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Markov random fields 

•  Probabilistic models with symmetric dependences.  
–  Typically models spatially varying quantities 
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- A partition function 

- Gibbs (Boltzman) distribution 

-  If             is strictly positive we can rewrite the definition in 
     terms of a log-linear model : 

- Energy function 
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Graphical representation of MRFs 

An undirected network (also called independence graph) 
•  G = (S, E) 

–  S=1, 2, .. N  correspond to random variables   
–    

 or xi and xj appear within the same factor c 
Example:  

–  variables A,B ..H 
–  Assume the full joint of MRF 
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Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   
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Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   
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Markov random fields 

•  Pairwise Markov property 
–  Two nodes in the network that are not directly connected 

can be made independent given all other nodes  

A 

B 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−∝= ∑ ∑∑

≠∩ =∩=∩≠∩=∩{}: {}{},:{}{},:
)()()(exp

)(
),,()|,(

Acc BcAcc
cc

BcAcc
cccc

r

rBA
rBA xExExE

xP
xxxPxxxP

)|()|()(exp)(exp
{}{},:{}:

rBrA
BcAcc

cc
Acc

cc xxPxxPxExE ≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∝ ∑∑

≠∩=∩≠∩



4 

 
CS 3750 Advanced Machine Learning 

 

Markov random fields 

•  Pairwise Markov property 
–  Two nodes in the network that are not directly connected 

can be made independent given all other nodes  
•  Local Markov property 

–  A set of nodes (variables) can be made independent from 
the rest of nodes variables given its immediate neighbors 

•  Global Markov property 
–  A vertex set A is independent of the vertex set B (A and B 

are disjoint) given set C if all chains in between elements in 
A and B intersect C  
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Types of Markov random fields 

•  MRFs with discrete random variables 
–  Clique potentials can be defined by mapping all clique-

variable instances to R 
–  Example: Assume two binary variables A,B with values 

{a1,a2,a3} and {b1,b2} are in the same clique c. Then: 

≅),( BAcφ a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 
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Types of Markov random fields 

•  Gaussian Markov Random Field 

•  Precision matrix 
•  Variables in x are connected in the network only if they 

have a nonzero entry in the precision matrix 
–  All zero entries are not directly connected 
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MRF variable elimination inference 

Example: 
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Factors 
•   Factor:  is a function that maps value assignments for a 

subset of random variables to ℜ (reals) 
•   The scope of the factor:  

–   a set of variables defining the factor 
•  Example:  

–  Assume discrete random variables x (with values a1,a2, a3) 
and y (with values b1 and b2) 

–  Factor:  

–  Scope of the factor: 

a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 

),( yxφ
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Factor Product 

b1 c1 0.1 

b1 c2 0.6 

b2 c1 0.3 

b2 c2 0.4 

a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 

a1 b1 c1 0.5*0.1 

a1 b1 c2 0.5*0.6 

a1 b2 c1 0.2*0.3 

a1 b2 c2 0.2*0.4 

a2 b1 c1 0.1*0.1 

a2 b1 c2 0.1*0.6 

a2 b2 c1 0.3*0.3 

a2 b2 c2 0.3*0.4 

a3 b1 c1 0.2*0.1 

a3 b1 c2 0.2*0.6 

a3 b2 c1 0.4*0.3 

a3 b2 c2 0.4*0.4 

Variables: A,B,C 

),( CBφ ),( BAφ

),,( CBAφ),(),(),,( BACBCBA φφφ =
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Factor Marginalization 

a1 b1 c1 0.2 

a1 b1 c2 0.35 

a1 b2 c1 0.4 

a1 b2 c2 0.15 

a2 b1 c1 0.5 

a2 b1 c2 0.1 

a2 b2 c1 0.3 

a2 b2 c2 0.2 

a3 b1 c1 0.25 

a3 b1 c2 0.45 

a3 b2 c1 0.15 

a3 b2 c2 0.25 

a1 c1 0.2+0.4=0.6 

a1 c2 0.35+0.15=0.5 

a2 c1 0.8 

a2 c2 0.3 

a3 c1 0.4 

a3 c2 0.7 

Variables: A,B,C ),,(),( CBACA
B
φφ ∑=
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MRF variable elimination inference 

Example (cont): 
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MRF variable elimination inference 

Example (cont): 
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MRF variable elimination inference 

Example (cont): 
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MRF variable elimination inference 

Example (cont): 
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MRF variable elimination inference 

Example (cont): 
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MRF variable elimination inference 

Example (cont): 
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Induced graph 

•  A graph induced by a specific variable 
elimination order:   

•  a graph G extended by links that represent 
intermediate factors 
–  . 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
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F G F C G G 

A G 

H 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

Cliques in  
the graph 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 
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Tree decomposition of the graph 

•  Another tree 
decomposition of a 
graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

G 
F 

C G 

A G 

H 
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Tree decomposition of the graph 

•  Another tree 
decomposition of a 
graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 
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B D 
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Treewidth of the graph 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

•  Width of the tree 
decomposition: 

•  Treewidth of a graph 
G: tw(G)= minimum 
width over all tree 
decompositions of G. 

1||max −∈ iIi X
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Treewidth of the graph 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

•  Treewidth of a graph G: 
tw(G)= minimum width over 
all tree decompositions of G 

•  Why is it important? 
•  The calculations can take 

advantage of the structure and 
be performed more efficiently 

•  treewidth gives the best case 
complexity 
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Trees 

Why do we like trees?  
•   Inference in trees structures can be done in time 
    linear in the number of nodes in the tree 
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