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Transfer in Learning (in Theory of Learning)

I In theory of learning transfer of learning occurs when learning
in one context enhances (positive transfer) or undermines
(negative transfer) a related performance in another context.

I Transfer includes near transfer (to closely related contexts and
performances) and far transfer (to rather different contexts
and performances).

I Positive examples:

1. Learning to drive a car helps a person later to learn more
quickly to drive a truck.

2. Learning mathematics prepares students to study physics.
3. Learning to get along with one’s siblings may prepare one for

getting along better with others.
4. Experience playing chess might even make one a better

strategic thinker in politics or business.

[10] Perkins & Salomon 1992



Motivation for Transfer Learning

I Traditional machine learning methods assume that training
and test data come from the same feature space and the same
distribution.

I When the feature space or the distribution change the models
need to be rebuilt from scratch using newly collected training
data which is often expensive or impossible at all.

I Knowledge transfer or transfer learning between task domains
would be desirable.

[8] Pan & Yang 2010



Transfer Learning (in Machine Learning)

I Transfer learning, in contrast to traditional ML framework,
allows the domains, tasks, and distributions used in training
and testing to be different.

I Transfer learning aims to extract the knowledge from one or
more source tasks and applies the knowledge to a target task.

[8] Pan & Yang 2010
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Domain and Task

Let us have feature space X and a marginal probability distribution
P(X ), where X = {x (1), x (2), . . . x (n)} ∈ X .

Domain

D = {X ,P(X )}

Additionally, let us have label space Y and an objective predictive
function f (·) which is not observed.

Task

T = {Y, f (·)}

The predictive function f (·) can be learned from the training data
of the form {x (i), y (i)}, where x (i) ∈ X and yi ∈ Y, and used to
predict label y (i) for data point x (i) (f (x (i)) = y (i)).

[8] Pan & Yang 2010



Source and Target Domain and Task

Let us consider the case where there are two domains:

1. Source domain DS = {XS ,PS(X )} where
X = {x (1), x (2), . . . x (n)} ∈ XS

2. Target domain DT = {XT ,PT (X )} where
X = {x (1), x (2), . . . x (n)} ∈ XT

And correspondingly, two tasks:

1. Source task TS = {YS , fS(·)} where fS(·)→ yi ∈ YS
2. Target task TT = {YT , fT (·)} where fT (·)→ yi ∈ YT

Note that source and target domains are connected to the source
and target tasks respectively through predictive functions
fS(x (i)) = yi where x (i) ∈ XS and yi ∈ YS
fT (x (i)) = yi where x (i) ∈ XT and yi ∈ YT

[8] Pan & Yang 2010



Definition of Transfer Learning

Transfer Learning

Given a source domain DS and learning task TS , a target domain
DT and learning task TT , transfer learning aims to help improve
the learning of the target predictive function fT (·) in TT using the
knowledge DS and TS , where DS 6= DT , or TS 6= TT .

In case DS 6= DT holds (the domains are different) at least one of
the following is true:

1. XS 6= XT (feature spaces are different)

2. PS(X ) 6= PT (X ) (probability distributions are different)

In case TS 6= TT holds (the tasks are different) at least one of the
following is true:

1. YS 6= YT (label spaces are different)

2. fS(·) 6= fT (·)⇔ PS(yS |X S) 6= PT (yT |XT ) (predictive
functions are different)

[8] Pan & Yang 2010
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Different Setups for Transfer Learning

TS 6= TT
1. Inductive Transfer Learning – Labeled data from DT are

required to induce the model fT (·). Specific setups depend on
the relatedness between YS and YT and availability of yS .

2. Unsupervised Transfer Learning – TT is unsupervised task
such as clustering, dimensionality reduction, or density
estimation. We assume that TS 6= TT but also TS ∝ TT .

TS = TT ∧ DS 6= DT

3. Transductive Transfer Learning – We assume that yT is not
available while yS is. Specific setups depend on the
relatedness between XS and XT .

