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Markov Random Fields II
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Markov random fields

• Probabilistic models with symmetric dependences. 

– Typically models spatially varying quantities
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- A potential function (defined over factors)
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- A partition function

- Gibbs (Boltzman) distribution

- If             is strictly positive we can rewrite the definition in
terms of a log-linear model :

- Energy function
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Graphical representation of MRFs

An undirected network (also called independence graph)

• G = (S, E)

– S=1, 2, .. N  correspond to random variables  

–

or xi and xj appear within the same factor c

Example:

– variables A,B ..H

– Assume the full joint of MRF
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Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an 
undirected graph over X that contains an edge between x and 
y if:

 There exists a directed edge between them in G.

 They are both parents of the same node in G.
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Moral Graphs

Why moralization? 
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Chordal graphs

Chordal Graph: an undirected graph G whose minimum cycle 
contains 3 verticies.  
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Chordal Graphs

Properties:

– There exists an elimination ordering that adds no edges.

– The minimal induced treewidth of the graph is equal to the 
size of the largest clique - 1. 
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Triangulation

The process of converting a graph G into a chordal graph is 
called Triangulation. 

A new graph obtained via triangulation is:

1) Guaranteed to be chordal.

2) Not guaranteed to be (treewidth) optimal.

There exist exact algorithms for finding the minimal chordal
graphs, and heuristic methods with a guaranteed upper 
bound. 
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Chordal Graphs

• Given a minimum triangulation for a graph G, we can carry 
out the variable-elimination algorithm in the minimum 
possible time.  

• Complexity of the optimal triangulation:

– Finding the minimal triangulation is NP-Hard.

• The inference limit:

– Inference time is exponential in terms of the largest 
clique (factor) in G.

CS 3750 Advanced Machine Learning

Inference: conclusions

• We cannot escape exponential costs in the treewidth.

• But in many graphs the treewidth is much smaller than the total 
number of variables 

• Still a problem: Finding the optimal decomposition is hard

– But, paying the cost up front may be worth it.

– Triangulate once, query many times. 

– Real cost savings if not a bounded one.   
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Clique tree properties

• A clique tree: 

– a tree where nodes correspond to sets of variables 

– used for performing probabilistic inferences

• Sepset 

– separation set: Variables X on one side of sepset are 
separated from the variables Y on the other side in the 
factor graph given variables in S

• Running intersection property

– if Ci and Cj both contain X, then all cliques on the unique 
path between them also contain X 
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Inference in clique trees

C,D

G,J,S,L

G,S,IG,I,D

H,G,J

Running intersection: 
E.g. Cliques involving S form
a connected subtree.

Initial potentials     : 
Assign factors to cliques
and multiply them. 
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Message Passing VE

• Query for P(J)

– Eliminate C: 
C
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Message sent
from [C,D]
to [G,I,D]


D

Message received 
at [G,I,D] --
[G,I,D] updates:

],,[)(],,[ 0
212 DIGDDIG  

C

D I

G

L

S

JH
K

CS 3750 Advanced Machine Learning

Message Passing VE

• Query for P(J)

– Eliminate D: 
D
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from [G,I,D]
to [G,S,I]


D

Message received 
at [G,S,I] --
[G,S,I] updates:
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Message Passing VE

• Query for P(J)

– Eliminate I:
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S,K

H,G,J

Message sent
from [G,S,I]
to [G,J,S,L]


D

Message received 
at [G,J,S,L] --
[G,J,S,L] updates:
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Message Passing VE

• Query for P(J)

– Eliminate H:

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J

Message sent
from [H,G,J]
to [G,J,S,L]


D
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Message Passing VE

• Query for P(J)

– Eliminate K:
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Message sent
from [S,K]
to [G,J,S,L]


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All messages 
received at [G,J,S,L]
[G,J,S,L] updates:
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And calculate P(J) from it by summing out G,S,L
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Message Passing VE

• [G,J,S,L] clique potential 

• … is used to finish the inference

C,D

G,J,S,L
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Message passing VE

• Often, many marginals are desired

– Inefficient to re-run each inference from scratch

– One distinct message per edge & direction 

• Methods :

– Compute (unnormalized) marginals for any vertex 
(clique) of the tree

– Results in a calibrated clique tree

• Recap: three kinds of factor objects

– Initial potentials, final potentials and messages
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Two-pass message passing VE

• Chose the root clique, e.g.  [S,K]

• Propagate messages to the root
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Two-pass message passing VE

• Send messages back from the root

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J


D


G,I

G,S

G,J 


S

Notation:
number the cliques and
denote the messages
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Message Passing: BP

• Graphical model of a distribution

– More edges = larger expressive power

– Clique tree also a model of distribution

– Message passing preserves the model but changes the 
parameterization

• Different but equivalent algorithm
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Factor division

A=1 B=1 0.5

A=1 B=2 0.4

A=2 B=1 0.8

A=2 B=2 0.2

A=3 B=1 0.6

A=3 B=2 0.5

A=1 0.4

A=2 0.4

A=3 0.5

A=1 B=1 0.5/0.4=1.25

A=1 B=2 0.4/0.4=1.0

A=2 B=1 0.8/0.4=2.0

A=2 B=2 0.2/0.4=2.0

A=3 B=1 0.6/0.5=1.2

A=3 B=2 0.5/0.5=1.0

Inverse of factor product
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Message Passing: BP

• Each node: multiply all the messages and divide by the one 
that is coming from node we are sending the message to

– Clearly the same as VE

– Initialize the messages on the edges to 1
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Message Passing: BP

A,B C,DB,CB C
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Store the last message
on the edge and divide
each passing message 
by the last stored.

13,2 









 

B

CB ),(0
2323,2  New message

CS 3750 Advanced Machine Learning

Message Passing: BP

A,B C,DB,CB C
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Message Passing: BP

A,B C,DB,CB C
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Message Propagation: BP

• Lauritzen-Spiegelhalter algorithm

• Two kinds of objects: clique and sepset potentials

– Initial potentials not kept

• Improved “stability” of asynchronous  algorithm (repeated 
messages cancel out)

• New distribution representation

– clique tree potential 

– Clique tree invariant = PF

)(
)(

)(

)(

XP
S

C

F

TCC
ijij

TC
ii

T

ji

i 














15

CS 3750 Advanced Machine Learning

Loopy belief propagation

• The asynchronous BP algorithm works on clique trees

• What if we run the belief propagation algorithm on a non-tree 
structure?

• Sometimes converges

• If it converges it leads to an approximate solution

• Advantage: tractable for large graphs
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Loopy belief propagation

• If the BP algorithm converges, it converges to an optimum of 
the Bethe free energy 

See papers: 

• Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief 
Propagation, 2000 

• Yedidia J.S., Freeman W.T. and Weiss Y. Understanding 
Belief Propagation and Its Generalizations, 2001 


