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Markov random fields

* MRF topics covered so far:
— MREF definition and graphical representation
— Variable elimination
— Tree decomposition of MRFs
— Conversion of BBNs to MRFs and Clique trees
— Variable elimination on Clique trees
— Belief propagation on Clique trees
» Today:
— Variable elimination on Factor graphs
— Learning of MRFs




Markov random fields

» Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities
P(x)oc [T ¢ (x)
cecl (x)

é.(x.) - Apotential function (defined over factors)

- If .(X.)is strictly positive we can rewrite the definition in
terms of a log-linear model :
1 .
P(x) = Z &P (— > - Energy function

cecl (x

- Gibbs (Boltzman) distribution

Z=> exp(— > )Ec(xc)] - A partition function

xe{x} cecl (x

CS 3750 Advanced Machine Learning

Factor Graphs

» Explicit representation of factors
— 2 types of nodes: factors and variables

I X T3

Jrn .er fr: fd
p(x) = falz1, 22) fo(21, x2) fo(22, 23) fa(x3)

p(x) =[] £ixs)




Factor Graphs from Directed Graphs

S
p(x) = p(x)p(z2)  flar, 22, 23) = fa(z1) = p(21)
p($3|$1,$2) p(ml)p(mg)p(3|$1,mz)\ fb(ff'z) — p(mz)
fe(zr,m2,23) = plas|er,z2)

Factor Graphs from Undirected Graphs
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Y(xy, x2,23) f(z1, 22, 23) fa(x1, 22, 23) fo (22, 23)

= (xy, 2, x3) = (w1, 22, 73)




The Sum-Product Algorithm (1)

Objective:
i. toobtain an efficient, exact inference algorithm for
finding marginals;
ii. insituations where several marginals are required, to
allow computations to be shared efficiently.
Key idea: Distributive Law

ab+ ac = a(b+ ¢)

The Sum-Product Algorithm (2)

Fy(z, X;)

plx) = Y p(x)
x\z Factors that are neighbors
px) =[] E@x) O

sEne(x) /




The Sum-Product Algorithm (3)

Fy(z, X;)

The Sum-Product Algorithm (4)

Fo(a, Xs) = fs(zyzq,.. ., am)Gr (21, X61) o . G (oar, Xsnr)

Other vars in the factor




The Sum-Product Algorithm (5)

Gm (xm: Xsm)

i —g(x) = Z...Zfs(:t,xl,...,x;w) H [ZGm(m’m,Xsm)]

T M mene(f:)\z LXsm
= Z“‘Zfs(msmlau'amfw) H ﬂw,,,—»f_«(mm)
T T M mene(fq)\x

The Sum-Product Algorithm (6)

Ty

mfﬂ

Gm(mm; Xsm)

Kz —fo (mm) = Z Gm(ﬂjma Xsm) = Z H E(mmngl)
Xom

Xom L€ ne(:{: ™m )\fx

= H K —zm (Tm)
lene(z,, )\ fs




The Sum-Product Algorithm (7)

e |nitialization

Hzx >f(m) 1 My () = f(2)

The Sum-Product Algorithm (8)

To compute local marginals:
* Pick an arbitrary node as root

» Compute and propagate messages from the leaf nodes to
the root, storing received messages at every node.

» Compute and propagate messages from the root to the leaf
nodes, storing received messages at every node.

» Compute the product of received messages at each node for
which the marginal is required, and normalize if necessary.




Sum-Product: Example (1)

T T T3
O—a—0O—=——O
.)ra ff
Je
= P(x) = fal1,22) fo (w2, 23) fe(22, 24)

Sum-Product: Example (2)

I a &Ta fb T3
O O =0
fc Hay— fo (Il) =

1
T Pamas(®2) = Y falw1,72)

lu‘l‘4 —*f‘_ ("I’l4) = ]-
& Py (®@2) = Y felwa,24)
x4

lu’.’L‘z—'fi, (mz) = p‘*f(.—>x2 (I'Z)lu'f(;—'xz ($2)
ffyoas(T3) = Y fol@2,33) g, (2)

z2




Sum-Product: Example (3)

fc -LLCCS_’fh(‘,‘E\?') =1
1 oz (@2) = Y fo(wa,23)
x3
/L$2—>fu(m2) = Hfy—z2 ($2)uff.—*-‘€'z (IQ)
& #fu"xl(ml) = Z‘fa(ml,m2)#x2—»fu (22)
T2
Has—f(T2) = Pf,—as (T2l fy—as (T2)
fooas(@a) = Y fol@a, Ta) ey, (22)

T2

Sum-Product: Example (4)

