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Introduction 

• Learning:  

– Mathematical and computational principles 
allowing one to learn from examples in order to 
acquire knowledge 

 

Introduction 

• Learning:  

– Mathematical and computational principles 
allowing one to learn from examples in order to 
acquire knowledge 

 

• Deep learning 

– Machine learning algorithms inspired by brains, 
based on learning multiple levels of 
representation / abstraction 
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Introduction 

• It’s deep if it has more than one state of non-
linear feature transformation. 

 

Learning Multiple Levels 

• There is theoretical and empirical evidence in 
favor of multiple levels of representation. 

 

• Biologically inspired learning 
– Brain has a deep architecture. 

– Cortex seems to have a generic learning algorithm. 

– Humans first learn simpler concepts and compose 
them. 
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“Shallow” Computer Program 

“Deep” Computer Program 
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Deep Learning 

• A model (e.g., neural network) with many 
layers, trained in a layer-wise way. 

• Multiple layers work to build an improved 
feature space 
– The first layer learns 1st order features. 

– The 2nd layer learns higher order features 

– Layers often learn in an unsupervised mode and 
discover general features of the input space. 

– Then the final layer features are fed into 
supervised layer. 

Deep Learning Task 

• Usually best when input space is locally 
structured; spatial or temporal 

– e.g., images, language, speech 
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Impact 

• Deep learning has revolutionized  

– Speech recognition 

– Object recognition 

 

• More coming, including other areas of 
computer vision, NLP, dialogue, reinforcement 
learning, and so on. 

Impact of Deep Learning 
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Object Recognition Breakthrough 

• ImageNet 

– Achieves state-of-
the-art on many 
object 
recognition tasks. 

See deeplearning.cs.toronto.edu 
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Motivation 

• Deep Architectures can be representationally 
efficient. 

– Fewer computational units for same function 

• It can learn a distributed feature 
representation. 

 

Distributed Feature Representation 

• One-hot representation is common in NLP: 
– “dog” = [1,0,0,…,0] 
– “cat” = [0,1,0,…,0] 
– “the” = [0,0,0,…,1] 

• Word clustering has proven effective in many task: 
– “dog” = [1,0,0,0] 
– “cat” = [1,0,0,0] 
– “the” = [0,1,0,0] 

• Distributed represented is a multi-clustering, modeling 
factors like POS & semantics: 
– “dog” = [1, 0, 0.9, 0.0] 
– “cat” = [1, 0, 0.5, 0.2] 
– “the” = [0, 1, 0.0, 0.0] 
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Motivation 

• Deep Architectures can be representationally 
efficient. 

– Fewer computational units for same function 

• It can learn a distributed feature 
representation. 

• It can learn a hierarchical feature 
representation. 

 

Hierarchical Feature Representation 

• Hierarchical features effective 
captures part-and-whole 
relationships and naturally 
addresses multi-task problems. 

• It is easier to monitor what is 
being learnt and to guide the 
machine to better subspaces. 

• A good lower level 
representation can be used for 
many distinct tasks. 
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Motivation 

• Deep Architectures can be representationally 
efficient. 

– Fewer computational units for same function 

• It can learn a distributed feature 
representation. 

• It can learn a hierarchical feature 
representation. 

• It can exploit unlabeled data. 
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Definition of “Depth” 

• It depends on elementary computational elements: 
– weighted sum, product, single neuron, kernel, etc. 

• 1-Layer: Linear Classifier 
– Logistic Regression, Maximum Entropy Classifier 

– Perceptron, Linear SVM 

• 2-Layers: Universal approximator 
– Multi-layer Perceptron, SVMs with kernels 

– Decision trees 

• 3 or more Layers: compact universal approximator 
– Deep learning 

– Boosted decision trees 

Neural Networks 

• Goals: Learn function f:xy that predicts 
correctly on new inputs x 

 

• Step1: Choose a function model family 

– E.g., logistic regression, perceptron, SVM, etc. 

• Step2: Optimize parameters w on the Training 
Data 

– E.g., minimize loss function 
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1-Layer Net (Logistic Regression) 

• Function model: 

 

 

 

• Training 1-Layer Nets 

– Easiest method: gradient descent 

– Stochastic gradient descent 

 

 

2-Layer Nets (MLP) 
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2-Layer Nets (MLP) 

• Training 2-Layer Nets: Backpropagation 

– Minimize error of calculated output. 

– Firstly, run sample through network to get result 
f(x) 

– “Errors” are propagated back and weights fixed 
according to their responsibility 

 

2-Layer Nets (MLP) 

• Problem with backpropagation 

– It requires labeled training data 

• Almost data is unlabeled. 

– The learning time does not scale well 

• It is very slow in networks with multiple hidden layers. 

