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Markov random fields

» Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities
P(x)oc [T ¢ (x)
cecl (x)

é.(x.) - Apotential function (defined over factors)

- If .(X.)is strictly positive we can rewrite the definition in
terms of a log-linear model :
1 .
P(x) = Z &P (— > @ - Energy function

cecl (x

- Gibbs (Boltzman) distribution

xe{x} cecl (x

z=> exp(— > )Ec(xc)] - A partition function
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Graphical representation of MRFs

An undirected network (also called independence graph)
* G=(SE)

— S=1, 2, .. N correspond to random variables

- (,j))eEe Jcdi j}cc

or x; and x; appear within the same factor c

Example:

— variables A,B ..H

—G—_

— Assume the full joint of MRF / H
P(AB,..H)~ \\F

#.(A,B,C)¢,(B,D,E)4,(A,G) \\
$:(C.F)$s(G,H)gs(F,H) D E

CS 3750 Advanced Machine Learning

Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an
undirected graph over X that contains an edge between x and

y if:
= There exists a directed edge between them in G.
= They are both parents of the same node in G.

Co o
oo o
& ED>—CD
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Moral Graphs

Why moralization?

P(C,D,G,1,S,L,J,H)=
= P(C)P(D|C)P(G|I,D)P(S|DHP(L|G)PI|L,S)P(H|G,J)
= 4(C)¢,(D,C)¢(G,1,D)¢, (S, e (L.G) (I, L, S)g, (H, G, J)

P(G|I1,D)

¢:(G,1,D)
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Chordal graphs

Chordal Graph: an undirected graph G whose minimum cycle
contains 3 verticies.

Chordal. Not Chordal.
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Chordal Graphs

Properties:
— There exists an elimination ordering that adds no edges.

— The minimal induced treewidth of the graph is equal to the
size of the largest clique - 1.
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Triangulation

The process of converting a graph G into a chordal graph is
called Triangulation.

A new graph obtained via triangulation is:
1) Guaranteed to be chordal.
2) Not guaranteed to be (treewidth) optimal.

There exist exact algorithms for finding the minimal chordal
graphs, and heuristic methods with a guaranteed upper
bound.
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Chordal Graphs

» Given a minimum triangulation for a graph G, we can carry
out the variable-elimination algorithm in the minimum
possible time.

» Complexity of the optimal triangulation:
— Finding the minimal triangulation is NP-Hard.

* The inference limit:

— Inference time is exponential in terms of the largest
clique (factor) in G.
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Inference: conclusions
» We cannot escape exponential costs in the treewidth.

* But in many graphs the treewidth is much smaller than the total
number of variables

« Still a problem: Finding the optimal decomposition is hard
— But, paying the cost up front may be worth it.
— Triangulate once, query many times.
— Real cost savings if not a bounded one.
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Clique tree properties

* Aclique tree:

a tree where nodes correspond to sets of variables
used for performing probabilistic inferences

* Sepset Sij :Ci ij

separation set: Variables X on one side of sepset are
separated from the variables Y on the other side in the
factor graph given variables in S

Running intersection property

— if C;and C; both contain X then all cliques on the unique
path between them also contain X
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Inference in clique trees

7°(G,S, 1)

7°(C,D) 7°(G,1,D)

Running intersection:
E.g. Cliques involving S form
a connected subtree.

7°(G,J,S,L)
Initial potentials 71'i0:

0
Assign factors to cliques 7 (H G, ‘])
and multiply them.
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Message Passing VE

*  Query for P(J)
— Eliminate C: 7(D)=Y 7[C,D]
C

Message sent
from [C,D]
to [G,1,D]

>
D

Message received
at [G,1,D] --
[G,1,D] updates:

,[G,1,D]=7,(D)x2[G, 1, D]
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Message Passing VE

*  Query for P(J)
_ Eliminate D: (G 1)=> 7,[G,1,D]
D

Message sent
from [G,1,D]
to [G,S,1]

5 >
D G,1

Message received
at [G,S,1] --
[G,S,1] updates:

7JG,S,11=17,(G,1)x[G,S, ]
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Message Passing VE

*  Query for P(J)
— Eliminate I: 7(G,8)=> m[G,S,1]

Message sent
from [G,S,1]
I G,S to [G,J,S,L]

S >
D G,I

Message received
at [G,J,S,L] --
[G,J,S,L] updates:

7,[G,3,S, =7, S)x7[G IS L] !

