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How to Learn a Similarity Model? 

• Inputs: 
• Objects as Features 

• 𝐱𝑖 ∈ 𝐗 ⊂ ℝ
𝑑  

• Constraints 
• Similarity/Dissimilarity 

•  𝑥𝑖 , 𝑥𝑗 ∈ 𝑆, 𝑥𝑖 , 𝑥𝑘 ∈ 𝐷 

• Set/class membership 
•  𝑥𝑖 ∈ 𝐴, 𝑥𝑗 ∈ 𝐵 

• Relative 
• 𝑥𝑖 is more similar to 𝑥𝑗 than 𝑥𝑘  

• Tasks 
• Classification, regression, clustering, ranking, etc. 

• Methods: 
• What we will focus on throughout the talk. 
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Outline 

• Methods 
• Mahalanobis Distance Metric Learning 

• Kernel Learning 

• Multiple Kernel Learning 

• Current Trends 
• Representation Learning 
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Mahalanobis Distance Metrics 

• Mahalanobis Distance: 
𝑑𝚺 𝐱, 𝐲 = 𝐱 − 𝐲

𝑇𝚺−1(𝐱 − 𝐲) 

• Generalized Mahalanobis Distance Metric: 
𝑑𝐌 𝐱, 𝐲 = 𝐱 − 𝐲

𝑇𝐌 (𝐱 − 𝐲) 

• 𝑑𝐌 defines the squared Euclidean distance after a linear 
transformation. 

𝑑𝐌 𝐱, 𝐲 = 𝐱 − 𝐲
𝑇𝐌 𝐱 − 𝐲  

𝑑𝐌 𝐱, 𝐲    = 𝐱 − 𝐲
𝑇𝐋𝑇𝐋 (𝐱 − 𝐲) 

𝑑𝐌 𝐱, 𝐲      = 𝐋𝐱 − 𝐋𝐲
𝑇(𝐋𝐱 − 𝐋𝐲) 

  = 𝑑2(𝐋𝐱, 𝐋𝐲) 

• If we learn M so that the distances between observed 
points are “good”, then the same distance metric can be 
applied to unobserved points.  

• Note:  M must be positive semidefinite (PSD) (𝐌 ∈ 𝑆+
𝑑x𝑑) 
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MMC (Xing et al., 2003) 

• Main idea:  If initial features are bad for 
clustering, provide an easy way to refine space 
given feedback. 

• Input:  
𝐱1, 𝐱2, … , 𝐱𝑛 ∈ ℝ

𝑑 
𝑆 = 𝑥𝑖 , 𝑥𝑗 𝑥𝑖 and 𝑥𝑗  are similar} 
𝐷 = 𝑥𝑘 , 𝑥𝑙 𝑥𝑘 and 𝑥𝑙  are dissimilar} 

• Output:  
𝐌 ∈ 𝑆+

𝑑x𝑑  
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MMC (Xing et al., 2003) 

max
𝐌
 𝑑𝐌 𝐱𝑘 , 𝐱𝑙
𝑥𝑘,𝑥𝑙 ∈𝐷

 

s.t  𝑑𝐌 𝐱𝑖 , 𝐱𝑗
𝑥𝑖,𝑥𝑗 ∈𝑆

≤ 1,𝐌 ∈ 𝑆+
𝑑x𝑑 

 

Algorithm: 

1. Take objective gradient step w.r.t. M 

2. Iterate until M converges 
1. Project M onto feasible region of similarity constraints 
2. Project M onto PSD cone 

3. Iterate 1-2 until convergence 
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MMC (Xing et al., 2003) 

max
𝐌
 𝑑𝐌 𝐱𝑘 , 𝐱𝑙
𝑥𝑘,𝑥𝑙 ∈𝐷

 

s.t  𝑑𝐌 𝐱𝑖 , 𝐱𝑗
𝑥𝑖,𝑥𝑗 ∈𝑆

≤ 1,𝐌 ∈ 𝑆+
𝑑x𝑑 

 

Algorithm: 

1. Take objective gradient step w.r.t. M 

2. Iterate until M converges 
1. Project M onto feasible region of similarity constraints 
2. Project M onto PSD cone (O(𝑑3) operation) 

3. Iterate 1-2 until convergence 
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LMNN (Weinberger et al., 2005) 

• Main idea: Learn a metric for 𝑘 nearest neighbor 
classification, but without having constraints over 
every pair of points. 
• Instead, ensure local neighborhoods contain only objects 

of the same class. 