– It can get stuck in poor local optima 
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Deep Network 

• Deep Architecture – multiple layers 

• Unsupervised training between layers can 
decompose the problem into distributed sub-
problems (with higher levels of abstraction) 
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Training Deep Network 

• Difficulties of supervised training 
– Early layers of MLP do not get trained well. 

• Error attenuates as it propagates to earlier layers. 

• Leads to very slow training. 

• Exacerbated since top layers can usually learn task 
“pretty well” and thus the error to earlier layers drops 
quickly. 

– Often not enough labeled data available. 

– Deep networks tend to have more local minima 
problems than shallow networks. 

Greedy Layer-Wise Training 

1. Train first layer using data without the labels 
(unsupervised). 

2. Freeze the first layer parameters and start training the 
second layer using the output of the first layer. 

3. Repeat this for as many layers as desired. 

4. Use the outputs of the final layers as inputs to a 
supervised layer/model and train the last supervised 
layer. 

5. Unfreeze all weights and find tune the full network by 
training with a supervised approach, given the pre-
processed weight settings. 
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Greedy Layer-Wise Training 

• It can avoid many problems: 

– Each layer gets full learning focus in its turn. 

– Can take advantage of the unlabeled data. 

– When finally tune the entire network with 
supervised training, the network weights have 
already been adjusted so that you are in a good 
error basin and just need fine tuning. 
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Deep Belief Nets (DBN) 

• Goal: Discover useful latent features h from 
data x 

 

• One possibility: Directed Graphical Models 

– p(h1) and p(h2) are a priori independent, but 
dependent given x: 

 

– Thus, posterior p(h|e), which is needed for 
features or deep learning, is not easy to compute. 

 

Undirected Graphical Model 

• Boltzmann Machines 

– Defined Energy of the network and probability of 
a unit’s state. 

 

 

 

 

– Posterior p(h|x) is also intractable 
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Restricted Boltzmann Machine 

• Restricted Boltzmann Machine (RBM) 
– The building block of a DBN 

• 2-layer graphical model 

 

– Boltzmann Machine with only h-x interactions 

 

– Conditional distribution over hidden units 
factorizes 
• Computing posteriors p(h|x) or features (E[p(h|x)) is 

tractable.  

i 

j 

visible 

hidden 

Restricted Boltzmann Machine 

• Training RBMs 

– Gradient of the Log-likelihood 
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Restricted Boltzmann Machine 

• Training RBMs (cont’) 

– In the Gradient of the Log-likelihood, the first term 
is expensive. 

– Gibbs Sampling (sample x then h iteratively) works 
but re-running for each gradient step is slow. 

Restricted Boltzmann Machine 

• Training RBMs (cont’) 

– Contrastive Divergence 

• Start with a training vector 
on the visible units. 

• Update all the hidden units 
in parallel. 

• Update the all the visible 
units in parallel to get a 
“reconstruction”. 

• Update the hidden units 
again.  

 

t = 0                 t = 1    

Dwij = e ( <vihj>
0 - <vihj>

1)

reconstruction data 

<vihj>
0 <vihj>

1

i 

j 

i 

j 
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Example: Handwritten 2s 

50 binary neurons that 

learn features 

16 x 16 

pixel     

image  

Increment weights 

between an active pixel 

and an active feature 

Decrement weights 

between an active pixel 

and an active feature 

  data 

(reality) 

   reconstruction 

50 binary neurons that 

learn features 

16 x 16 

pixel     

image  

Restricted Boltzmann Machine 

• Training RBMs (cont’) 

– Contrastive Divergence vs. Gradient 

• Gradient: pull down energy surface at the examples 
and pull it up everywhere else, with more emphasis 
where model puts more probability mass 

• Contrastive divergence: pull down energy surface at the 
examples and pull it up in their neighborhood, with 
more emphasis where model puts more probability 
mass 
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Restricted Boltzmann Machine 

• Training RBMs (cont’) 

– In the Gradient of the Log-likelihood, the first term 
is expensive. 

– Gibbs Sampling (sample x then h iteratively) works 
but re-running for each gradient step is slow. 

– Contrastive Divergence is a faster but biased 
method that initialized with training data. 

Deep Belief Nets (DBN) 

• DBN stacks RBMs layer-by-layer to get deep 
architecture. 

• Layer-wise pre-training is critical 

– Firstly, train RBM to learn 1st layer of features h 
from input x 

– Then, treat h as input and learn a 2nd layer of 
features 

– Each added layer improves the variational lower 
bound on the log probability of training data 
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Deep Belief Nets (DBN) 

1W

2W

2h

1h

1h

v

1W

2W

2h

1h

v

copy binary state   for each v 

Compose the 
two RBM 
models to 
make a single 
DBN model 

Train this 
RBM first 

Then train 
this RBM  

out

Deep Belief Nets (DBN) 

• Why greedy learning works? 

