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Goals of the talk

1.To understand the geometry of different approaches for 
multi-label classification

2.To appreciate how the Machine Learning techniques further 
improve the multi-label classification methods

3.To learn how to evaluate the multi-label classification 
methods
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Agenda

• Motivation & Problem definition

• Solutions

• Advanced solutions

• Evaluation metrics

• Toolboxes

• Summary
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Notation

• X ∈ Rm :  feature vector variable (input)

• Y ∈ Rd :  class vector variable (output)

• x = {x1, ..., xm}:  feature vector instance

• y = {y1, ..., yd}:  class vector instance

• In a shorthand, P(Y=y|X=x) = P(y|x) 

• Dtrain : training dataset;  Dtest : test dataset
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Motivation

• Traditional classification

• Each data instance is associated with a single class variable
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Motivation

• An issue with traditional classification

• In many real-world applications, each data instance can be 
associated with multiple class variables

• Examples

• A news article may cover multiple topics, such as politics and 
economics

• An image may include multiple objects as building, road, and car

• A gene may be associated with several biological functions
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Problem Definition

• Multi-label classification (MLC)

• Each data instance is associated with multiple binary class 
variables

• Objective: assign each instance the most probable assignment 
of the class variables
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  Class 1 ∈ { R, B }
  Class 2 ∈ {    ,     }



A simple solution

• Idea

• Transform a multi-label classification problem to multiple 
single-label classification problems

• Learn d independent classifiers for d class variables
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• Idea

• Transform a multi-label classification problem to multiple 
single-label classification problems

• Learn d independent classifiers for d class variables
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Binary Relevance (BR) [Clare and King, 2001; Boutell et al, 2004]

• Illustration
Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 1 1 0
n=2 0.6 0.2 1 1 0
n=3 0.1 0.9 0 0 1
n=4 0.3 0.1 0 0 0
n=5 0.8 0.9 1 0 1

h1 :  X → Y1

h2 :  X → Y2

h3 :  X → Y3



Binary Relevance (BR) [Clare and King, 2001; Boutell et al, 2004]

• Advantages

• Computationally efficient

• Disadvantages

• Does not capture the dependence relations among the class 
variables

• Not suitable for the objective of MLC

• Does not find the most probable assignment

• Instead, it maximizes the marginal distribution of each class 
variable
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Binary Relevance (BR) [Clare and King, 2001; Boutell et al, 2004]

• Marginal vs. Joint: a motivating example

• Question: find the most probable assignment (MAP: maximum 
a posteriori) of Y = (Y1,Y2)
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➡ Prediction on the joint (MAP): Y1 = 1, Y2 = 0
➡ Prediction on the marginals: Y1 = 0, Y2 = 0

P(Y1,Y2|X=x) Y1 = 0 Y1 = 1 P(Y2|X=x)
Y2 = 0 0.2 0.45 0.65
Y2 = 1 0.35 0 0.35

P(Y1|X=x) 0.55 0.45

• We want to maximize the joint distribution of Y given 
observation X = x;  i.e.,



Another simple solution

• Idea

• Transform each label combination to a class value

• Learn a multi-class classifier with the new class values

12



• Idea

• Transform each label combination to a class value

• Learn a multi-class classifier with the new class values
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• Illustration
Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 0 0 1
n=2 0.6 0.2 0 0 1
n=3 0.1 0.9 0 1 0
n=4 0.3 0.1 0 1 1
n=5 0.8 0.9 1 0 1

YLP

1
1
2
3
4

hLP :  X → YLP

Label Powerset (LP) [Tsoumakas and Vlahavas, 2007]



Label Powerset (LP) [Tsoumakas and Vlahavas, 2007]

• Advantages

• Learns the full joint of the class variables

• Each of the new class values maps to a label combination

• Disadvantages

• The number of choices in the new class can be exponential  
(|YLP| = O(2d))

• Learning a multi-class classifier on exponential choices is expensive

• The resulting class distribution would be sparse and imbalanced

• Only predicts the label combinations that are seen in the 
training set
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BR vs. LP

• BR and LP are two extreme MLC approaches

• BR maximizes the marginals on each class variable; 
while LP directly models the joint of all class variables

• BR is computationally more efficient; but does not consider the 
relationship among the class variables

• LP considers the relationship among the class variables by 
modeling the full joint of the class variables; but can be 
computationally very expensive
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BR LPIndependent 
classifiers

All possible 
label combo.