[8] Pan & Yang 2010



Knowledge Transfer Approaches

1. Instance transfer approach – Assumes that certain parts of the
data in DS can be reused for learning in DT by, e.g., instance
reweighting or importance sampling.

2. Feature represantation transfer approach – The aim is to learn
a good feature representation for the target domain. The
knowledge that is transferred from DS to DT is encoded into
the learned feature representation.

3. Parameter transfer approach – It is assumed that TS and TT
share some parameters θ or prior distributions of the
hyperparameters of fS(·) and fT (·).

4. Relational knowledge transfer approach – Some relationship
among the data in the source and target domains is similar.
The knowledge to be transferred is the relationship among the
data.

[8] Pan & Yang 2010



Different Approaches in Different Setups

Inductive Transductive Unsupervised
Transfer L’rning Transfer L’rning Transfer L’rning

Instance SVM, Sample
Transfer TrAdaBoost Reweighting

Feature Repr. SVM, Structural Self-Taught
Transfer Sparse coding Correspondence Clustering

Spectral reg., Learning (SCL), (STC),
Kernel-based Kernel Map., Transferred
approach co-Clustering, Discriminative

Bridged Analysis (TDA)
refinement, ...

Parameter Regularization,
Transfer MT-IVM

Data Relation Transfer via
Transfer Automatic

Mapping and
Revision
(TAMAR)

[8] Pan & Yang 2010
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Definition

Inductive Transfer Learning

Given a source domain DS and a learning task TS , a target domain
DT and a learning task TT , inductive transfer learning aims to help
improve the learning of the target predictive function fT (·) in TT
using the knowledge in DS and TS , where TS 6= TT .

Intuition: Existence of labeled data from DT is assumed, i.e., there
is DT = (XT , yT ). While learning fT (·) from DT we try to use
knowledge from DS and TS to enhance the performance in TT .

What is transferred in existing work?
Instances (1); Feature representation (2); Parameters (3);
Relational Knowledge (4)

[8] Pan & Yang 2010



Instance Transfer via SVM

Let us have the following example of binary classification problem:
D = (X , y), where X ∈ Rn×d , x (i) ∈ Rd×1 and y (i) ∈ {±1}

We want to solve the problem with standard SVM model:

minimize
w ,ξ

1

2
||w ||22 + λ

n∑
i=1

ξ(i)

subject to y (i)wTx (i) ≥ 1− ξ(i), ξ(i) ≥ 0, i = 1, . . . , n

where w ∈ Rd×1 is the model parameter, ξ ∈ Rn×1 are the slack
variables, and λ > 0 is the tradeoff parameter.

Solving the optimization problem we get the decision function:

f (x (i)) = wTx (i) =
d∑

j=1

wjx
(i)
j



Instance Transfer via SVM (cont.)

We can reformulate the problem by adding transfer learning
component:
DS = {XS ,PS(X S)}, TS = {YS , fS(·)}
DT = {XT ,PT (XT )}, TT = {YT , fT (·)}

Let us assume that we have both:
DS = (X S , yS)
DT = (XT , yT )

In addition we assume that XS ≈ XT and YS = YT while
PS(X S) 6= PT (XT )

We want to learn fT (·) (SVM classifier), i.e. the decision function:

f (x (i)
T ) = wTx (i)

T =
d∑

j=1

wjx
(i)
j



Instance Transfer via SVM (cont.)

Remember, we want to learn fT (·) (SVM classifier). What are our
options?

1. We can ignore DS and TS and learn traditional SVM classifier
from DT and TT .

I Is this a good approach? Why?
I It might be. We do this all the time.
I But we miss an opportunity to do even better by taking DS

and TS into account.
I – It is no fun.

2. We can take DS and TS into account and learn SVM classifier
from both DT and TT and DS and TS .

I Is this a good approach? Why?
I + It might be.
I + It is fun.
I – The question is how do we do that?



Instance Transfer via SVM (cont.)

Remember, we want to learn fT (·) (SVM classifier) and we want to
take DS and TS into account and learn SVM classifier from both
DT and TT and DS and TS . How can we do that?