– Each time we learn a new layer, the inference at the 
layer below becomes incorrect, but the variational 
bound on the log probability of the data improves. 

– Since the bound starts as an equality, learning a new 
layer never decreases the log probability of the data, 
provided we start the learning from the tied weights 

– We have a guarantee we can loosen the restrictions 
and still feel confident. 

• Allow layers to vary in size. 

• Do not start the learning at each layer from the weights in 
the layer below. 
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Deep Belief Nets (DBN) 

• Further fine-tuning can be obtained with the 
Wake-Sleep algorithm 

– Do stochastic bottom-up pass 

 (adjust weights to reconstruct layer below) 

– Do a few iterations of Gibbs sampling at top-level 
RBM 

– Do stochastic top-down pass 

 (adjust weights to reconstruct layer above) 

Summary of DBNs 

• Layer-wise pre-training is the innovation that 
enable training deep architectures. 

• Pre-training focuses on optimizing likelihood 
on the data, not the target label. 

• Undirected graphical model like RBM is used 
since a posteriori is computationally tractable. 

• Learning RBM still require approximates 
inference since partition function is expensive. 
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Auto-Encoders 

• The type of unsupervised learning which tries 
to discover generic features of the data 

– Learn identify function by learning important sub-
features 

– Compression 

– Can use just new features in the new training set 
or concatenate both. 
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Auto-Encoders 

Auto-Encoders 

• Auto-Encoders are simpler non-probabilistic 
alternative to RBMs. 

• Define encoder and decoder and pass the data 
through: 

 

 

• Linear encoder/decoder with squared 
reconstruction error learns same subspace of 
PCA. 

• Sigmoid encoder/decoder gives same form  
p(h|x), p(x|h) as RBMs. 
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Stacked Auto-Encoders 

• Auto-encoders can be stacked in the same 
way RBMs are stacked to give Deep 
Architectures. 

• Stack many (sparse) auto-encoders in 
succession and train them using greedy layer-
wise training 

• Drop the decode output layer each time 

 

Stacked Auto-Encoders 
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Stacked Auto-Encoders 

• Do supervised training on the last layer using 
final features. 

Auto-Encoders 

• Auto encoders will often do a dimensionality 
reduction 
– PCA-like or non-linear dimensionality reduction 

• This leads to a "dense" representation which is 
nice in terms of parsimony 
– All features typically have non-zero values for any 

input and the combination of values contains the 
compressed information. 

• However, this distributed and entangled 
representation can often make it more difficult 
for successive layers to pick out the salient 
features. 
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Sparse Auto-Encoders 

• A sparse representation uses more features 
where at any given time a significant number 
of the features will have a 0 value 
– This leads to more localist variable length 

encodings where a particular node (or small group 
of nodes) with value 1 signifies the presence of a 
feature (small set of bases) 

– A type of simplicity bottleneck (regularizer) 

– This is easier for subsequent layers to use for 
learning 

 

Sparse Auto-Encoders 

• Implementation 

– Use more hidden nodes in the encoder 

– Use regularization techniques which encourage 
sparseness (e.g. a significant portion of nodes 
have 0 output for any given input) 

• Penalty in the learning function for non-zero nodes 

• Weight decay, etc. 

– De-noising Auto-Encoders 
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De-noising Auto-Encoders 

• Stochastically corrupt training instance each 
time, but still train auto-encoder to decode 
the uncorrupted instance, forcing it to learn 
conditional dependencies within the instance. 

• Better empirical results, handles missing 
values well. 

 

Summary of Stacked Auto-Encoders 

• Auto-encoders are computationally cheaper 
alternatives to RBMs.  

• Auto-encoders learn to “compress” and “re-
construct” input data. Low reconstruction 
error corresponds to an encoding that 
captures the main variations in data. 

• Many variants of encoders are out there, and 
some provide effective ways to incorporate 
expertise domain knowledge. 
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Applications 

• Dimensionality reduction 
– Use a stacked RBM as deep auto-

encoder 

1. Train RBM with images as input 
& output 

2. Limit one layer to few 
dimensions 

 

 Information has to pass 
through middle layer 
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Applications 

• Dimensionality reduction (cont’) 

PCA 

Deep RBN 

Applications 

• Classification 

– Unlabeled data is readily available 

– Example: Images from the web 

1. Download 10,000,000 images 

2. Train a 9-layer DNN 

3. Concepts are formed by DNN 

 

 70% better than previous state of the art 
     (by Le et al.) 
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Thank you  
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