• Input: 
𝐱1, 𝐱2, … , 𝐱𝑛 ∈ ℝ

𝑑 
𝑇 = ∀𝑥𝑖 𝑥𝑖 , 𝑥𝑗 𝑥𝑗 is a "target neighbor"} 

I= ∀𝑥𝑖 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑙 𝑥𝑗 is a "target neighbor" 𝑎𝑛𝑑 𝑥𝑙 is an 
"impostor"} 

 

• Output:  
𝐌 ∈ 𝑆+

𝑑x𝑑 
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LMNN (Weinberger et al., 2005) 
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LMNN (Weinberger et al., 2005) 

εpull 𝐌 =  𝑑𝐌 𝐱𝑖 , 𝐱𝒋
𝑥𝑖,𝑥𝑗 ∈𝑇

 

εpush 𝐌 =  [1 + 𝑑𝐌 𝐱𝑖 , 𝐱𝑗𝑥𝑖,𝑥𝑗,𝑥𝑙 ∈𝐼
− 𝑑𝐌 𝐱𝑖 , 𝐱𝑙 ] 

 
min
𝐌
(1 − 𝜇) εpull 𝐌 + 𝜇εpush 𝐌  

s. t.𝐌 ∈ 𝑆+
𝑑x𝑑 

Algorithm (Works with 𝐋 not 𝐌): 

1. Take objective gradient step w.r.t. 𝐋 

2. Update impostor set 

3. Iterate 1-2 until convergence 
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LMNN (Weinberger et al., 2005) 

εpull 𝐌 =  𝑑𝐌 𝐱𝑖 , 𝐱𝒋
𝑥𝑖,𝑥𝑗 ∈𝑇

 

εpush 𝐌 =  [1 + 𝑑𝐌 𝐱𝑖 , 𝐱𝑗𝑥𝑖,𝑥𝑗,𝑥𝑙 ∈𝐼
− 𝑑𝐌 𝐱𝑖 , 𝐱𝑙 ] 

 
min
𝐌
(1 − 𝜇) εpull 𝐌 + 𝜇εpush 𝐌  

s. t.𝐌 ∈ 𝑆+
𝑑x𝑑 

Algorithm (Works with 𝐋 not 𝐌): 

1. Take objective gradient step w.r.t. 𝐋 

2. Update impostor set every p iterations 

3. Iterate 1-2 until convergence 
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Other Considerations 

• Regularization? 
• Frobenius Norm 
• Trace (= trace/nuclear-norm) 

• Can we learn M directly without having to perform 
expensive projections onto PSD cone? 
• Yes! 

• Information-theoretic Metric Learning (ITML, Davis et al.  
2007) 
• Uses Log-Determinant divergence measure as an objective and 

performs bregman-like projections to satisfy constraints 
• Maintains, low-rank and PSD without explicitly projecting. 

• Kind of! 
• Linear Similarity Learning (Qamar, 2008; Chechik et al., 2009; 

Bellet et al., 2012; Cheng 2013) 
• Learn a generalized cosine similarity: 

𝐾 𝐱𝑖 , 𝐱𝑗 =
𝐱𝑖
𝑇𝐌𝐱𝑗

𝑁 𝐱𝑖 , 𝐱𝑗
 

15 



More Recent Topics in Metric Learning 

• Non-linear metrics (Chopra, 2005; Salakhutdinov 
and Hinton, 2007; Xu et al., 2012; Kedem et al., 
2012) 

• Local Metric Learning (Weinberger and Saul, 
2008; Noh et al., 2010;  Wang et al., 2012; Xiong 
et al. 2012) 

• Extensions (Parameswaran and Weinberger, 
2010; Zhang and Yeung, 2010; McFee and 
Lankreit 2011) 

• Few theoretical guarantees… 

• http://arxiv.org/pdf/1306.6709v4.pdf 
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Kernels 

𝑘 𝑥𝑖 , 𝑥𝑗 = 𝑥𝑖 , 𝑥𝑗 𝑘
= 𝜙(𝐱𝑖), 𝜙(𝐱𝑗)  

𝐊 ∈ ℝ𝑛x𝑛, 𝐊𝑖𝑗 = 𝜙 𝐱𝑖 , 𝜙 𝐱𝑗 , 𝐊 ∈ 𝑆+
𝑛x𝑛 

 

• Common Kernel Types: 
• Linear: 𝑘 𝑥𝑖 , 𝑥𝑗 = 𝐱𝑖

𝑇𝐱𝑗  

• 𝑑-Degree Polynomial: 𝑘 𝑥𝑖 , 𝑥𝑗 = 𝐱𝑖
𝑇𝐱𝑗 + 𝑐

𝑑
   

• Gaussian (RBF): 𝑘 𝑥𝑖 , 𝑥𝑗 = exp (−
𝐱𝑖−𝐱𝑗 2

2

2𝜎2
) 

• Kernel Trick: Easy non-linear transformation 
• Even for Mahalanobis Distance Metrics! 

𝑘 𝑥𝑖 , 𝑥𝑗 = exp (−
𝑑𝐌 𝐱𝑖 , 𝐱𝑗
2𝜎2

) 
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Learning a Kernel Directly 

• Can we learn a kernel directly from information 
that cannot be directly modeled by features? 

