CS 3750 Machine Learning
 Lecture 4

Markov Random Fields II

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Markov random fields

- Probabilistic models with symmetric dependences.
- Typically models spatially varying quantities

$$
P(x) \propto \prod_{c \in c l(x)} \phi_{c}\left(x_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over factors)

- If $\phi_{c}\left(x_{c}\right)$ is strictly positive we can rewrite the definition in terms of a log-linear model :
$P(x)=\frac{1}{Z} \exp \left(-\sum_{c \in c l(x)} E_{c}\left(x_{c}\right)\right) \quad$ - Energy function
- Gibbs (Boltzman) distribution
$Z=\sum_{x \in\{x\}} \exp \left(-\sum_{c \in c l(x)} E_{c}\left(x_{c}\right)\right) \quad$ - A partition function

Graphical representation of MRFs

An undirected network (also called independence graph)

- $G=(S, E)$
- $\mathrm{S}=1,2$, .. N correspond to random variables
- $(i, j) \in E \Leftrightarrow \exists c:\{i, j\} \subset c$ or x_{i} and x_{j} appear within the same factor c

Example:

- variables A,B ..H
- Assume the full joint of MRF $P(A, B, \ldots H) \sim$

$$
\begin{gathered}
\phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \\
\phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
\end{gathered}
$$

Converting BBNs to MRFs

Moral-graph H[G]: of a Bayesian network over X is an undirected graph over X that contains an edge between x and y if:

- There exists a directed edge between them in G.
- They are both parents of the same node in G.

Moral Graphs

Why moralization?

$$
\begin{aligned}
& P(C, D, G, I, S, L, J, H)= \\
& \quad=P(C) P(D \mid C) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& \quad=\phi_{1}(C) \phi_{2}(D, C) \phi_{3}(G, I, D) \phi_{4}(S, I) \phi_{5}(L, G) \phi_{6}(J, L, S) \phi_{7}(H, G, J)
\end{aligned}
$$

Chordal graphs

Chordal Graph: an undirected graph G whose minimum cycle contains 3 verticies.

Chordal.

Not Chordal.

Chordal Graphs

Properties:

- There exists an elimination ordering that adds no edges.
- The minimal induced treewidth of the graph is equal to the size of the largest clique - 1 .

Triangulation

The process of converting a graph G into a chordal graph is called Triangulation.

A new graph obtained via triangulation is:

1) Guaranteed to be chordal.
2) Not guaranteed to be (treewidth) optimal.

There exist exact algorithms for finding the minimal chordal graphs, and heuristic methods with a guaranteed upper bound.

Chordal Graphs

- Given a minimum triangulation for a graph G, we can carry out the variable-elimination algorithm in the minimum possible time.
- Complexity of the optimal triangulation:
- Finding the minimal triangulation is NP-Hard.
- The inference limit:
- Inference time is exponential in terms of the largest clique (factor) in G.

Inference: conclusions

- We cannot escape exponential costs in the treewidth.
- But in many graphs the treewidth is much smaller than the total number of variables
- Still a problem: Finding the optimal decomposition is hard
- But, paying the cost up front may be worth it.
- Triangulate once, query many times.
- Real cost savings if not a bounded one.

Clique tree properties

- A clique tree:
- a tree where nodes correspond to sets of variables
- used for performing probabilistic inferences
- Sepset $S_{i j}=C_{i} \cap C_{j}$
- separation set: Variables \mathbf{X} on one side of sepset are separated from the variables \mathbf{Y} on the other side in the factor graph given variables in \mathbf{S}
- Running intersection property
- if C_{i} and C_{j} both contain X , then all cliques on the unique path between them also contain X

Inference in clique trees

Running intersection:
E.g. Cliques involving S form a connected subtree.

I nitial potentials π_{i}^{0} :
Assign factors to cliques

and multiply them.

Message Passing VE

- Query for P(J)
- Eliminate C: $\quad \tau_{1}(D)=\sum_{C} \pi_{1}^{0}[C, D]$

Message Passing VE

- Query for P(J)
- Eliminate D: $\quad \tau_{2}(G, I)=\sum_{D} \pi_{2}[G, I, D]$

$\pi_{3}[G, S, I]=\tau_{2}(G, I) \times \pi_{3}^{0}[G, S, I]$

Message Passing VE

- Query for P(J)
- Eliminate I: $\tau_{3}(G, S)=\sum_{I} \pi_{3}[G, S, I]$

Message Passing VE

- Query for P(J)
- Eliminate H: $\tau_{4}(G, J)=\sum_{H} \pi_{5}[H, G, J]$

$\pi_{4}[G, J, S, L]=\tau_{3}(G, S) \times \tau_{4}(G, J) \times \pi_{4}^{0}[G, J, S, L]$
And ...

