
12/1/2014

1

Deep Learning

Yoonjung Choi
yjchoi@cs.pitt.edu

12/1/2014

2

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

12/1/2014

3

Introduction

• Learning:

– Mathematical and computational principles
allowing one to learn from examples in order to
acquire knowledge

Introduction

• Learning:

– Mathematical and computational principles
allowing one to learn from examples in order to
acquire knowledge

• Deep learning

– Machine learning algorithms inspired by brains,
based on learning multiple levels of
representation / abstraction

12/1/2014

4

Introduction

• It’s deep if it has more than one state of non-
linear feature transformation.

Learning Multiple Levels

• There is theoretical and empirical evidence in
favor of multiple levels of representation.

• Biologically inspired learning
– Brain has a deep architecture.

– Cortex seems to have a generic learning algorithm.

– Humans first learn simpler concepts and compose
them.

12/1/2014

5

“Shallow” Computer Program

“Deep” Computer Program

12/1/2014

6

Deep Learning

• A model (e.g., neural network) with many
layers, trained in a layer-wise way.

• Multiple layers work to build an improved
feature space
– The first layer learns 1st order features.

– The 2nd layer learns higher order features

– Layers often learn in an unsupervised mode and
discover general features of the input space.

– Then the final layer features are fed into
supervised layer.

Deep Learning Task

• Usually best when input space is locally
structured; spatial or temporal

– e.g., images, language, speech

12/1/2014

7

Impact

• Deep learning has revolutionized

– Speech recognition

– Object recognition

• More coming, including other areas of
computer vision, NLP, dialogue, reinforcement
learning, and so on.

Impact of Deep Learning

12/1/2014

8

Object Recognition Breakthrough

• ImageNet

– Achieves state-of-
the-art on many
object
recognition tasks.

See deeplearning.cs.toronto.edu

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

12/1/2014

9

Motivation

• Deep Architectures can be representationally
efficient.

– Fewer computational units for same function

• It can learn a distributed feature
representation.

Distributed Feature Representation

• One-hot representation is common in NLP:
– “dog” = [1,0,0,…,0]
– “cat” = [0,1,0,…,0]
– “the” = [0,0,0,…,1]

• Word clustering has proven effective in many task:
– “dog” = [1,0,0,0]
– “cat” = [1,0,0,0]
– “the” = [0,1,0,0]

• Distributed represented is a multi-clustering, modeling
factors like POS & semantics:
– “dog” = [1, 0, 0.9, 0.0]
– “cat” = [1, 0, 0.5, 0.2]
– “the” = [0, 1, 0.0, 0.0]

12/1/2014

10

Motivation

• Deep Architectures can be representationally
efficient.

– Fewer computational units for same function

• It can learn a distributed feature
representation.

• It can learn a hierarchical feature
representation.

Hierarchical Feature Representation

• Hierarchical features effective
captures part-and-whole
relationships and naturally
addresses multi-task problems.

• It is easier to monitor what is
being learnt and to guide the
machine to better subspaces.

• A good lower level
representation can be used for
many distinct tasks.

12/1/2014

11

Motivation

• Deep Architectures can be representationally
efficient.

– Fewer computational units for same function

• It can learn a distributed feature
representation.

• It can learn a hierarchical feature
representation.

• It can exploit unlabeled data.

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

12/1/2014

12

Definition of “Depth”

• It depends on elementary computational elements:
– weighted sum, product, single neuron, kernel, etc.

• 1-Layer: Linear Classifier
– Logistic Regression, Maximum Entropy Classifier

– Perceptron, Linear SVM

• 2-Layers: Universal approximator
– Multi-layer Perceptron, SVMs with kernels

– Decision trees

• 3 or more Layers: compact universal approximator
– Deep learning

– Boosted decision trees

Neural Networks

• Goals: Learn function f:xy that predicts
correctly on new inputs x

• Step1: Choose a function model family

– E.g., logistic regression, perceptron, SVM, etc.

• Step2: Optimize parameters w on the Training
Data

– E.g., minimize loss function

12/1/2014

13

1-Layer Net (Logistic Regression)

• Function model:

• Training 1-Layer Nets

– Easiest method: gradient descent

– Stochastic gradient descent

2-Layer Nets (MLP)

12/1/2014

14

2-Layer Nets (MLP)

• Training 2-Layer Nets: Backpropagation

– Minimize error of calculated output.

– Firstly, run sample through network to get result
f(x)

– “Errors” are propagated back and weights fixed
according to their responsibility

2-Layer Nets (MLP)

• Problem with backpropagation

– It requires labeled training data

• Almost data is unlabeled.

– The learning time does not scale well

• It is very slow in networks with multiple hidden layers.

