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Introduction

e Can we learn a classifier that returns a class
with very little evidence in the training
dataset?

* One-shot learning: Optimizing classification
with as little as one example for the class.

e Zero-shot learning: Optimizing classification
with examples for a class omitted from the
training data.




ONE-SHOT LEARNING OF OBJECT
CATEGORIES



Image Recognition

* Recognize tens of thousands objects and
categories into useful and informative
taxonomies.

* |tis often difficult and expensive to acquire
arge sets of training examples.

 Hypothesis: Once a few categories have been
earned the hard way, some information can
e abstracted from the process to make
earning further categories more efficient.




Challenges

* Representation: How do we model objects
and categories?

* Learning: How do we acquire such models?

 Recognition: Given a new image, how do we
detect the presence of an object amongst
clutter, occlusion, viewpoint, and lighting?




Requirements

Models should be rich.
Models should be flexible.

Due to occlusion, not all features need to be
detected.

Learn model class variability from training
examples.

Must be computationally efficient.
Learn with minimal supervision.



Decision: Is | an image of foreground?

Likelihood ratio Prior odds

O— Object category;

|— Image;

R— Ratio of the class posteriors;
T— Threshold for decision.



Introducing parametric models
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Salient feature detection (Kadir and
Brady)




Object category model
(Constellation model)

From [ we obtain N interesting regions in the image.

From the N regions we obtain: -
X - Locations of regions
A - Appearances of regions

[p(X,A|6,0r4) - p(6]Xe, Ar, Opy) - dE
fp(X,Aleg, ODg) ' p(9b9|Xt'At' Obg) ' dgbg
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Factorization of the likelihood for
foreground

p(X,416) = z D> p(x,4,h,wl6)

w=1h€EH

Appearance Shape

Z pwim) D p(Alh, 62) - p(XIh,6%) - p(hl6.)

he€eH

Where 6 = {m,04,6%} and p(h|6,,) are constant. Fle;ible
X and A are assumed to be independent.

Hypothesis h is an index variable for P(3~7) features
from N(up to 100) interest points.



Factorization of the likelihood of the
background

p(X,A|9bg) = p(X, A, ho|0sy)

= p(Alho,0,) - p(X|ho, 65,) - P(holOhg)

Where hy is the null hypothesis.



Appearance

For a given mixture component w,
Each part p has a Gaussian density—

Hf;l,w = {.Uﬁ,w, F;fw}

Background model—
— {.ubg' g}

Where, u is the mean, and I' is the precision (inverse co-variance matrix)

Object Appearance—

p(Alh,63) = ﬂcwh ) i, THi) ]—[ GAG) Ity T

J=1,j\h



Only background—

p(Alh,67,) = ]_[Gmo)mbg, )

Appearance odds—

p(Alh, eA) _ ﬁG(A(h )i, T
p(Alh,, 0 G(ACh,)|py, Thy)

0’ bg



Shape

A Gaussian density model represents shape after the
locations of features are scale and translational-invariant.

Shape of object—

p(X|h,0%) = a1 G(X(R)|uX,TX) - a= =P

Where 6% = {a, uf, )X}



Shape of background—
p(X|h,6),) = a™V
Shape odds—

p(X|h,65)
p(X|h, Oig

a?~t - G(X(h) |y, T)



Discussion of the model

e X(h)isin 2P-2 dimension and A(h) is in kP
dimension. If k=10, P=4; shape has 27 (6 mean,
21 full covariance matrix) parameters and
appearance has 80 parameters (40 mean, 40
diagonal covariance matrix). A total of 107
parameters.

* Total number of hyper-parameters is 109. Both m
and B have the same dimensionality as mean and
covariance. In addition, there are a and b.



Discussion of the model (cntd.)

The performance of the model depends upon the
performance of the interest region detector.

Patches may overlap leading to over-counting of
evidence.

The shape model has a data association complexity of
O(NP).
Different graph structures and co-ordinate frames may

be more suited for compact objects (eg. human
bodies).

If the outline of the object is more important than
texture (eg. bottle) alternative representations (eg.
Curve contour) may be more suited.




Discussion of the model (cntd.)

