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Standard Machine Learning Pipeline

Manually-Tuned Machine Desired Output
Features Learning Model for Task

Features MUST be “good” for a model to perform a task!
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Standard Machine Learning Pipeline




How to Learn a Similarity Model?

* Inputs:
* Objects as Features
* X eEXC ]Rd
* Constraints
 Similarity/Dissimilarity
* X, Xj €S, X, Xg
* Set/class membership
* X;€A,x;€B
* Relative
* x; is more similar to x; than x;

e Tasks

 Classification, regression, clustering, ranking, etc.

* Methods:
* What we will focus on throughout the talk.



e Methods

* Mahalanobis Distance Metric Learning
* Kernel Learning
* Multiple Kernel Learning

* Current Trends
* Representation Learning



Mahalanobis Distance Metrics

 Mahalanobis Distance:
dy(x,y) = (x—y)' 27 (x—y)
* Generalized Mahalanobis Distance Metric:
du(x,y) = x—-y)'M (x—y)

* dy defines the squared Euclidean distance after a linear
transformation.

duxy) =x—y)'M(x-y)
=x-y)'L'Lx-y)
= (Lx — Ly)! (Lx — Ly)
= d?(Lx, Ly)
e If we learn M so that the distances between observed

points are “good”, then the same distance metric can be
applied to unobserved points.

* Note: M must be positive semidefinite (PSD) (M € SfXd)




MMC (Xing et al., 2003)

* Main idea: If initial features are bad for
clustering, provide an easy way to refine space
given feedback.

* Input:

X1,X9, ..., X, E R?
S = {(xi,xj)‘xi and x; are similar}
D = {(xy, x;)|x; and x; are dissimilar}

* Qutput:
M € §9xd



MMC (Xing et al., 2003)

max z dm (Xx, X;)
(X, x1)ED
s.t 2 dM(xi,x]-) < 1,M e x4
(xix;)ES

Algorithm:

1. Take objective gradient step w.r.t. M

2. Iterate until M converges

1. Project M onto feasible region of similarity constraints
2. Project M onto PSD cone

3. Iterate 1-2 until convergence



MMC (Xing et al., 2003)

max z dm (Xx, X;)
(X, x1)ED
s.t 2 dM(xi,x]-) < 1,M e x4
(xix;)ES

Algorithm:

1. Take objective gradient step w.r.t. M

2. Iterate until M converges

1. Project M onto feasible region of similarity constraints
2. Project M onto PSD cone (0(d?) operation)

3. Iterate 1-2 until convergence
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LMNN (Weinberger et al., 2005)

e Main idea: Learn a metric for k nearest neighbor
classification, but without having constraints over
every pair of points.

* Instead, ensure local neighborhoods contain only objects
of the same class.

* Input:

X1, X2, ..., Xy € R?
T = {in (xl-, x]-)‘xj is a "target neighbor"}

I= {in (xl-, Xj, xl)‘xj is a "target neighbor” and x; is an
"impostor"}

* Output:
M e s9xd
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LMNN (Weinberger et al., 2005)
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LMNN (Weinberger et al., 2005)

M) = ) du(x1,%))
(xi,xj)ET

spush(M) — Z(xi,xj,xl)EI[l + dM(Xier) _ dM(Xi»Xl)]

min(1 — ) epun(M) + pepysn(M)
s.t.M g §¢xd
Algorithm (Works with L not M):
1. Take objective gradient step w.r.t. L
2. Update impostor set

3. Iterate 1-2 until convergence
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LMNN (Weinberger et al., 2005)

M) = ) du(x1,%))
(xi,xj)ET

spush(M) — Z(xi,xj,xl)EI[l + dM(Xier) _ dM(Xi»Xl)]

min(1 — ) epun(M) + pepysn(M)
s.t.M g §¢xd
Algorithm (Works with L not M):
1. Take objective gradient step w.r.t. L

2. Update impostor set every p iterations
3. Iterate 1-2 until convergence
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Other Considerations

* Regularization?
* Frobenius Norm
* Trace (= trace/nuclear-norm)

* Can we learn M directly without having to perform
expensive projections onto PSD cone?
* Yes!

. Izrbf(());r)nation-theoretic Metric Learning (ITML, Davis et al.

* Uses Log-Determinant divergence measure as an objective and
performs bregman-like projections to satisfy constraints

* Maintains, low-rank and PSD without explicitly projecting.
 Kind of!