[G,J,S,L] is not ready!
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Message Passing VE

*  Query for P(J)
— Eliminate H: 7,(G,J)=> 7[H,G,J]
H

BB SE  vessagesen

> from [H,G,J]
D G,1 JG,S to [G,J,S,L]

East—{3x]
“G,J

7,[G,J,S,=1,(G,S)xz,(G,J)x~[G,J,S,L]

And ...
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Message Passing VE

*  Query for P(J)

— Eliminate K:  %(8)=>_7'[S,K]
K

[eo}—{etp}5Hesu)

M nt
S essage se

N from [S,K]
D G,1 I G,S to [G,J,S,L]

ﬁ—g—-
All messages

received at [G,J,S,L] 1G,J
[G,J,S,L] updates:

7,[G,J,S,]=7,(G,S)x7,(G, J)x7,(S)x,[G,J,S, L]

And calculate P(J) from it by summing out G,S,L
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Message Passing VE

[G,J,S,L] clique potential
... Is used to finish the inference

eof5erosesi]
= Gl |ycs

GasiL—— s« |
S

G,J?t
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Message passing VE

» Often, many marginals are desired
— Inefficient to re-run each inference from scratch
— One distinct message per edge & direction

e Methods :

— Compute (unnormalized) marginals for any vertex
(clique) of the tree

— Results in a calibrated clique tree Z T = Z T
Ci-Sj Ci-Sj

* Recap: three kinds of factor objects
— Initial potentials, final potentials and messages
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Two-pass message passing VE

* Chose the root clique, e.g. [S,K]
» Propagate messages to the root

eof5erosesi]

= Gl |ycs

GasiL— s« |
S

G,J"1
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Two-pass message passing VE

Send messages back from the root

< €
cof—sinf—Hos1]

G,S
[ease——{ x|
S
G,JlJ

Notation:

- number the cliques and
denote the messages

5i—> j

CS 3750 Advanced Machine Learning

Message Passing: BP

Graphical model of a distribution
— More edges = larger expressive power
— Clique tree also a model of distribution

— Message passing preserves the model but changes the
parameterization

Different but equivalent algorithm
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Factor division

A=l |B=1 |05 A=l |B=1 |05/0.4=125
A=l |B=2 |04 A=l |B=2 |0.4/0.4=1.0
Z Z A=l |04
A=2 |B=1 |08 A=2 |B=1 |0.8/0.4=2.0
> A=2 |04
A=2 |B=2 |02 A=3 |05 A=2 |B=2 |0.2/0.4=2.0
A=3 |B=1 |06 A=3 |B=1 |06/0.5=12
A=3 |B=2 |05 A=3 |B=2 |05/0.5=1.0

Inverse of factor product
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Message Passing: BP

Each node: multiply all the messages and divide by the one
that is coming from node we are sending the message to

— Clearly the same as VE

CZ,S”i z Hé‘k—n

5i->j |5 : = CI_S”;EN(” = Z H 5k—>i

joi ioi Ci-S; keN (i)\]

— Initialize the messages on the edges to 1
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Message Passing: BP

M =1
0 0 0
7 (A.B) 7(BC) ——— (D)
Store the last message 0y 3= (zﬂ'z(B C)J

on the edge and divide
each passing message
by the last stored.

7,(C,D) = 2(C, D) 2222 = 72(C, D) Y. 7(B,C)

2,3

Hos =0y 5= [Z%(B C)j New message
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Message Passing: BP
2.3 =(;7Z§(B,C)]

e fmi—{ee = —{en)

7°(A B) 72(B,C) < (D)

C,D)=73(C,D)> z7(B,C)=77(C,D
Store the last message 7(C.D) =m3( )ZB“”Z( ) =73 (C. D)tz

on the edge and divide

each passing message C,D
by the last stored. Oas2 = (ZﬂB( )

2 ”3 (B,C) y 0 y 0 y 0
7,(B,C) =7, (B C) (C) 1 © ;”3 (C,D) Hos (C)=r,(B,C) ;773 (C,D)

Moy =05 .= [Z 7, (C, D)] =Y 73(C,D)Y . 7;(B,C)  New message
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Message Passing: BP
=2.75(C.D)Y 77 (B,C)

e —fmi—{ee = —{en)

7°(A B) 7,(B,C) < z(CD)

C,D)=7z(C,D 9(B,C
Store the last message 7 )= 75 )Zs:ﬂz( )

on the edge and divide

each passing message 7.(C.D
by the last stored. 32 = (z 5 ( )

7,(B,C)=7;(B,C)x Y _75(C, D) The same as before
D

Zﬂ3 (C, D)xZﬂ'z(B C) /

=r,(B,C)

7,(B,C)=7,(B,C) Z-Eé)—nz(B Z ’(C, D)XZ 73(B,C)
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Message Propagation: BP

» Lauritzen-Spiegelhalter algorithm
» Two Kkinds of objects: clique and sepset potentials
— Initial potentials not kept

* Improved “stability” of asynchronous algorithm (repeated
messages cancel out)
* New distribution representation
— clique tree potential
H 7 (C;)
CieT _
& H :uij(sij) Pr (X)
(CieoCj)eT
— Clique tree invariant = P,
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Loopy belief propagation

» The asynchronous BP algorithm works on clique trees
» What if we run the belief propagation algorithm on a non-tree

structure? E E
» Sometimes converges
 If it converges it leads to an approximate solution
* Advantage: tractable for large graphs
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Loopy belief propagation

* If the BP algorithm converges, it converges to an optimum of
the Bethe free energy

See papers:

* Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief
Propagation, 2000

* YedidiaJ.S., Freeman W.T. and Weiss Y. Understanding
Belief Propagation and Its Generalizations, 2001
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