Really simple approach would be to use data from both domains,
DS = (X S , yS) and
DT = (XT , yT ),
and train fT (·) using the following:

minimize
w ,ξT ,ξS

1

2
||w ||22 + λ1

n∑
i=1

ξ
(i)
T + λ2

m∑
i=1

ξ
(i)
S

subject to y (i)wTx (i)
S ≥ 1− ξ(i)S , ξ

(i)
S ≥ 0, i = 1, . . . , n,

subject to y (i)wTx (i)
T ≥ 1− ξ(i)T , ξ

(i)
T ≥ 0, i = 1, . . . ,m

Is this a good approach? Why?



Instance Transfer via SVM (cont.)

Remember, we want to learn fT (·) (SVM classifier) and we want to
take DS and TS into account and learn SVM classifier from both
DT and TT and DS and TS . Using DS and TS directly may not be
such a good idea. Can we do something else?



Instance Transfer via SVM (cont.)

The key insight is that some (x (i)
S , y

(i)
S ) ∈ DS are helpful for

training fT (·), while others may cause harm.

Thus, we need to select those (x (i)
S , y

(i)
S ) ∈ DS that are useful and

kick out those that are not.

Effective way to achieve this is to perform instance weighting on

(x (i)
S , y

(i)
S ) ∈ DS reflecting importance for learning fT (·).

We can achieve this with only minor changes to the considered
model:

minimize
w ,ξT ,ξS

1

2
||w ||22 + λ

n∑
i=1

ξ
(i)
T + λ

m∑
i=1

ρ(i)ξ
(i)
S

subject to y (i)wTx (i)
S ≥ 1− ξ(i)S , ξ

(i)
S ≥ 0, i = 1, . . . , n,

subject to y (i)wTx (i)
T ≥ 1− ξ(i)T , ξ

(i)
T ≥ 0, i = 1, . . . ,m

[1] Aggarwal & Zhai 2012



Instance Transfer via SVM (cont.)

In the presented model ρ(i) is the weight on the data point

(x (i)
S , y

(i)
S ) ∈ DS , which can be estimated via some heuristics or

optimization techniques.

For example we can set ρ(i) = σ((x (i)
S , y

(i)
S ),DT ), where:

σ((x (i)
S , y

(i)
S ),DT ) =

1

|DT |

|DT |∑
j=1

exp
{
−β||(x (i)

S , y
(i)
S )− (x (j)

T , y
(j)
T )||22

}
We can see that the only difference between the standard SVM
and SVM with instance-based transfer is the loss function

λ
m∑
i=1

ρ(i)ξ
(i)
S and its corresponding constraints.

The transferred instances (x (i)
S , y

(i)
S ) ∈ DS can be support vectors

of tranined SVM in TS or the whole DS .

[1] Aggarwal & Zhai 2012, [7] Jiang et al. 2008



Feature Repre. Transfer via Supervised Feat. Construction

I Learning multiple related tasks simultaneously can
significantly improve performance compared to learning each
task independently.

I Sparse feature learning aims at learning a few features
common accross the tasks by regularizing within the tasks
while keeping them coupled to each other.

[2] Argyriou et al. 2007



Feature Representation Transfer via SFC (cont.)

Traditional Learning Setup

I one learning task T

I dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn

which is used as
{(x (1), y (1)), (x (2), y (2)),
. . . (x (n), y (n))}

I the goal is to learn function
f (·) such that f (x (i)) ≈ y (i)

Multi-Task Learning Setup

I multiple learning tasks
T = (T1, T2, . . . Tt)

I dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn

which is used as
{(x (1)
Tj , y

(1)
Tj ), (x (2)

Tj , y
(2)
Tj ), . . .

(x (m)
Tj , y

(m)
Tj )}

I the goal is to learn functions
f1(·), f2(·), . . . ft(·) such that

fj(x
(i)
Tj ) ≈ y

(i)
Tj

[6] Evgeniou & Pontil 2004



Feature Representation Transfer via SFC (cont.)