Agenda

✓ Motivation

• Solutions

• Advanced solutions

• Evaluation metrics

• Toolboxes

• Summary
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Solutions

• Section agenda

• Solutions rooted on BR

• Solutions rooted on LP

• Other solutions
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• BR: Binary Relevance [Clare and King, 2001; Boutell et al, 2004]

• Models independent classifiers P(yi|x) on each class variable

• Does not learn the class dependences

• Key extensions from BR

• Learn the class dependence relations by adding new class-
dependent features  :  P(yi|x, {new_features})

Solutions rooted on BR
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Solutions rooted on BR

• Idea: layered approach

• Layer-1: Learn and predict on Dtrain, using the BR approach

• Layer-2: Learn d classifiers on the original features and the 
output of layer-1

• Existing methods

• Classification with Heterogeneous Features (CHF) [Godbole et al, 2004]

• Instance-based Logistic Regression (IBLR) [Cheng et al, 2009]
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Classification with Heterogeneous Features (CHF)

• Illustration

Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 1 1 0
n=2 0.6 0.2 1 1 0
n=3 0.1 0.9 0 0 1
n=4 0.3 0.1 0 0 0
n=5 0.8 0.9 1 0 1

hbr1 :  X → Y1

hbr2 :  X → Y2

hbr3 :  X → Y3

XCHF

X1 X2 hbr1(X) hbr2(X) hbr3(X) Y1 Y2 Y3

n=1 0.7 0.4 .xx .xx .xx 1 1 0
n=2 0.6 0.2 .xx .xx .xx 1 1 0
n=3 0.1 0.9 .xx .xx .xx 0 0 1
n=4 0.3 0.1 .xx .xx .xx 0 0 0
n=5 0.8 0.9 .xx .xx .xx 1 0 1

h1 :  XCHF → Y1

h2 :  XCHF → Y2

h3 :  XCHF → Y3

La
ye

r-1
La

ye
r-2
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Instance-based Logistic Regression (IBLR)

• Illustration

Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 1 1 0
n=2 0.6 0.2 1 1 0
n=3 0.1 0.9 0 0 1
n=4 0.3 0.1 0 0 0
n=5 0.8 0.9 1 0 1

XIBLR

X1 X2 λ1 λ2 λ3 Y1 Y2 Y3

n=1 0.7 0.4 .xx .xx .xx 1 1 0
n=2 0.6 0.2 .xx .xx .xx 1 1 0
n=3 0.1 0.9 .xx .xx .xx 0 0 1
n=4 0.3 0.1 .xx .xx .xx 0 0 0
n=5 0.8 0.9 .xx .xx .xx 1 0 1

h1 :  XIBLR → Y1

h2 :  XIBLR → Y2

h3 :  XIBLR → Y3

KNN Score
λ1 λ2 λ3

.xx .xx .xx

.xx .xx .xx

.xx .xx .xx

.xx .xx .xx

.xx .xx .xx

1 1 0
0 0 1
1 0 0
2/3 1/3 1/3

k=3

y1     y2     y3



Solutions rooted on BR:  CHF & IBLR

• Advantages

• Model the class dependences by enriching the feature space 
using the layer-1 classifiers

• Disadvantages

• Learn the dependence relations in an indirect way

• The predictions are not stable
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Solutions rooted on LP

• LP: Label Powerset [Tsoumakas and Vlahavas, 2007]

• Models a multi-class classifier on the enumeration of all 
possible class assignment

• Can create exponentially many classes and computationally 
very expensive

• Key extensions from LP

• Prune the infrequent class assignments from the consideration 
to reduce the size of the class assignment space

• Represent the joint distribution more compactly
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Pruned problem transformation (PPT) [Read et al, 2008]

• Class assignment conversion in PPT

• Prune infrequent class assignment sets

• User specifies the threshold for “infrequency”

