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Markov random fields

* Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities

P(x) < | |£.(x)

cecl(x)

@.(x.) - A potential function (defined over factors)

- If @.(x,)is strictly positive we can rewrite the definition in
terms of a log-linear model :

1
P(x)=— exp(— ;) - Energy function
Z cecl (x

- Gibbs (Boltzman) distribution

Z = 2 exp( - E (x, )] - A partition function
xE{x}

cecl (x)
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Graphical representation of MRFs

An undirected network (also called independence graph)
* G=(S,E)
— S=1, 2, .. N correspond to random variables
- (L)HEE<=Tc:{i,j} Cc
or x; and x; appear within the same factor ¢
Example:
— variables A,B .H L
_ Assume the full joint of MRE / G—
P(A,B,..H) ~ \C\F
$(A4,B,C)¢, (B, D, E)p,(A,G)
¢.(C.F)¢(G, H) g (F ., H) D/E
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Markov random fields

* regular lattice
(Ising model)

* Arbitrary graph
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Markov random fields

* regular lattice
(Ising model)

« Arbitrary graph
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Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

A
B
p('xA’xB |xr)=Mocexp - E Ec(xc)_ Ec(xc)_ Ec(xc)
P(xr) ceNA={} ceNA={},cNB={} cieNA={},cNB={}
x eXp - Ec(xc) eXp - Ec(xc) zP(‘X’.A |xr)P(‘xB |‘xr
ceNA={} c:eNA={},cNB={}
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Markov random fields

* Pairwise Markov property
— Two nodes in the network that are not directly connected
can be made independent given all other nodes
* Local Markov property
— A set of nodes (variables) can be made independent from
the rest of nodes variables given its immediate neighbors
* Global Markov property
— A vertex set A is independent of the vertex set B (A and B

are disjoint) given set C if all chains in between elements in
A and B intersect C
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Types of Markov random fields

e MRFs with discrete random variables

— Clique potentials can be defined by mapping all clique-
variable instances to R

— Example: Assume two binary variables A,B with values
{al,a2,a3} and {bl,b2} are in the same clique c. Then:

¢C (A, B) = al bl 0.5

al b2 0.2

a2 bl 0.1

a2 b2 0.3

a3 bl 0.2

a3 b2 0.4
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Types of Markov random fields

e Gaussian Markov Random Field
X~ N(p,X)

p(x|p,X) Xp —%(X—H)TE_I(X—H)

- (Z”)d/2|2|1/2 ©
« Precision matrix X

* Variables in x are connected in the network only if they
have a nonzero entry in the precision matrix

— All zero entries are not directly connected
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MRF variable elimination inference

A G
Example: / \ H
P(B) = CZ P(A,B,..H) BZ C TF 4
A N~
D E

= 2¢1(A’B’ C)¢, (B, D, ), (A, G)p,(C, F)ps (G, H) s (£, H )

o
A
Eliminate E B\/>C F

D E

- 4 (A, B, @[2 #,(B.D, E)J¢3 (4.G)p,(C.F)(G. H)p,(F. H)

A4.C.D.F.G.H

G —

7,(B,D)
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Factors

* Factor: is a function that maps value assignments for a
subset of random variables to R (reals)

* The scope of the factor:
— aset of variables defining the factor
* Example:

— Assume discrete random variables x (with values al,a2, a3)
and y (with values bl and b2)

— Factor: o o] o5
al b2 0.2
——
@(x,»)

a2 bl 0.1

— Scope of the factor: 2 | = | o
{x, y} a3 bl 02

a3 b2 0.4
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Factor Product

.
Variables: A,B,C
#(4,B,C) =p(B,C)o¢(A4,B) #(A,B,C)
B C ¢(A B) al bl cl 0.5%0.1
¢( s ) ’ al bl 2 0.5%0.6
al b2 cl 0.2%0.3
al b2 0.2 a2 bl cl 0.1%0.1
bl c2 0.6 a2 bl 2 0.1%0.6
a2 bl 0.1
a2 b2 cl 0.3%0.3
b2 1 03
¢ a2 b2 0.3 a2 b2 2 0.3%0.4
2 - oa 5 o 02 a3 bl cl 0.2%0.1
a3 bl 2 0.2%0.6
a3 b2 04 a3 b2 cl 04%0.3
a3 b2 2 0.4%0.4
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Factor Marginalization

.
Variables: A,B,C #(A,C)= E ¢(A,B,C)
B
al bl cl 0.2
al bl c2 0.35
al b2 cl 0.4
al b2 c2 0.15
al cl 0.2+0.4=0.6
a2 bl cl 0.5
al c2 0.35+0.15=0.5
a2 bl c2 0.1 a2 ol 0.8
a2 b2 cl 0.3 a2 c2 0.3
a3 cl 0.4
a2 b2 c2 0.2
a3 c2 0.7
a3 bl cl 0.25
a3 bl c2 0.45
a3 b2 cl 0.15
a3 b2 c2 0.25
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MRF variable elimination inference