I We already know that there is a dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn which is used as

{(x (1)
Tj , y

(1)
Tj ), (x (2)

Tj , y
(2)
Tj ), . . . (x (m)

Tj , y
(m)
Tj )}

I Specifically, this means that for each task Tj there is m data
points sampled from a distribution Pj over D.

I Now, as we have multiple learning tasks Tj = {T1, T2, . . . Tt},
we also have multiple data sets {DT1 ,DT2 , . . .DTt}.

I For each dataset DTj = (X Tj , yTj ) there is X Tj ⊂ Rm×d and
yTj ⊂ Rm.

I This means that the total data available is
{{(x (1)

T1 , y
(1)
T1 ), (x (2)

T1 , y
(2)
T1 ), . . . (x (m)

T1 , y
(m)
T1 )},

{(x (1)
T2 , y

(1)
T2 ), (x (2)

T2 , y
(2)
T2 ), . . . (x (m)

T2 , y
(m)
T2 )}, . . .

{(x (1)
Tt , y

(1)
Tt ), (x (2)

Tt , y
(2)
Tt ), . . . (x (m)

Tt , y
(m)
Tt )}}

[6] Evgeniou & Pontil 2004



Feature Representation Transfer via SFC (cont.)

The common features are learned by solving an optimization
problem, given as follows:

minimize
A,U

t∑
i=1

n∑
j=1

L(y
(j)
Ti , 〈aTi ,U

Tx (j)
Ti 〉) + γ||A||22,1

subject to U ∈ Od , A ∈ Rd×t

U: d × d matrix with orthonormal u(i) in columns

A: d × t matrix with entries ajTi
〈·, ·〉 standard inner product
||A||2,1 ||A||2 over the rows of matrix A and then ||a(i)||1

over the resulting elements

W = UA where each column w (i) is a task specific weight vector

[2] Argyriou et al. 2007



Feature Representation Transfer via SFC (cont.)



Feature Rep. Transfer via Unsupervised Feat. Construction

I In self-taught learning we use unlabeled data for improving
performance on supervised learning tasks.

I The key assumption is that unlabeled data contain basic
patterns that are also present in the data we would like to
classify.

I The goal is to learn higher-level feature representation of the
inputs using unlabeled data without assuming that the
unlabeled data can be assigned with class labels.

I The approach aims to make learning easier and cheaper.

I The inspiration is taken from human learning which is believed
to be largely unsupervised.

[9] Raina et al. 2007



Feature Representation Transfer via UFC

Learning Setup

DTT = (X TT , yTT ) = {(x (1)
TT , y

(1)
TT ), (x (2)

TT , y
(2)
TT ), . . . (x (n)

TT , y
(n)
TT )}

drawn i.i.d in DT = (XT ,PT (XT )), where x (i)
TT ∈ Rd and

y
(i)
TT ∈ {1, . . .C}

DTS = X TS = {x (1)
TS , x

(2)
TS , . . . x

(n)
TS }

drawn i.i.d in DS = (XS ,PS(X S)), where x (i)
TS ∈ Rd

We do not assume that PT (XT ) ≈ PS(X S).

Our goal is to use DTS to improve performance of fTT (·) ∈ TT .

[9] Raina et al. 2007



Feature Representation Transfer via UFC

First, we solve the following optimization problem on DTS :

minimize
b,a

n∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣x (i)
TS −

s∑
j=1

a
(i)
j b(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ β
∣∣∣∣∣∣a(i)

∣∣∣∣∣∣
1

subject to ||b(j)||2 ≤ 1, ∀j ∈ 1, . . . s

b(j): basis vector b(j) ∈ Rd

a(i): activations vector a(i) ∈ Rs

Second, for each training input (x (i)
TT , y

(i)
TT ) we compute features

â(·) ∈ Rd by solving the following optimization problem:

minimize
a(i)

∣∣∣∣∣∣
∣∣∣∣∣∣xTT −

s∑
j=1

a
(i)
j b(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ β
∣∣∣∣∣∣a(i)

∣∣∣∣∣∣
1

[9] Raina et al. 2007



Parameter Transfer via Regularized Multi-Task Learning

I In certain situations it is necessary to create more than one
statistical model.