* Linear Similarity Learning éQamar, 2008; Chechik et al., 2009;
Bellet et al., 2012; Cheng 2013)

* Learn a generalized cosine similarity:

x ' Mx;
K(xi %) = N(lx- x]')
ir Xj
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More Recent Topics in Metric Learning

* Non-linear metrics (Chopra, 2005; Salakhutdinov
and Hinton, 2007; Xu et al,, 2012; Kedem et al,,
2012)

* Local Metric Learning (Weinberger and Saul,
2008; Noh et al., 2010; Wang etal., 2012; Xiong
etal. 2012)

* Extensions (Parameswaran and Weinberger,
2010; Zhang and Yeung, 2010; McFee and
Lankreit 2011)

* Few theoretical guarantees...
 http://arxiv.org/pdf/1306.6709v4.pdf
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k(xl’xj) = (xl,x]) = <¢(X1) ¢(XJ)>
K € R™" KU = (gb(xl) o(x;)), K € "

* Common Kernel Types
* Linear: k(xl,xj) = x; i Xj

* d-Degree Polynomial: k(xl,x]) (x X; + c)
Ixi=xl1;

202 )

* Gaussian (RBF): k(x,;,x]-) = exp(—

* Kernel Trick: Easy non-linear transformation
* Even for Mahalanobis Distance Metrics!

dM(Xier))
207

k(xl-, xj) = exp(—
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Learning a Kernel Directly

* Can we learn a kernel directly from information
that cannot be directly modeled by features?

* Exampl

€s.

* Survey data
* Feedback through mouse clicks
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Agree

Strongly
Agree

Scale Week is a worthwhile feature
on The Research Bunker Blog,

0

O
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0O

Vance Marriner is, without a doubt,
the most insightful contributo
to The Research Bunker Blog,
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GNMDS (Agarwal et al., 2007)

* Main Idea: Given relative comparisons between
objects, learn a kernel that reflects these
comparisons.

 Relative Comparison: “Object A is more similar to
object B than object C is to object D”

* Input:

C ={(a,b,c,d) | ais more similar to b than c is to d}

* Qutput:

K e s

No information about the objects other than C
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GNMDS (Agarwal et al., 2007)

min z Eapca T ATrace(K)

K»fabcd
(a,b,c,d)EC

s.t. dg(x¢, xq) — dg(xa, xp) = 1 — Eapea
Exab —0,K € S™n
ab

dK(an Xb) = K% + Kbb — ZKab

* By learning K we are implicitly learning ¢

* Thus, we are implicitly learning an embedding of the
objects in a kernel space.
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Metric Learning vs. Direct Kernel Learning

* Metric Learning:

* Learn a generating function Lx
e Can be used on unobserved objects (inductive)

* Does not guarantee satisfaction of all constraints

* Direct Kernel Learning

* Learns a kernel K over observed objects
* Cannot be used on unobserved objects (transductive)

* Guarantees satisfaction of all constraints (McFee and
Lanckreit 2011)

e Given that constraints are consistent
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The burning question of kernel methods

* The true goal of machine learning (in many
people’s opinion)...

Create methods that can be used without ANY
domain knowledge or expertise into the method.

* For kernel methods the big hurdle is which
kernel function to choose.

* Linear? Polynomial? Gaussian? Something else?

 Even with a choice of kernel, what is the best
parameter setting?

* Motivates Multiple Kernel Learning (MKL)
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MKIL, a brief history

* Choose kernel and parameterization through some
criteria

 Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004
* Transductive Setting (Lanckreit et al., 2004)

* Learn a kernel directly that minimizes a cost function
* SVM loss

* Introduced the idea of learning a linear combination of
predefined kernels.

* Goal of MKL:

* Instead of finding the best single kernel, find the best
combination of many different predefined kernels.

* Flood of papers afterward:
 https://sites.google.com/site/xinxingxu666 /mklsurvey
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GMKL (Varma and Babu, 2009)

* Input:
KK, .. K, € S

Y1,Y2, -y Yn

 Main Idea: Create a framework for MKL for different
kernel combinations, regularizers, and error
functions.
* Kernel combinations:
« Sum: K =Y",d;K;
* Product: K = [[%, d;K;
* More complicated combinations
* Regularizers:
* Ly: |ldll4
* L [|d]l;
* Error Functions:
* SVM regression and classification
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GMKL (Varma and Babu, 2009)

Algorithm:

I <0

d’ < random initialization

repeat
K « k(d")
Use any SVM solver with K to find dual variables
Update d'*! with gradient of objective w.r.t d
[—i+1

until converged

©® N ok e
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Conclusion

* Finding a good way to compare objects is vital to
many machine learning tasks

* This process can be guided by:
 Side information (constraints)
* The task to be accomplished

* Models discussed:
e Metrics
 Kernels

* Different take on the problem: Representation
Learning:
* http://arxiv.org/pdf/1206.5538.pdf
* http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial
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