,n}) = 1 \text{ iff } x_V = x_{V,n}$$

$$p(D \mid \theta) = \prod_{n} p(x_{V,n} \mid \theta) = \prod_{n} \prod_{x_{V}} p(x_{V} \mid \theta)^{\delta(x_{V}, x_{V,n})}$$

Maximum likelihood estimation for MRF

· Log likelihood

$$l(\theta, D) = \log p(D \mid \theta) = \log \left(\prod_{n} \prod_{x_{V}} p(x_{V} \mid \theta)^{\delta(x_{V}, x_{V,n})} \right)$$
$$= \sum_{n} \sum_{x_{V}} \delta(x_{V}, x_{V,n}) \log p(x_{V} \mid \theta) = \sum_{x_{V}} m(x_{V}) \log p(x_{V} \mid \theta)$$

• Count: the number of times that configuration x_V is observed is defined as:

$$m(x_V) \equiv \sum \delta(x_V, x_{V,n})$$

• And marginal count for clique C:

$$m(x_C) \equiv \sum_{x_V \setminus C} m(x_V)$$

Count and Marginal Count

X ₁	<i>X</i> ₂ 0	<i>X</i> ₃
0	0	0
0	0	1
1	1	0
1	0	1
0	0	1
1	0	1
1	1	1
0	0	1
1	0	0
0	1	0

$$m((X_1=0, X_2=0, X_3=1)) = ?$$

$$m((X_1=1, X_2=0))=?$$

Count and Marginal Count

<i>X</i> ₁ 0	<i>X</i> ₂ 0	<i>X</i> ₃
0	0	0
0	0	1
1	1	0
1	0	1
0	0	1
1	0	1
1	1	1
0	0	1
1	0	0
0	1	0

$$m((X_1=0, X_2=0, X_3=1))=3$$

$$m((X_1=1, X_2=0)) = ?$$

Count and Marginal Count

<i>X</i> ₁	<i>X</i> ₂ 0	<i>X</i> ₃
0	0	0
0	0	1
1	1	0
1	0	1
0	0	1
1	0	1
1	1	1
0	0	1
1	0	0
0	1	0

$$m((X_1=0, X_2=0, X_3=1))=3$$

$$m((X_1=1, X_2=0))=3$$

Maximum likelihood estimation for MRF

• Log likelihood

$$l(\theta, D)$$

$$= \sum_{n} \sum_{x_{V}} \delta(x_{V}, x_{V,n}) \log p(x_{V} | \theta)$$

$$= \sum_{x_{V}} m(x_{V}) \log p(x_{V} | \theta)$$

$$= \sum_{x_{V}} m(x_{V}) \log \left(\frac{1}{Z} \prod_{C} \psi_{C}(x_{C})\right)$$

$$= \sum_{x_{V}} m(x_{V}) \sum_{C} \log \psi_{C}(x_{C}) - \sum_{x_{V}} m(x_{V}) \log Z$$

$$= \sum_{C} \sum_{x_{C}} m(x_{C}) \log \psi_{C}(x_{C}) - N \log Z$$

Bayesian network vs MRF

• Bayesian network

Parameters are decomposed

$$l(\theta, D) = \sum_{u} \sum_{x_{\{u\} \cup pa(u)}} m(x_{\{u\} \cup pa(u)}) \log \theta_{u}(x_{\{u\} \cup pa(u)})$$

• MRF

Parameters are not decomposed

$$l(\theta, D) = \sum_{C} \sum_{x_{C}} m(x_{C}) \log \psi_{C}(x_{C}) - N \underline{\log Z}$$

$$\log Z = \log \sum_{x_C} \prod_C \psi_C(x_C)$$