• Examples: 
• Survey data 

• Feedback through mouse clicks 

 

 

 

 

 

 

• Yes! 
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GNMDS (Agarwal et al., 2007) 

• Main Idea:  Given relative comparisons between 
objects, learn a kernel that reflects these 
comparisons. 
• Relative Comparison: “Object A is more similar to 

object B than object C is to object D” 

• Input: 
𝐶 = 𝑎, 𝑏, 𝑐, 𝑑   𝑎 is more similar to 𝑏 than 𝑐 𝑖𝑠 𝑡𝑜 𝑑} 

• Output: 
𝐊 ∈ 𝑆+

𝑛x𝑛 

 

No information about the objects other than C 
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GNMDS (Agarwal et al., 2007) 

min
𝐊,𝜉𝑎𝑏𝑐𝑑

 𝜉𝑎𝑏𝑐𝑑 + 𝜆Trace(𝐊)

𝑎,𝑏,𝑐,𝑑 ∈𝐶

 

s.t. 𝑑𝐊 𝑥𝑐 , 𝑥𝑑 − 𝑑𝐊 𝑥𝑎, 𝑥𝑏 ≥ 1 − 𝜉𝑎𝑏𝑐𝑑  

 𝐊𝑎𝑏 = 0

𝑎𝑏

, 𝐊 ∈ 𝑆+
𝑛x𝑛 

 
𝑑𝐊 𝑥𝑎, 𝑥𝑏 = 𝐊

𝑎𝑎 + 𝐊𝑏𝑏 − 2𝐊𝑎𝑏 

 

• By learning K we are implicitly learning 𝜙 
• Thus, we are implicitly learning an embedding of the 

objects in a kernel space. 
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Metric Learning vs. Direct Kernel Learning 

• Metric Learning: 
• Learn a generating function 𝐋𝐱 

• Can be used on unobserved objects (inductive) 

• Does not guarantee satisfaction of all constraints 

 

• Direct Kernel Learning 
• Learns a kernel K over observed objects 

• Cannot be used on unobserved objects (transductive) 

• Guarantees satisfaction of all constraints (McFee and 
Lanckreit 2011) 
• Given that constraints are consistent 
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The burning question of kernel methods 

• The true goal of machine learning (in many 
people’s opinion)… 

Create methods that can be used without ANY 
domain knowledge or expertise into the method. 

 

• For kernel methods the big hurdle is which 
kernel function to choose. 
• Linear? Polynomial? Gaussian? Something else? 

• Even with a choice of kernel, what is the best 
parameter setting? 
 

• Motivates Multiple Kernel Learning (MKL) 
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MKL, a brief history 

• Choose kernel and parameterization through some 
criteria 
• Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 

2002; Shawe-Taylor and Cristianini, 2004 

• Transductive Setting (Lanckreit et al., 2004) 
• Learn a kernel directly that minimizes a cost function  

• SVM loss 

• Introduced the idea of learning a linear combination of 
predefined kernels. 

• Goal of MKL: 
• Instead of finding the best single kernel, find the best 

combination of many different predefined kernels. 

• Flood of papers afterward: 
• https://sites.google.com/site/xinxingxu666/mklsurvey 
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GMKL (Varma and Babu, 2009) 

• Input: 
𝐊1, 𝐊2, … , 𝐊𝑚 ∈ 𝑆+

𝑛x𝑛 
𝑦1, 𝑦2, … , 𝑦𝑛 

• Main Idea: Create a framework for MKL for different 
kernel combinations, regularizers, and error 
functions. 
• Kernel combinations: 

• Sum: 𝐊 =  𝑑𝑖𝐊𝑖
𝑚
𝑖=1  

• Product: 𝐊 =  𝑑𝑖𝐊𝑖
𝑚
𝑖=1  

• More complicated combinations 

• Regularizers: 
• 𝑙1:  𝐝 1 

• 𝑙2:  𝐝 2 

• Error Functions: 
• SVM regression and classification 
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GMKL (Varma and Babu, 2009) 

Algorithm: 

1.  𝑖 ← 0 

2.  𝐝0 ← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

3.  repeat 

4.       𝐊 ← 𝑘(𝐝𝑖) 

5.       Use any SVM solver with K to find dual variables 

6.       Update 𝐝𝑖+1 with gradient of objective w.r.t  𝐝𝑖 

7.       𝑖 ← 𝑖 + 1 

8.  until converged 
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Conclusion 

• Finding a good way to compare objects is vital to 
many machine learning tasks 

• This process can be guided by: 
• Side information (constraints) 
• The task to be accomplished 

• Models discussed: 
• Metrics 
• Kernels 
 

• Different take on the problem: Representation 
Learning: 
• http://arxiv.org/pdf/1206.5538.pdf 
• http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial 
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