I If the tasks are related it may be advantegous to learn the
models simultaneously.

[6] Evgeniou & Pontil 2004



Param. Transfer via Regularized Multi-Task L’rning (cont.)

Traditional Learning Setup

I one learning task T

I dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn

which is used as
{(x (1), y (1)), (x (2), y (2)),
. . . (x (n), y (n))}

I the goal is to learn function
f (·) such that f (x (i)) ≈ y (i)

Multi-Task Learning Setup

I multiple learning tasks
T = (T1, T2, . . . Tt)

I dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn

which is used as
{(x (1)
Tj , y

(1)
Tj ), (x (2)

Tj , y
(2)
Tj ), . . .

(x (m)
Tj , y

(m)
Tj )}

I the goal is to learn functions
f1(·), f2(·), . . . ft(·) such that

fj(x
(i)
Tj ) ≈ y

(i)
Tj

[6] Evgeniou & Pontil 2004



Param. Transfer via Regularized Multi-Task L’rning (cont.)

I We already know that there is a dataset D = (X , y) where
X ⊂ Rn×d and y ⊂ Rn which is used as

{(x (1)
Tj , y

(1)
Tj ), (x (2)

Tj , y
(2)
Tj ), . . . (x (m)

Tj , y
(m)
Tj )}

I Specifically, this means that for each task Tj there is m data
points sampled from a distribution Pj over D.

I Now, as we have multiple learning tasks Tj = {T1, T2, . . . Tt},
we also have multiple data sets {DT1 ,DT2 , . . .DTt}.

I For each dataset DTj = (X Tj , yTj ) there is X Tj ⊂ Rm×d and
yTj ⊂ Rm.

I This means that the total data available is
{{(x (1)

T1 , y
(1)
T1 ), (x (2)

T1 , y
(2)
T1 ), . . . (x (m)

T1 , y
(m)
T1 )},

{(x (1)
T2 , y

(1)
T2 ), (x (2)

T2 , y
(2)
T2 ), . . . (x (m)

T2 , y
(m)
T2 )}, . . .

{(x (1)
Tt , y

(1)
Tt ), (x (2)

Tt , y
(2)
Tt ), . . . (x (m)

Tt , y
(m)
Tt )}}

[6] Evgeniou & Pontil 2004



Param. Transfer via Regularized Multi-Task L’rning (cont.)

Let us recall the standard SVM model:

minimize
w ,ξ

1

2
||w ||22 + λ

n∑
i=1

ξ(i)

subject to y (i)wTx (i) ≥ 1− ξ(i), ξ(i) ≥ 0, i = 1, . . . , n

where w ∈ Rd×1 is the model parameter, ξ ∈ Rn×1 are the slack
variables, and λ > 0 is the tradeoff parameter.

Solving the optimization problem we get the decision function:

f (x (i)) = wTx (i) =
d∑

j=1

wjx
(i)
j

We are (again!) going to augment this model for the regularized
multi-task learning problem.



Param. Transfer via Regularized Multi-Task L’rning (cont.)

For the base SVM model we had this binary classification problem:
T : D = (X , y), where X ∈ Rn×d , x (i) ∈ Rd×1 and y (i) ∈ {±1}

For multi-task learning we are seeking a single (!!!) model to
handle multiple binary classification problems:

T1 : DT1 = (X T1 , yT1), where X T1 ∈ Rn×d , x (i)
T1 ∈ Rd×1 and

y
(i)
T1 ∈ {±1}

T2 : DT2 = (X T2 , yT2), where X T2 ∈ Rn×d , x (i)
T2 ∈ Rd×1 and

y
(i)
T2 ∈ {±1}

. . .

Tt : DTt = (X Tt , yTt ), where X Tt ∈ Rn×d , x (i)
Tt ∈ Rd×1 and

y
(i)
Tt ∈ {±1}



Param. Transfer via Regularized Multi-Task L’rning (cont.)