* The background model is very simple: a uniform
distribution and a single Gaussian distribution for
appearance. Empirically this assumption was
found to be reasonable.

* The model can be extended to perform object
localization by bounding the best hypothesis.

* The paper assumes a single mixture component.
Increasing the number of components can model
different aspects of the object (eg. Pose
variations).




Form of the parameter posterior

fp(X,AIH) -p(6|Xe, Ar, Org) - dB

How do we estimate the parameter posterior p(0|X;, A¢, 0)?

1. Maximum Likelihood:

If we assume model distribution is highly peaked, the integral reduces to—

p(X,Al67)

9 = gML = TIMY, (X 4,10)

2. Maximum a Posteriori:

If we have some idea about the parameter prior—

6 = gMAP = I (X, Ac10) - p(6)



Other Inference methods

 Sampling methods: Gibbs sampling or Markov chain-
Monte Carlo can give accurate estimate of the integral.
But this approach is computationally expensive.

e Recursive approximations: Variational approximations
by sequentially processing the data points to
approximate the parameter posterior.

* Conjugate densities: Use Normal-Wishart distribution
which is conjugate prior to the Multivariate Gaussian
distribution. The integral becomes a multivariate
Student’s T distribution.




Conjugate density: Parameter distribution

The mixture of constellation models—

Q
p(X,A10) = D p(wlm) ) pX() |k, T) - pCAR) 1, T)

heH

 is the mixing coefficient of w;
uix, us is the mean of shape and appearance.
¥, 4 is the precision of shape and appearance.

Parameter vector, 0 = {m, u*, u4,I'%,I'4}

p(O1X. ) = p@) | [p@dITE) - (T - pui | T4) - ()

Where

p(w) is a symmetric Dirichlet = Dir(A,, 1)
p (w5 |1 ) is Normal = G (u |m{, BETY)
p([iX) is a Wishart = W ([ |ai, BX)



Conjugate density: Closed-form calculation for R
p(XlAlXtrAtr Ofg)

R «x
p(X;Alxt; At} Obg)

__ IpX,416) - p(8]Xe, Ar, Or,) - d6
S p(X,Al|04g) - P(00|X1 A, Oy ) - dByg

Q |[H]
p(X,A|Xe, At Ory) = Z Zfrw - SXn|gX, m¥, AL) - S(An|gis, méy, AG)

w=1h=1

Where:
S(.) is a multimodel multivariate Student’s T distribution

gw = ay, +1—d;

Bw+1
AW - ﬁv‘,\‘:gw . Bw;
—_ 2'W

W Zwl /1wll




Implementation: Feature selection/
representation

Learning is done by Variational Bayesian
Expectation Maximization (VBEM).

Features are found using the Kadir and Brady
approach.

The co-ordinates of the center of the feature
gives X.

The region is then cropped from the image, re-
scaled to 11x11 pixels (121 dimensional space),
and reduced by PCA. The co-efficients from the

principal components give A.



Implementation: Learning

e Learn a single mixture component (Q = 1). So,
n, =1, and therefore A = 1.

* Parameters for shape/appearance mean and
variance is estimated by object models
learned from three object categories (spotted
cats, faces, airplanes) using ML to learn priors.

* The parameters from this existing category is
used to estimate the hyper-parameters of the

new category.



Details of the Bayesian One-Shot
algorithm

Shape/Appearance means are initialized by the means
of the training data. Covariance is randomly chosen
within reasonable range.

Stopping criterion:

— Largest parameter change is less than a threshold (eg.
104).

— Exceed maximum number of iterations (eg. 500).
Background images are not used during learning.

Learning a category takes less than a minute when the
number of images is less than 10. The model has 4
parts. Increasing the parts improves recognition.




Experimental results

* Caltech 4 dataset: human faces, motorbikes,
airplanes, and spotted cats.

* Naive 97 dataset: 97 new dictionary term
categories from Google Image Search.

* Preprocessing: Remove irrelevant images, all
instances face the same direction, vertical
structures are rotated.




Experimental setup

Dataset is split into two disjoint sets. N (1-6 per category)
samples are randomly drawn from the first set and assigned
as training data. 50 samples are randomly drawn form the
second set and assigned as test data. Additional 50 images as
background.