Example (cont): /A\i G\/H
P(B) = P(A,B,..H B~ C TF
(B) A,;“H ( ) N
D
= (A4, B,C)t, (B, D)p,(A,G)¢, (C, F)ps (G, H) g (£, H)
. . A G—
Eliminate D / \

H

B
\
D
= # (4, B, C)‘ 2 TI(B,D):|¢3(A9 G, (C, F)ps (G, H)gs (F', H)

7,(B)

CS 3750 Advanced Machine Learning




MRF variable elimination inference

G

Example (cont): /A\i H
P(B) = Z P(A,B,..H) B~ C TF

= $,(4, B, O)r, (B)g; (A, )¢, (C, F)@s (G, H) s (£, H )

A4.C.F.G.H

G —

A
Eliminate H / \ H

B~ ¢ TF

= 2 ¢1(A,B,C)TZ(B)¢3(A,G)¢4(C,F)[2 ¢5(G, H)¢(F, H)
ACF.G \ . ~ J

\ T3(F9G9H) J

Y
,(F,G)
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MRF variable elimination inference

Example (cont): / \ \
P(B) = CZ P(A,B,...H) g— C—

EQMBOMBMAQMCDMFQ

Eliminate F B//\C \\

=;mwwwmwﬂ@@mwa
,C,.G |\ ~ J
. n(CFG)

s
7,(G,C)
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MRF variable elimination inference

A
Example (cont): / \ /G
P(B) = 2 P(A,B,..H) B~ ©
A,C.D,.H

- 2@(,4,3, O)t, (B¢ (A4,G)r,(C,G)

A——G
/NS
g— C

Eliminate G

- SoB.O, <B>[2 $,(4,G)z,(C.G)
5 \ . ~ _J
U 7:7 (A9 C» G)J

Y
TS (Aa C)
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MRF variable elimination inference

A
Example (cont): / \
P(B) = ; P(A,B,..H) B~ C
A,C,D,..H

- ; #(A, B,C)r,(B)1y(A4,C)

Eliminate C g— C

-3n (B)[Z $,(A, B,C)z,(4,0)
\ ~ _J
. n(4BC)
Y
7,0(A4,B)
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MRF variable elimination inference

Example (cont): /
P(B) = Z P(A,B,..H) B
T S
=Tz(B)Z7710(A:B) A
Eliminate A
= 772(3)27710(1493)

%—J
7,,(B)

= TZ(B)TII(B)
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Induced graph

* A graph induced by a specific variable
elimination order:

« a graph G extended by links that represent
intermediate factors

N

D E
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Tree decomposition of the graph

A -
* A tree decomposition of G

/ H
a graph G: B/\C\F/
— Atree T with a vertex set T~
associated to every node. D/E
— For all edges {v,w}€EG:
there is a set containing
both vand win T.
— For every v €G : the nodes

in T that contain v form a
connected subtree.
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Tree decomposition of the graph
o 0 A
* A tree decomposition of /
a graph G: B
— Atree T with a vertex set \\
associated to every node. -

D E Cliques in
— For all edges {v,w}E€G: the graph

there is a set containing
both v and win 7.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

A
* A tree decomposition of H

a graph G: X
— Atree T with a vertex set

associated to every node.
— For all edges {v,w}€EG:

there is a set containing

both vand win T.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

A—agG —

* Another tree H

decomposition of a B//\C/\)F(/
graph G: \\

— A tree T with a vertex set D E

associated to every node.

— For all edges {v,w}EG:
there is a set containing
both vand win T.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

AT QG
* Another tree / 4 \\ H
decomposition of a —/
graph G: \\
— A tree T with a vertex set D/E
associated to every node.
— For all edges {v,w}EG:
there is a set containing
both vand win T.
— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Treewidth of the graph
* Width of the tree / \C / \ H
decomposition: B— C—F /
max o, | X, | -1 N
* Treewidth of a graph p E

G: tw(G)= minimum
width over all tree
decompositions of G.
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Treewidth of the graph

Treewidth Qf a graph G: A——G—_
tw(G)= mmlmum.vyldth over / \C / \
all tree decompositions of G g—C—F
Why is it important? \>

The calculations can take D E

advantage of the structure and
be performed more efficiently

treewidth gives the best case
complexity

VS

-

H
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Trees

Why do we like trees?
 Inference in trees structures can be done in time
linear in the number of nodes in the tree

A B C D
O—0O—"~Q0Q—0O

eyl
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