Solving the optimization problem represented by the base SVM
model we get the single decision function:

f (x (i)) = wTx (i) =
d∑

j=1

wjx
(i)
j

In multi-task learning we expect to get multiple decision functions
(one for each task):

F = {fT1(·), fT2(·), . . . fTt (·)}, where

fTj (x
(i)
Tj ) = wT

Tjx
(i)
Tj =

d∑
k=1

wTj ,kx
(i)
Tj ,k



Param. Transfer via Regularized Multi-Task L’rning (cont.)

Before we get to the proposed model for regularized multi-task
learning we need to introduce the key insight:

I Frameworks and methods for multi-task learning are often
based on some formal definition of the notion of relatedness of
the tasks.

I The relatedness is formalized through the design of a
multi-task learning method. For example, we can assume that
all parameters wTi come from a particular probability
distribution such as a Gaussian.

I This implies that all wTi are “close” to some mean parameter
vector w0.

I Therefore, the assumption is that all wTi can be written, for
every Ti ∈ T , as:

wTi = w0 + vTi

[6] Evgeniou & Pontil 2004



Param. Transfer via Regularized Multi-Task L’rning (cont.)

We can estimate all vTi as well as the (common) w0

simultaneously by solving the following optimization problem
(analogous to traditional SVM):

minimize
w0,vTi ,ξTi

t∑
i=1

m∑
j=1

ξ
(j)
Ti +

λ1
t

t∑
i=1

||vTi ||
2 + λ2||w0||2

subject to y
(j)
Ti (w0 + vTi )

Tx (j)
Ti ≥ 1− ξ(j)Ti , ξ

(j)
Ti ≥ 0,

i = 1, . . . , t and j = 1, . . . ,m

Solving the optimization problem yields:

F = {fT1(·), fT2(·), . . . fTt (·)}, where

fTi (x
(j)
Ti ) = (w0 + vTi )

Tx (j)
Ti = wT

Tix
(j)
Ti =

d∑
k=1

wTi ,kx
(j)
Ti ,k

[6] Evgeniou & Pontil 2004
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Definition

Unsupervised Transfer Learning

Given a source domain DS and a learning task TS , a target domain
DT and a learning task TT , unsupervised transfer learning aims to
help improve the learning of the target predictive function fT (·) in
TT using the knowledge in DS and TS , where TS 6= TT and YS and
YT are not observable.

Intuition: It is assumed that no labeled data from DS or DT are
available. While learning fT (·) from XT we try to use knowledge
from DS and TS to enhance the performance in TT .

What is transferred in existing work?
Feature representation (2)

[8] Pan & Yang 2010



Feature Representation Transfer via Self-Taught Clustering

I Clustering aims at partitioning objects into groups, so that the
objects in the same groups are relatively similar, while the
objects in different groups are relatively dissimilar.

I Self-taught clustering uses unlabeled data from DTS to
enhance clustering performance on unlabeled data from DTT .

I Different objects may share some common features.

I Self-taught clustering exploits the commonality through
co-clustering. It means that clustering operations on both,
DTS and DTT , are performed together.

I Co-clustering algorithm which minimizes loss in mutual
information before and after co-clustering is used.

[5] Dai et al. 2008



Feature Rep. Transfer via Self-Taught Clustering (cont.)

Learning Setup

DTT = (X TT ,ZTT ) = {(x (1)
TT , z

(1)
TT ), (x (2)

TT , z
(2)
TT ), . . . (x (n)

TT , z
(n)
TT )}

DTS = (X TS ,ZTS ) = {(x (1)
TS , z

(1)
TS ), (x (2)

TS , z
(2)
TS ), . . . (x (n)

TS , z
(n)
TS )}

We assume that:

I X TT is drawn i.i.d in DT = (XT ,PT (XT )), where x (i)
TT ∈ Rd1

I X TS is drawn i.i.d in DS = (XS ,PT (X S)), where x (i)
TS ∈ Rd2

I ZTT is drawn i.i.d in ZT = (ZT ,PT (ZT )), where z (i)
TT ∈ Rd3

I ZTS is drawn i.i.d in ZS = (ZS ,PT (ZS)), where z (i)
TS ∈ Rd3

XT 6= XS and PT (XT ) 6= PS(X S)
ZT = ZS and PT (ZT ) 6= PS(ZS)

[5] Dai et al. 2008



Feature Rep. Transfer via Self-Taught Clustering (cont.)