– It can get stuck in poor local optima

12/1/2014

15

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

Deep Network

• Deep Architecture – multiple layers

• Unsupervised training between layers can
decompose the problem into distributed sub-
problems (with higher levels of abstraction)

12/1/2014

16

Training Deep Network

• Difficulties of supervised training
– Early layers of MLP do not get trained well.

• Error attenuates as it propagates to earlier layers.

• Leads to very slow training.

• Exacerbated since top layers can usually learn task
“pretty well” and thus the error to earlier layers drops
quickly.

– Often not enough labeled data available.

– Deep networks tend to have more local minima
problems than shallow networks.

Greedy Layer-Wise Training

1. Train first layer using data without the labels
(unsupervised).

2. Freeze the first layer parameters and start training the
second layer using the output of the first layer.

3. Repeat this for as many layers as desired.

4. Use the outputs of the final layers as inputs to a
supervised layer/model and train the last supervised
layer.

5. Unfreeze all weights and find tune the full network by
training with a supervised approach, given the pre-
processed weight settings.

12/1/2014

17

Greedy Layer-Wise Training

• It can avoid many problems:

– Each layer gets full learning focus in its turn.

– Can take advantage of the unlabeled data.

– When finally tune the entire network with
supervised training, the network weights have
already been adjusted so that you are in a good
error basin and just need fine tuning.

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

12/1/2014

18

Deep Belief Nets (DBN)

• Goal: Discover useful latent features h from
data x

• One possibility: Directed Graphical Models

– p(h1) and p(h2) are a priori independent, but
dependent given x:

– Thus, posterior p(h|e), which is needed for
features or deep learning, is not easy to compute.

Undirected Graphical Model

• Boltzmann Machines

– Defined Energy of the network and probability of
a unit’s state.

– Posterior p(h|x) is also intractable

12/1/2014

19

Restricted Boltzmann Machine

• Restricted Boltzmann Machine (RBM)
– The building block of a DBN

• 2-layer graphical model

– Boltzmann Machine with only h-x interactions

– Conditional distribution over hidden units
factorizes
• Computing posteriors p(h|x) or features (E[p(h|x)) is

tractable.

i

j

visible

hidden

Restricted Boltzmann Machine

• Training RBMs

– Gradient of the Log-likelihood

12/1/2014

20

Restricted Boltzmann Machine

• Training RBMs (cont’)

– In the Gradient of the Log-likelihood, the first term
is expensive.

– Gibbs Sampling (sample x then h iteratively) works
but re-running for each gradient step is slow.

Restricted Boltzmann Machine

• Training RBMs (cont’)

– Contrastive Divergence

• Start with a training vector
on the visible units.

• Update all the hidden units
in parallel.

• Update the all the visible
units in parallel to get a
“reconstruction”.

• Update the hidden units
again.

t = 0 t = 1

Dwij = e (<vihj>
0 - <vihj>

1)

reconstruction data

<vihj>
0 <vihj>

1

i

j

i

j

12/1/2014

21

Example: Handwritten 2s

50 binary neurons that

learn features

16 x 16

pixel

image

Increment weights

between an active pixel

and an active feature

Decrement weights

between an active pixel

and an active feature

 data

(reality)

 reconstruction

50 binary neurons that

learn features

16 x 16

pixel

image

Restricted Boltzmann Machine

• Training RBMs (cont’)

– Contrastive Divergence vs. Gradient

• Gradient: pull down energy surface at the examples
and pull it up everywhere else, with more emphasis
where model puts more probability mass

• Contrastive divergence: pull down energy surface at the
examples and pull it up in their neighborhood, with
more emphasis where model puts more probability
mass

12/1/2014

22

Restricted Boltzmann Machine

• Training RBMs (cont’)

– In the Gradient of the Log-likelihood, the first term
is expensive.

– Gibbs Sampling (sample x then h iteratively) works
but re-running for each gradient step is slow.

– Contrastive Divergence is a faster but biased
method that initialized with training data.

Deep Belief Nets (DBN)

• DBN stacks RBMs layer-by-layer to get deep
architecture.

• Layer-wise pre-training is critical

– Firstly, train RBM to learn 1st layer of features h
from input x

– Then, treat h as input and learn a 2nd layer of
features

– Each added layer improves the variational lower
bound on the log probability of training data

12/1/2014

23

Deep Belief Nets (DBN)

1W

2W

2h

1h

1h

v

1W

2W

2h

1h

v

copy binary state for each v

Compose the
two RBM
models to
make a single
DBN model

Train this
RBM first

Then train
this RBM

out

Deep Belief Nets (DBN)

• Why greedy learning works?

– Each time we learn a new layer, the inference at the
layer below becomes incorrect, but the variational
bound on the log probability of the data improves.

– Since the bound starts as an equality, learning a new
layer never decreases the log probability of the data,
provided we start the learning from the tied weights

– We have a guarantee we can loosen the restrictions
and still feel confident.

• Allow layers to vary in size.