Number of runs = 10.

Learning approaches: ML, MAP, and Variational Bayesian
approach (Prior is obtained from three object categories).

One mixture component.

Parts in the model, P = 4.

PCA dimensions = 10.

Average number of interest point detections per image = 20.




Motorbike detection

Gaussian densities 3 principal components
Shape Model Descriptor, 1
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Face detection

Performance comparison

Sample ROC of different learning models
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Performance on motorbike, spotted cat, and airplane

Performance comparison Sample ROC of different learning models
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Impact of priors:

ML, MAP, Bayes in 101 categories

performance error (equal error rate)
= = = = = <
a8 N w E (4} (0]

@)

Performance comparison for 101 categories

= Maximum Likelihood
s Maximum a posteriori
- Bayesian

E 10 15
number of training examples




Effect of the number of categories
used to learn the prior model

0.100 l I I I

av. perf. error (equal error rate)
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A few experimental observations

* With larger number of training examples per
category, the shape was more well defined.

 The performance of the recognition algorithm
is sensitive to the feature detection algorithm.

* Shape-only, Appearance-only approaches
work for certain category models. Overall
performance is best when Shape and
Appearance is combined.



performance (eq error rate)
o o o o o

O = N B O o

Impact of different priors

performance comparison for learning a triangular model

- Maximum Likelihood
— Bayes: square prior
- Bayes: trapezium prior
Bayes: triangle prior

//

3 - 5 6 7 8

number of training examples (log,)



Limitations

Model does not account for occlusion.
Number of parts in the object is limited to 4.
Priors are learned from only three categories.

Only one component constellation model was
evaluated.



ZERO-SHOT LEARNING WITH
SEMANTIC OUTPUT CODES



Zero-shot learning

* Goal: Learn a classifier f: X —>Y, which can
predict novel values of Y omitted from the
training set.

 Application:
— Y takes very large number of values.

— Labeling all of Y is expensive.



Problem domain

* Object recognition: Several tens of thousands
of objects to recognize.

* Automatic speech recognition: Recognize
words without training for all words.
Vocabulary independence can be achieved by
a phoneme-based recognition strategy.

 Neural activity decoder: Determine the word
or object based on neural activity.




fMRI response to words/images

CoSREEN -
Response Y Response /N a0 .
to Faces KA to Houses i yimag)




Semantic encoding/decoding

Semantic
encoding

>

Semantic
decoding

>

Word/Image




Semantic feature space

* Metric space, FP, of p dimensions that encodes
the values of the semantic properties.

Large (1) Elephant = {0, 1} Whale ={1, 1}
P=2
X,: Size
Mouse = {0, 0} Krill = {1, O}
Small (0)
False (0) True (1)

X,: Breathe under-water



Semantic knowledge base

 Knowledge base K: M examples of pairs {f,y}
1:M.
* Point fis in semantic feature space F”.

e Class label yis from set Y.



Semantic output code classifier, H

Input: X¢

Semantic
encoding

S

—=

Feature space:
FPp

Is it furry?

Does it have a tail?
Can it breathe under-
water?

Is it a carnivore?

Is it slow moving?

H=L(S(E)
§S: X4 FP
L: FP>Y

~ Label:y
Semantic
decoding
. Dog
L  Whale
* Elephant



Zero-shot: Semantic Output Code
Classification

* |[nput: Training data D a d-dimensional matrix
with N instances of form {x,y},.,- Semantic
encoding of a large set of concept classes, K

with M examples of form {f,y},.,,- Typically, M
>> N.

e Qutput: Classifier to recognize classes

including those omitted from the training
dataset.




Model

Training data, D = {X,Y}
Xneg With N words and d dimensions.
Dimensions are reduced by voxel stability criterion.
Yoxp With N words and p semantic features.