Toy Example

Dn×2
TT = (X TT ,ZTT ); Dm×2

TS = (X TS ,ZTS )

X n×1
TT ∈ {1, 2, 3}; Xm×1

TS ∈ {a, b, c}; Zn×1
TT ,Zm×1

TS ∈ {α, β, γ}

p(ZTT = α) p(ZTT = β) p(ZTT = γ)

p(XTT = 1) 0.2 0.0 0.2

p(XTT = 2) 0.0 0.2 0.0

p(XTT = 3) 0.0 0.2 0.2

p(ZTS = α) p(ZTS = β) p(ZTS = γ)

p(XTS = a) 0.4 0.0 0.0

p(XTS = b) 0.0 0.1 0.1

p(XTS = c) 0.0 0.4 0.0

[5] Dai et al. 2008



Feature Rep. Transfer via Self-Taught Clustering (cont.)

p(ZTT = α) p(ZTT = β) p(ZTT = γ)

p(XTT = 1) 0.2 0.0 0.2

p(XTT = 2) 0.0 0.2 0.0

p(XTT = 3) 0.0 0.2 0.2

Let us cluster the dataset described by the full-joint above in the
following way:

I clustering on XTT is X̃TT = {x̃1 = {x1, x2}, x̃2 = {x3}}
I clustering on ZTT is Z̃TT = {z̃α = {zα, zβ}, z̃β = {zγ}}

This gives us the new full-joint:
p(Z̃TT = α) p(Z̃TT = β)

p(X̃TT = 1) 0.4 0.2

p(X̃TT = 2) 0.2 0.2

How can we evaluate the quality of clustering?

[5] Dai et al. 2008



Feature Rep. Transfer via Self-Taught Clustering (cont.)

One of the techniques used to measure how good is the clustering
we obtained is loss in mutual information between instances and
features before and after clustering.

J (X̃ TT , Z̃TT ) = I (X TT ,ZTT )− I (X̃ TT , Z̃TT )

where I (X ,Z ) =
n∑

i=1

m∑
j=1

p(x (i), z (j))log p(x (i),z(j))

p(x (i))p(z(j))

In self-taught clustering we (co-)cluster on X TT and X TS
simultaneously, while the two co-clusters share the same features
clustering on ZTT and ZTS .

J (X̃ TT , X̃ TS , Z̃ ) =

I (X TT ,ZTT )− I (X̃ TT , Z̃ ) + λ
[
I (X TS ,ZTS )− I (X̃ TS , Z̃ )

]
[5] Dai et al. 2008
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Definition

Transductive Transfer Learning

Given a source domain DS and a learning task TS , a target domain
DT and a learning task TT , transductive transfer learning aims to
improve the learning of the target predictive function fT (·) in TT
using the knowledge in DS and TS , where DS 6= DT and TS = TT .
In addition, some unlabeled target-domain data must be available
at training time.

Intuition: Since TS and TT are the same, in order to obtain fT (·)
we can adapt predictive function fS(·) for use in TT on the data
from DT .

What is transferred in existing work?
Instances (1); Feature representation (2)

[8] Pan & Yang 2010



Instance Transfer via Sample Reweighting

Learning Setup

DTT = X TT = {x (1)
TT , x

(2)
TT , . . . x

(n)
TT } drawn i.i.d in

DT = (XT ,PT (XT )), where x (i)
TT ∈ Rd and y

(i)
TT ∈ {1, . . .C}

DTS = (X TS , yTS ) = {(x (1)
TS , y

(1)
TS ), (x (2)

TS , y
(2)
TS ), . . . (x (n)

TS , y
(n)
TS )}

drawn i.i.d in DS = (XS ,PS(X S)), where x (i)
TS ∈ Rd

We do not assume that PT (XT ) ≈ PS(X S).