24

Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 0 0 1
n=2 0.6 0.2 0 0 1
n=3 0.1 0.9 0 0 0
n=4 0.3 0.1 0 1 0
n=5 0.1 0.8 0 0 0
n=6 0.2 0.1 0 1 0
n=7 0.2 0.2 0 1 0
n=8 0.2 0.9 0 0 0
n=9 0.7 0.3 0 0 1

n=10 0.9 0.9 0 1 1

Dtrain-LP YLP

n=1 1
n=2 1
n=3 0
n=4 2
n=5 0
n=6 2
n=7 2
n=8 0
n=9 1

n=10 3

|YLP| = 4



Pruned problem transformation (PPT) [Read et al, 2008]

• Class assignment conversion in PPT

• Prune infrequent class assignment sets

• User specifies the threshold for “infrequency”
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Dtrain X1 X2 Y1 Y2 Y3

n=1 0.7 0.4 0 0 1
n=2 0.6 0.2 0 0 1
n=3 0.1 0.9 0 0 0
n=4 0.3 0.1 0 1 0
n=5 0.1 0.8 0 0 0
n=6 0.2 0.1 0 1 0
n=7 0.2 0.2 0 1 0
n=8 0.2 0.9 0 0 0
n=9 0.7 0.3 0 0 1
n=10 0.9 0.9 0 0 1
n=11 0.9 0.9 0 1 0

Dtrain-PPT YPPT

n=1 1
n=2 1
n=3 0
n=4 2
n=5 0
n=6 2
n=7 2
n=8 0
n=9 1

n=10 1
n=11 2

|YPPT| = 3



Solutions rooted on LP:  PPT

• Advantages

• Simple add-on to the LP method that focuses on key 
relationships

• Models the full joint more efficiently

• Disadvantages

• Based on an ad-hoc pruning heuristic

• Mapping to lower dimensional label space is not clear

• (As LP) Only predicts the label combinations that are seen in 
the training set
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Other solution: MLKNN [Zhang and Zhou, 2007]

• Multi-label k-Nearest Neighbor (MLKNN) [Zhang and Zhou, 2007]

• Learn a classifier for each class (as BR) by combining k-nearest 
neighbor with Bayesian inference

• Application is limited as KNN

• Does not produce a model

• Does not work well on high-dimensional data
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Multi-label output coding

• Key idea

• Motivated by the error-correcting output coding (ECOC) 
scheme [Dietterich 1995; Bose & Ray-Chaudhuri 1960] in communication

• Solve the MLC problems using lower dimensional codewords

• An output coding MLC method usually consists of three 
parts:

• Encoding:

• Prediction:

• Decoding:

28

Convert output vectors Y into codewords Z

Perform regression from X to Z;  say R

Recover the class assignments Y from R



Multi-label output coding

• Existing methods

• OC (Output Coding) with Compressed Sensing (OCCS) [Hsu et 

al, 2009]

• Principle Label Space Transformation (PLST) [Tai and Lin, 2010]

• OC with Canonical Correlation Analysis (CCAOC) [Zhang and 

Schneider, 2011]

• Maximum Margin Output Coding (MMOC) [Zhang and Schneider, 2012]
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Principle Label Space Transformation (PLST) [Tai and Lin, 2010]

• Encoding: Convert output vectors Y into codewords Z, 
using the singular vector decomposition (SVD)

• Z = VTY = (V1TY, ..., VqTY), where V is a d × q projection 
vector (d > q)

• Prediction: Perform regression from X to Z;  say R

• Decoding: Recover the class labels Y from R using SVD  

• Achieved by optimizing a combinatorial loss function
30

Z YX
(i) Encoding (SVD)(ii) Regression

(iii) Decoding (SVD)CodewordsFeatures Labels



Multi-label output coding

• Existing methods are differentiated from one to another 
mainly by the encoding/decoding schemes they apply

31

Method Key difference

OCCS
Uses compressed sensing [Donoho 2006] for encoding and 
decoding

PLST
Uses singular vector decomposition (SVD) [Johnson & Wichern 2002] 
for encoding and decoding

CCAOC
Uses canonical correlation analysis (CCA) [Johnson & Wichern 2002] 
for encoding and mean-field approximation for decoding

MMOC Uses SVD for encoding and maximum margin formulation 
for decoding



Multi-label output coding

• Advantages

• Show excellent prediction performances

• Disadvantages

• Only able to predict the single best output for a given input 

• Cannot estimate probabilities for different input-output pairs

• Not scalable

• Encoding and decoding steps rely on matrix decomposition, 
whose complexities are sensitive to d and N

• Cannot be generalized to non-binary cases
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Section summary
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BR LP

Independent 
classifiers

All possible 
label combo.