Learning:
Wiy = (XTX + A1 - XTY
Predict:
Stage 1: f =x-W
Stage 2: L(f) 1-Nearest Neighbor

with Euclidean distance



Under what conditions does the SOC
classifier predict labels omitted in the
training data?



d(q,r,) = distance between ¢ = S(z) and the semantic representation r, of some class y

(1)

R,(z) = P(d(q,ry) < 2), z some arbitrary distance (2)

1, = distance of q to its nearest neighbor (3)

Gy(z) = P(n, < z) =1(1 — Ry(2))", given n points in F that are considered

(4)

7, = distance of q to its true class representation (5)

P(n, < 71,) <7y = maximum risk of another class being equidistant or closer then the true class

(6)
= Gy(7g) <7 (7)
G4(.) not necessarily invertible, so define a pseudo inverse:

G;l(y) = argmax (G,(1y) <) =71, (8)

q
Tq



semantic feature space

P("?q S Tq) S i

nearest true class

neighbor .
[]

h Tq
[]

data



7, being the maximum number of errors in the prediction S(z) to achieve

the bound 7.
Given p independently learned classifiers, each is supposed to have true error

max

€= -
p

P(errors in S(z) < 7,"*") = BinoCDF (1,"*"; p,€) (9)

q

P(classifier has true error <€) =1—9 (10)

All sums up in the number M of needed examples per classifier to feasibly
assure the bounds:

, 2 1
M > 7, [4log (5> +8(d + 1) log (ijm>] (11)

q

with d and p the dimensions of  and ¢ = S(x) respectively.

P(predict the right S(x)) = (1 — §)? BinoCDF (7", p,€)(1 — 7y) (12)

q



Experiments

* Dataset: fMRI dataset with 9 human participants.
Words representing 12 categories (5 examples
each) to a total of 60 words.

* Neural activity is measured in 20,000 locations
(voxels) in the brain. Six MRIs are taken for each
word. These are time-averaged.

* There are two Knowledge base—

— corpus5000 (Google Trillion-Word-Corpus) containing
co-occurrence vector for words.

— Human218 Mturk annotated 218 features for the 60
words, scaled from 1-5.



Can the classifier discriminate
between two classes, neither of which
is in the training data?

Table 1: Percent accuracies for leave-two-out-cross-validation for 9 fMRI participants (labeled P1-
P9). The values represent classifier percentage accuracy over 3,540 trials when discriminating be-
tween two fMRI images, both of which were omitted from the training set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 Mean
corpusb000 79.6 670 695 562 777 655 712 729 679 69.7
human218 903 829 866 719 895 753 780 77.7 762 80.9




How does the classifier discriminate
closely related novel classes?

Bear & Dog Prediction Match O Bear Predicted
0.10 E Bear Target
g‘i B Dog Target
0.04 | 0 Dog Predicted
©0.02
2 0.00 -
<002 -
-0.04 -
-0.06 -
-0.08 -
-0.10 -
Isitan |Isitman-|Doyousee| Isit Canyou |Would you | Doyou | Doesit |Isitwild? | Does it
animal? | made? | itdaily? |helpful? | holdit? !finditina | loveit? | stand on provide
house? two legs? protection?

Figure 1: Ten semantic features from the human218 knowledge base for the words bear and dog.
The true encoding is shown along with the predicted encoding when fMRI images for bear and dog
were left out of the training set.



Can we decode the word from a large
set of words?

Rank Accuracy

100%

90% -
> O Mean Rank
O 80% - B Median Rank
©
3 70%
o
< 50% -

50% — Chance

40%

corpus5000 human218 corpus5000 human218
mri60 Word Set noun940 Word Set

Figure 2: The mean and median rank accuracies across nine participants for two different semantic
feature sets. Both the original 60 fMRI words and a set of 940 nouns were considered.



Table 2: The top five predicted words for a novel fMRI image taken for the word in bold (all fMRI
images taken from participant P1). The number in the parentheses contains the rank of the correct
word selected from 941 concrete nouns in English.

Bear
(D
bear
fox
wolf
yak
gorilla

Foot
(D)
foot
feet
ankle
knee
face

Screwdriver
(D)
screwdriver
pin

nail

wrench
dagger

Train
(1)
train
jet

jail
factory
bus

Truck
2)
Jeep
truck
minivan
bus
sedan

Celery
S)

beet
artichoke
grape
cabbage
celery

House

(6)
supermarket
hotel
theater
school
factory

Pants
21)
clothing
vest
t-shirt
clothes
panties




END