Our goal is to use DTS to construct fTT (·) ∈ TT .



Instance Transfer via Sample Reweighting (cont.)

Let us recall the standard SVM model:

minimize
w ,ξ

1

2
||w ||22 + λ

n∑
i=1

ξ(i)

subject to y (i)wTx (i) ≥ 1− ξ(i), ξ(i) ≥ 0, i = 1, . . . , n

where w ∈ Rd×1 is the model parameter, ξ ∈ Rn×1 are the slack
variables, and λ > 0 is the tradeoff parameter.

Solving the optimization problem we get the decision function:

f (x (i)) = wTx (i) =
d∑

j=1

wjx
(i)
j

We are (again!) going to augment this model for the regularized
multi-task learning problem.



Instance Transfer via Sample Reweighting (cont.)

The key insight in inductive transfer learning was that some

(x (i)
S , y

(i)
S ) ∈ DS are helpful for training fT (·), while others may

cause harm.

Thus, we need to select those (x (i)
S , y

(i)
S ) ∈ DS that are useful and

kick out those that are not.

Effective way to achieve this is to perform instance weighting on

(x (i)
S , y

(i)
S ) ∈ DS reflecting importance for learning fT (·).

We can achieve this with only minor changes to the base model:

minimize
w ,ξS

1

2
||w ||22 + λ

n∑
i=1

ρ(i)ξ
(i)
S

subject to y (i)wTx (i)
S ≥ 1− ξ(i)S , ξ

(i)
S ≥ 0, i = 1, . . . , n,



Instance Transfer via Sample Reweighting (cont.)

In the presented model ρ(i) is the weight on the data point

(x (i)
S , y

(i)
S ) ∈ DS .

For example we can set ρ(i) = σ(x (i)
S ,DT ), where:

σ(x (i)
S ,DT ) =

1

|DT |

|DT |∑
j=1

exp
{
−β||x (i)

S − x (j)
T ||

2
2

}

[7] Jiang et al. 2008
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Applications of Transfer Learning

I learning text data across domains

I use of structural correspondence learning (SCL) for solving
NLP problems

I use of transductive transfer learning methods to solve named
entity recognition (NER) problems

I learning relational action models across domains in automated
planning

I use of inductive transfer for learning multiple conceptually
related classifiers for computer aided design (CAD)

I use of transfer learning in cross-language classification problem

I use of transfer learning for collaborative filtering

I use of transfer learning for estimation of Wi-fi client’s location

I use of transfer learning for sentiment analysis

[8] Pan & Yang 2010



Datasets and Toolboxes

Publicly Available Datasets
I Text – 20 Newsgroups, SRAA and Reuters–21578.

I E-mail

I WiFi – Data collected inside a building for localization
purposes in two different time periods.

I Sen – Product reviews from Amazon (four product types, i.e.
domains) containing star ratings.

Transfer Learning Resources

There is a hub page pointing to a large number of research papers
and code implementations related to transfer learning provided by
the Hong Kong University of Science and Technology. It is
available at http://www.cse.ust.hk/TL/.

[8] Pan & Yang 2010

http://www.cse.ust.hk/TL/


Evaluation of Selected Applications

[8] Pan & Yang 2010
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Negative Transfer

I Negative transfer happens when the transfer of knowledge
from DS or TS contributes to the reduced performance in TT .

I If tasks TS and TT are too dissimilar, then brute-force transfer
may hurt the performance in TT .

I It is important to analyze relatedness among TS and TT and
DS and DT .

Example methods:
I Similarity of TS and TT defined on the basis of similarity

between the example generating distributions that underlie
the tasks.

I Similarity of TS and TT defined on the basis of introduction of
higher level task characteristics, that is, features that are
known beforehand.

[8] Pan & Yang 2010, [3] Bakker & Heskes 2003, [4] Ben-David & Schuller 2003
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Thank you!

Questions, comments and suggestions are welcome now
or any time at jas438@pitt.edu.
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