CHF PPT

IBLR Pruned  
label combo.

Enriched 
feature space

Others

Output coding
MLKNN

?

Want to 
achieve 

something 
better



Agenda

✓ Motivation

✓ Solutions

• Advanced solutions
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• Toolboxes

• Summary
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Advanced solutions

• Section agenda

• Extensions using probabilistic graphical models (PGMs) 

• Extensions using ensemble techniques
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Extensions using PGMs

• Probabilistic Graphical Models (PGMs)

• PGM refers to a family of distributions on a set of random 
variables that are compatible with all the probabilistic 
independence propositions encoded in a graph

• A smart way to formulate exponentially large probability 
distribution without paying an exponential cost

• Using PGMs, we can reduce the model complexity

• PGM = Multivariate statistics + Graphical structure

36



Extensions using PGMs

• Representation: Two types

• Undirected graphical models (UGMs)

• Also known as Markov networks (MNs)

• Directed graphical models (DGMs)

• Also known as Bayesian networks (BNs)

37

X1

X2

X1

X2

node: 
variable

edge:
correlation

edge:
causal relation

Undirected
(MN)

Directed
(BN)



Extensions using PGMs

• How PGMs reduce the model complexity?

• Key idea: Exploit the conditional independence (CI) relations 
among variables!!

• Conditional independence (CI): Random variables A, B are 
conditionally independent given C, if P(A,B|C) = P(A|C)P(B|C)

• UGM and DGM offer a set of graphical notations for CI

38

A ⊥ B | C

CI representation in UGM

A B

C



Extensions using PGMs

• How PGMs reduce the model complexity?

• Key idea: Exploit the conditional independence (CI) relations 
among variables!!

• Conditional independence (CI): Random variables A, B are 
conditionally independent given C, if P(A,B|C) = P(A|C)P(B|C)

• UGM and DGM offer a set of graphical notations for CI
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A ⊥ B | C A ⊥ B | C

CI representations in DGM

⧸

A B

C
A BC

A B

C



Extensions using PGMs

• PGMs have been an excellent representation / formulation 
tool for the MLC problems

• The dependences among features (X) and class variables 
(Y) can be represented easily with PGMs

• By exploiting the conditional independence, we can make 
the computation simpler
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Extensions using PGMs

• Existing methods

• Undirected models (Markov networks)

• Multi-label Conditional Random Field (ML-CRF) [Ghamrawi and McCallum, 2005; 

Pakdaman et al, 2014]

• Composite Marginal Models (CMM) [Zhang and Schneider, 2012]

• Directed models (Bayesian networks)

• Multi-dimensional Bayesian Classifiers (MBC) [van der Gaag and de Waal, 2006]

• Classifier Chains (CC) [Read et al, 2009]

• Conditional Tree-structured Bayesian Networks (CTBN) [Batal et al, 2013]
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Multi-dimensional Bayesian Networks (MBC) [van der Gaag and de Waal, 2006]

• Key idea

• Model the full joint of input and output using a Bayesian 
network

• Use graphical structures to represent the dependence 
relations among the input and output variables

• Example MBC (d = 3, m = 4)

42

Y3
Y2Y1

X3X2X1 X4

The joint distribution P(X,Y) is 
represented by the decomposition  

X = X1|X2 · X2|X3 · X3 · X4|X2 
and 

Y = Y1|Y2 · X2 · Y3|Y2



Multi-dimensional Bayesian Networks (MBC) [van der Gaag and de Waal, 2006]

• Advantages

• The full joint distribution of the feature and class variables can 
be represented efficiently using the Bayesian network

• Disadvantages

• Models the relations among the feature variables which do not 
carry much information in modeling the multi-label relations
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Multi-label Conditional Random Fields (MLCRF) [Pakdaman et al, 2014]

• Key idea

• Model the conditionals P(Y|X) to capture the relations among 
the class variables conditioned on the feature variables

• Learn a pairwise Markov network to model the relations 
between the input and output variables

• Representation

44

Y1

Y2

Y3

Yd ...