T €To I3

O—a—CO—=—C0

Jra er

fC 5(3:2) = #f(tq:c? (IQ)Hfh_’x2(r2)”ft_’IE (x2)

— lZfa(:rl,:rg)] [Zfb(rz,:ts)]

T4 [Z fc(mg,m)]
Z Z Z fa(z1,m2) fo (22, 73) fe (T2, T4)
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Markov Random Fields: learning
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Markov random fields

» Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities

P(x)oc T 4.(x)

cecl (x)

é.(x.) - Apotential function (defined over factors)

- If . (X.) is strictly positive we can rewrite the definition as:

P(x) = —exp( ZIZ,J - Energy function

- Gibbs (Boltzman) distribution

z=> exp( > E.(X, )] - A partition function

xe{x} cecl (x)
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Types of Markov random fields

* MRFs with discrete random variables

— Clique potentials can be defined by mapping all clique-
variable instances to R

— Example: Assume two binary variables A,B with values
{al,a2,a3} and {b1,b2} are in the same clique c. Then:

¢C(A, B) ~ al b1 05

al b2 0.2

a2 b1 0.1

a2 b2 0.3

a3 bl 0.2

a3 b2 0.4

— Next: Learning MRFs with discrete random vars
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An example of MRF

» Undirected Graph

H—0—0
 Full joint distribution

PO = 21X, X)W (X X):

» Parameters
v (X, =0,X, =0),p, (X, =0,X, =1),
vy (X, =1 X, =0y, (X, =1 X, =1,
v (X, =0,X; =0)p, (X, =0, X, =1),
v,(X, =L X; =0),p,(X, =1, X; =1).




Assumptions

Complete data set

— No hidden variables, no missing value

— Independent identically distribution (11D)
Discrete model

Known structure

Parameter independency

Maximum likelihood estimation

— More difficult than that of Bayesian network
— Decomposable or non-decomposable model

Notations

V : set of nodes of the graph.

X, : the random variable associated with ueV
X, : an instantiation of X,

C : asubset of V,

Xc . set of variables indexed by C

X, : an instantiation of X

Xy Or x : an instantiation of all random variables

N : number of samples in the data set D

n: Index of data. n =1,2...N

D : (Dy, Dy o Dy) = (K Xyze v Ky )
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Maximum likelihood estimation for MRF
* Full joint distribution

px, 10)= 5 TTve (). 2= X wex)
 Likelihood
P(D, [0) = p(x,,10)= H p(x, | 6)°*v

Xy

o(xy, Xy ) =11iff x, =x

V,n

p(D]0) = H (% 10) =TT p(x, 10)°% "

noxy

Maximum likelihood estimation for MRF

* Log likelihood
1(60,D) =log p(D [ 0) = Iog(HH p(xy |9)‘$‘XV'WJ

nooxy

=>">5(x, . %) log p(x, |0) = Zm(x )log p(x, |6)

 Count: the number of times that configuration Xy is
observed is defined as:

m(x, ) = Z§(XV ' XV,n)
« And marginal count for clique C :

m(x;) = z m(x, )

Xy \C
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Count and Marginal Count

X, | X, | X

0 0 0

0 0 L m((X;=0, X, =0, X5 =1)) = ?
1 1 0

1 0 1

— m((X,=1, X, =0))= ?
1 1 1

0 0 1

1 0 0

0 1 0

Count and Marginal Count

Xl X2 X3

0 0 0

5 5 . m((X,=0, X, =0, X5 =1)) = 3
1 1 0

1 0 1

0 0 1

1 0 1

1 1 1 m((X,=1, X; =0)) =7
0 0 1

1 0 0

0 1 0

14



Count and Marginal Count

X
<

X
N

X
o

m((X,=0, X, =0, X; =1)) = 3

M((X,=L, X, =0))= 3

o|lr|olr|r|lo|lr|r|lo|lo
Flo|lo|r|lo|lo|lo|r|o|o
o|lo|r|r|FR|rR|FR|O|rR]|O

Maximum likelihood estimation for MRF

* Log likelihood
1(6,D)

= 225% Xy 0109 p(x, [ 0)

nooxy

= Zm(xv ) IOg p(Xv | 9)

- Zm(xv)logeﬂwc (xc)]
= Zm(xv )Z logy ¢ (xc)—Zm(x\, )logZ

=>">"m(xc)logy, (x;) - NlogZ

Xc
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Bayesian network vs MRF

» Bayesian network

1(6,D) =2 > M(Xeyopa) 1090, (Xeippaiey)

U Xeuyopa(u)

1(6,D) =>"> m(xc)logy (x.)— N log Z

logZ = IOQZHWC(XC)
X C

* MRF
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