Message Passing VE

- Query for P(J)
- Eliminate $\mathrm{K}: \quad \tau_{6}(S)=\sum_{K} \pi^{0}[S, K]$

And calculate $\mathbf{P}(\mathrm{J})$ from it by summing out $\mathrm{G}, \mathrm{S}, \mathrm{L}$

Message Passing VE

- [G,J,S,L] clique potential
- ... is used to finish the inference

Message passing VE

- Often, many marginals are desired
- Inefficient to re-run each inference from scratch
- One distinct message per edge \& direction
- Methods :
- Compute (unnormalized) marginals for any vertex (clique) of the tree
- Results in a calibrated clique tree $\sum_{C_{i}-S_{i j}} \pi_{i}=\sum_{C_{j}-S_{i j}} \pi_{j}$
- Recap: three kinds of factor objects
- Initial potentials, final potentials and messages

Two-pass message passing VE

- Chose the root clique, e.g. [S,K]
- Propagate messages to the root

Two-pass message passing VE

- Send messages back from the root

CS 3750 Advanced Machine Learning

Message Passing: BP

- Graphical model of a distribution
- More edges = larger expressive power
- Clique tree also a model of distribution
- Message passing preserves the model but changes the parameterization
- Different but equivalent algorithm

Factor division

$\mathrm{A}=1$	$\mathrm{~B}=1$	0.5
$\mathrm{~A}=1$	$\mathrm{~B}=2$	0.4
$\mathrm{~A}=2$	$\mathrm{~B}=1$	0.8
$\mathrm{~A}=2$	$\mathrm{~B}=2$	0.2
$\mathrm{~A}=3$	$\mathrm{~B}=1$	0.6
$\mathrm{~A}=3$	$\mathrm{~B}=2$	0.5

$\mathrm{A}=1$	$\mathrm{~B}=1$	$0.5 / 0.4=1.25$
$\mathrm{~A}=1$	$\mathrm{~B}=2$	$0.4 / 0.4=1.0$
$\mathrm{~A}=2$	$\mathrm{~B}=1$	$0.8 / 0.4=2.0$
$\mathrm{~A}=2$	$\mathrm{~B}=2$	$0.2 / 0.4=2.0$
$\mathrm{~A}=3$	$\mathrm{~B}=1$	$0.6 / 0.5=1.2$
$\mathrm{~A}=3$	$\mathrm{~B}=2$	$0.5 / 0.5=1.0$

I nverse of factor product

Message Passing: BP

- Each node: multiply all the messages and divide by the one that is coming from node we are sending the message to
- Clearly the same as VE

$$
\delta_{i \rightarrow j}=\frac{\sum_{C_{i}-S_{i j}} \pi_{i}}{\delta_{j \rightarrow i}}=\frac{\sum_{C_{i}-S_{i j}} \prod_{k \in N(i)} \delta_{k \rightarrow i}}{\delta_{j \rightarrow i}}=\sum_{C_{i}-S_{i j}} \prod_{k \in N(i) \backslash j} \delta_{k \rightarrow i}
$$

- Initialize the messages on the edges to 1

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$
\begin{aligned}
& \pi_{3}(C, D)=\pi_{3}^{0}(C, D) \frac{\delta_{2-3}}{\mu_{2,3}}=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C) \\
& \mu_{2,3}=\delta_{2 \rightarrow 3}=\left(\sum_{B} \pi_{2}^{0}(B, C)\right) \quad \text { New message }
\end{aligned}
$$

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$
\begin{aligned}
& \pi_{3}(C, D)=\pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C)=\pi_{3}^{0}(C, D) \mu_{2,3} \\
& \delta_{3->2}=\left(\sum_{D} \pi_{3}(C, D)\right)
\end{aligned}
$$

$$
\pi_{2}(B, C)=\pi_{2}^{0}(B, C) \frac{\delta_{3->2}}{\mu_{2,3}(C)}=\frac{\pi_{2}^{0}(B, C)}{\mu_{2,3}(C)} \times \sum_{D} \pi_{3}^{0}(C, D) \times \mu_{2,3}(C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D)
$$

$$
\mu_{2,3}=\delta_{3->2}=\left(\sum_{D} \pi_{3}(C, D)\right)=\sum_{D} \pi_{3}^{0}(C, D) \sum_{B} \pi_{2}^{0}(B, C) \quad \text { New message }
$$

Message Passing: BP

$$
\begin{aligned}
& \pi_{2}(B, C)=\pi_{2}^{0}(B, C) \times \sum_{D} \pi_{3}^{0}(C, D) \\
& \pi_{2}(B, C)=\pi_{2}(B, C) \frac{\delta_{3 \rightarrow 2}}{\mu_{2,3}(C)}=\pi_{2}(B, C) \times \frac{\sum_{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}{\sum_{D} \pi_{3}^{0}(C, D) \times \sum_{B} \pi_{2}^{0}(B, C)}=\pi_{2}(B, C)
\end{aligned}
$$

The same as before

Message Propagation: BP

- Lauritzen-Spiegelhalter algorithm
- Two kinds of objects: clique and sepset potentials
- Initial potentials not kept
- Improved "stability" of asynchronous algorithm (repeated messages cancel out)
- New distribution representation
- clique tree potential

$$
\pi_{T}=\frac{\prod_{C_{i} \in T} \pi_{i}\left(C_{i}\right)}{\prod_{\left(C_{i} \leftrightarrow C_{j}\right) \in T} \mu_{i j}\left(S_{i j}\right)}=P_{F}(X)
$$

- Clique tree invariant $=\mathrm{P}_{\mathrm{F}}$

Loopy belief propagation

- The asynchronous BP algorithm works on clique trees
- What if we run the belief propagation algorithm on a non-tree structure?

- Sometimes converges
- If it converges it leads to an approximate solution
- Advantage: tractable for large graphs

Loopy belief propagation

- If the BP algorithm converges, it converges to an optimum of the Bethe free energy
See papers:
- Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief Propagation, 2000
- Yedidia J.S., Freeman W.T. and Weiss Y. Understanding Belief Propagation and Its Generalizations, 2001