ψ1,2 ψ2,3

ψd,1
(ψi,j and 𝜙i are the potentials of Yi, Yj, X;
and Z is the normalization term)



Multi-label Conditional Random Fields (MLCRF) [Pakdaman et al, 2014]

• Advantages

• Directly models the conditional joint distribution P(Y|X)

• Disadvantages

• Learning and prediction is computationally very demanding

• To perform an inference, the normalization term Z should be 
computed, which is usually very costly

• The iterative parameter learning process requires inference at 
each step whose computational cost is even more expensive

• In practice, approximate inference techniques are applied to make the 
model usable
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Classifier Chains (CC) [Read et al, 2009]

• Key idea

• Model P(Y|X) using a directed chain network, where all preceding 
classes in the chain are conditioning the following class variables

• Representation

46

all preceding labels

Y1 Y2 Y3 Yd...

X



Classifier Chains (CC) [Read et al, 2009]

• Learning

• No structure learning (random chain order)

• Parameter learning is performed on the decomposed CPDs: 
        argmaxθ P(Yi|X, π(Yi); θ)

• Prediction

• Performed by greedy maximization of each factors (CPDs):  
        argmaxYi P(Yi|X, π(Yi); θ)
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Y1 Y2 Y3 Yd...



Conditional Tree-structured Bayesian Networks (CTBNs) [Batal et al, 2013]

• Key idea

• Learn P(Y|X) using a tree-structured Bayesian network of the 
class labels

• Tree-structures can be seen as restricted chains, where each class 
variable has at most one parent class variable

• Example CTBN

48

X

Y1 Y2 Y3 Y4
at most one parent label

This network represents:



Conditional Tree-structured Bayesian Networks (CTBNs) [Batal et al, 2013]

• Learning

• Structure learning by optimizing conditional log-likelihood

1.Define a complete weighted directed graph, whose edge weights 
is equal to conditional log-likelihood

2.Find the maximum branching tree from the graph 
(* Maximum branching tree = maximum weighted directed spanning tree)

49

X

Y1 Y2 Y3 Y4



Conditional Tree-structured Bayesian Networks (CTBNs) [Batal et al, 2013]

• Learning

• Structure learning by optimizing conditional log-likelihood

• Parameter learning is performed on the decomposed CPDs

• Prediction

• Exact MAP prediction is performed by a belief propagation 
(max-product) algorithm

50

X

Y1 Y2 Y3 Y4



CC vs. CTBN
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CC CTBN

X

Y1 Y2 Y3 Y4

Y1 Y2 Y3 Yd...

at most one parent labelall preceding labels

• Decomposes the joint probability along with the 
chain structure

• Decomposes the joint probability along with the 
tree structure

• Performs exact MAP prediction (linear time 
optimal solution)

• Maximizes the marginals along the chain 
(suboptimal solution)

• Errors in prediction propagate to the following 
label prediction

• The tree-structure assumption may restrict its 
modeling ability

• No structure learning (label ordering is given at 
random)

• Tree structure is learned using a score-based 
algorithm



Advanced solutions

• Section agenda

✓ Extensions using probabilistic graphical models (PGMs) 

• Extensions using ensemble techniques
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Extensions using ensemble techniques

• Ensemble techniques

• Techniques of training multiple classifiers and combining their 
predictions to produce a single classifier

• Ensemble techniques can further improve the 
performance of MLC classifiers

• Objective: Use a combination of simpler classifiers to improve 
predictions
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Extensions using ensemble techniques

• Existing methods

• Ensemble of CCs (ECC) [Read et al, 2009]

• Mixture of CTBNs (MC) [Hong et al, 2014]
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Ensemble of Classifier Chains (ECC) [Read et al, 2009]

• Recall CC

• Key Idea

• Create user-specified number of CC’s on random subsets of 
data with random orderings of the class labels

• Predict by majority vote over all base classifiers

55

Y1 Y2 Y3 Yd...