• Do not start the learning at each layer from the weights in
the layer below.

12/1/2014

24

Deep Belief Nets (DBN)

• Further fine-tuning can be obtained with the
Wake-Sleep algorithm

– Do stochastic bottom-up pass

 (adjust weights to reconstruct layer below)

– Do a few iterations of Gibbs sampling at top-level
RBM

– Do stochastic top-down pass

 (adjust weights to reconstruct layer above)

Summary of DBNs

• Layer-wise pre-training is the innovation that
enable training deep architectures.

• Pre-training focuses on optimizing likelihood
on the data, not the target label.

• Undirected graphical model like RBM is used
since a posteriori is computationally tractable.

• Learning RBM still require approximates
inference since partition function is expensive.

12/1/2014

25

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

Auto-Encoders

• The type of unsupervised learning which tries
to discover generic features of the data

– Learn identify function by learning important sub-
features

– Compression

– Can use just new features in the new training set
or concatenate both.

12/1/2014

26

Auto-Encoders

Auto-Encoders

• Auto-Encoders are simpler non-probabilistic
alternative to RBMs.

• Define encoder and decoder and pass the data
through:

• Linear encoder/decoder with squared
reconstruction error learns same subspace of
PCA.

• Sigmoid encoder/decoder gives same form
p(h|x), p(x|h) as RBMs.

12/1/2014

27

Stacked Auto-Encoders

• Auto-encoders can be stacked in the same
way RBMs are stacked to give Deep
Architectures.

• Stack many (sparse) auto-encoders in
succession and train them using greedy layer-
wise training

• Drop the decode output layer each time

Stacked Auto-Encoders

12/1/2014

28

Stacked Auto-Encoders

• Do supervised training on the last layer using
final features.

Auto-Encoders

• Auto encoders will often do a dimensionality
reduction
– PCA-like or non-linear dimensionality reduction

• This leads to a "dense" representation which is
nice in terms of parsimony
– All features typically have non-zero values for any

input and the combination of values contains the
compressed information.

• However, this distributed and entangled
representation can often make it more difficult
for successive layers to pick out the salient
features.

12/1/2014

29

Sparse Auto-Encoders

• A sparse representation uses more features
where at any given time a significant number
of the features will have a 0 value
– This leads to more localist variable length

encodings where a particular node (or small group
of nodes) with value 1 signifies the presence of a
feature (small set of bases)

– A type of simplicity bottleneck (regularizer)

– This is easier for subsequent layers to use for
learning

Sparse Auto-Encoders

• Implementation

– Use more hidden nodes in the encoder

– Use regularization techniques which encourage
sparseness (e.g. a significant portion of nodes
have 0 output for any given input)

• Penalty in the learning function for non-zero nodes

• Weight decay, etc.

– De-noising Auto-Encoders

12/1/2014

30

De-noising Auto-Encoders

• Stochastically corrupt training instance each
time, but still train auto-encoder to decode
the uncorrupted instance, forcing it to learn
conditional dependencies within the instance.

• Better empirical results, handles missing
values well.

Summary of Stacked Auto-Encoders

• Auto-encoders are computationally cheaper
alternatives to RBMs.

• Auto-encoders learn to “compress” and “re-
construct” input data. Low reconstruction
error corresponds to an encoding that
captures the main variations in data.

• Many variants of encoders are out there, and
some provide effective ways to incorporate
expertise domain knowledge.

12/1/2014

31

Contents

1. Introduction

2. Motivation

3. Neural Network

4. Deep Network

1. Algorithm1: Deep Belief Nets

2. Algorithm2: Stacked Auto-Encoders

5. Applications

Applications

• Dimensionality reduction
– Use a stacked RBM as deep auto-

encoder

1. Train RBM with images as input
& output

2. Limit one layer to few
dimensions

 Information has to pass
through middle layer

12/1/2014

32

Applications

• Dimensionality reduction (cont’)

PCA

Deep RBN

Applications

• Classification

– Unlabeled data is readily available

– Example: Images from the web

1. Download 10,000,000 images

2. Train a 9-layer DNN

3. Concepts are formed by DNN

 70% better than previous state of the art
 (by Le et al.)

12/1/2014

33

Thank you 

Reference

• Geoffrey E. Hinton. Learning multiple layers of representation.
2007.

• Yoshua Bengio. Learning Deep Architectures for AI.
• Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation

Learning: A Review and New Perspectives. 2012.
• Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai

Chen, Greg S. Corrado, Jeffrey Dean, and Andrew Y. Ng. Building
High-level Features Using Large Scale Unsupervised Learning. ICML
2012.

• Slides of Geoffrey E. Hinton, Tutorial Deep Belief Nets, 2009
• Slides of Yoshua Bengio, Deep Learning for AI, 2014
• Slides of Kevin Duh, Deep Learning: An Introduction from the NLP

Perspective, 2012.