Ensemble of Classifier Chains (ECC) [Read et al, 2009]

• Advantages

• Often times, the performance improves

• Disadvantages

• Ad-hoc ensemble implementation

• Learns base classifiers on random subsets of data with random 
label ordering

• Ensemble decisions are made by simple averaging over the base 
models and often inaccurate
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Mixture of CTBNs (MC) [Hong et al, 2014]

• Motivation

• If the underlying dependency structure in data is more 
complex than a tree structure, a single CTBN cannot model 
the data properly

• Key idea

• Use the Mixtures-of-Trees [Meila and Jordan, 2000] framework to learn 
multiple CTBNs and use them for prediction
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Mixture of CTBNs (MC) [Hong et al, 2014]

• MC defines the multivariate posterior distribution of 
class vector P(y|x) = P(y1, …,yd|x) as

• P(y|x,Tk) is the k-th mixture component defined by a CTBN Tk 

• λk is the mixture coefficient representing the weight of the k-th 
component (influence of the k-th CTBN model Tk to the 
mixture)
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Mixture of CTBNs (MC) [Hong et al, 2014]

• An example MC

59



Mixture of CTBNs (MC) [Hong et al, 2014]

• Parameter learning

• Objective: Optimize the model parameters (CTBN 
parameters {θ1, …, θK} and mixture coefficients {λ1, …, λK})

• Idea (apply EM)

1. Associate each instance (x(n), y(n)) with a hidden variable z(n) 
∈ {1, …, K} indicating which CTBN it belongs to.

2. Iteratively optimize the expected complete log-likelihood:
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Mixture of CTBNs (MC) [Hong et al, 2014]

• Structure learning

• Objective: Find multiple CTBN structures from data

• Idea (boosting-like heuristic)

1. On each addition of a new structure to the mixture, 
recalculate the weight of each data instance (ω) such that it 
represents the relative “hardness” of the instance

2. Learn the best tree structure by optimizing the weighted 
conditional log-likelihood:
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Mixture of CTBNs (MC) [Hong et al, 2014]

• Prediction

• Objective: Find the maximum a posteriori (MAP) prediction 
for a new instance x

• Idea

1. Search the space of all class assignments by defining a 
Markov chain

2. Use an annealed version of exploration procedure to speed 
up the search
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Mixture of CTBNs (MC) [Hong et al, 2014]

• Advantages

• Learns an ensemble model for MLC in a principled way

• Produces accurate and reliable results

• Disadvantages

• Iterative optimization process in learning requires a large 
amount of time
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Evaluation metrics

• Evaluation of MLC methods is more difficult than that of 
single-label classification

• Measuring the Hamming accuracy is not sufficient for the goal 
of MLC

• Hamming accuracy (HA) = 

• HA measures the individual accuracy on each class variable, 
which can be optimized by the binary relevance (BR) model

• We want to find “jointly accurate” class assignments

• We want to measure if the model predicts all the labels correctly

• Exact match accuracy (EMA) = 
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Evaluation metrics

• Exact match accuracy (EMA) = 

• EMA evaluate if the prediction is correct on all class variables

• Most appropriate metric for MLC

• We are looking for the most probable assignment of classes

• It can be too strict

• Multi-label accuracy (MLA) = 

• MLA evaluate the Jaccard index between prediction and true 
class assignments

• It is less strict than EMA; overestimates the model accuracy
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Evaluation metrics

• Conditional log-likelihood loss (CLL-loss)

• CLL-loss =  

• Reflects the model fitness

• F1-scores: harmonics mean of precision and recall

• Micro F1 = 

• Computes the F1-score on each instance and then average out

• Macro F1 =  

• Computes the F1-score on each class and then average out
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Toolboxes

• MEKA: a Multi-label Extension to WEKA  
http://meka.sourceforge.net/

• Mulan: a Java library for Multi-label Learning  
http://mulan.sourceforge.net/

• LibSVM MLC Extension (BR and LP)  
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/

• LAMDA Lab (Nanjing Univ., China) Code Repository  
http://lamda.nju.edu.cn/Default.aspx?
Page=Data&NS=&AspxAutoDetectCookieSupport=1

• Prof. Min-Ling Zhang (Southeast Univ., China)  
http://cse.seu.edu.cn/old/people/zhangml/Resources.htm#codes
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Summary
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