# Learning Models of Similarity: Metric and Kernel Learning

Eric Heim, University of Pittsburgh



### Standard Machine Learning Pipeline



Features MUST be "good" for a model to perform a task!

### Standard Machine Learning Pipeline





### Standard Machine Learning Pipeline



### How to Learn a Similarity Model?

#### • Inputs:

- Objects as Features
  - $\mathbf{x}_i \in \mathbf{X} \subset \mathbb{R}^d$
- Constraints
  - Similarity/Dissimilarity
    - $x_i, x_j \in S, x_i, x_k$
  - Set/class membership
    - $x_i \in A, x_i \in B$
  - Relative
    - $x_i$  is more similar to  $x_j$  than  $x_k$
- Tasks
  - Classification, regression, clustering, ranking, etc.
- Methods:
  - What we will focus on throughout the talk.

#### Outline

- Methods
  - Mahalanobis Distance Metric Learning
  - Kernel Learning
  - Multiple Kernel Learning
- Current Trends
  - Representation Learning

#### Mahalanobis Distance Metrics

Mahalanobis Distance:

$$d_{\Sigma}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{T} \Sigma^{-1} (\mathbf{x} - \mathbf{y})$$

• Generalized Mahalanobis Distance Metric:

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{T} \mathbf{M} (\mathbf{x} - \mathbf{y})$$

•  $d_{\mathbf{M}}$  defines the squared Euclidean distance after a linear transformation.

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{y}) = (\mathbf{x} - \mathbf{y})^{T} \mathbf{M} (\mathbf{x} - \mathbf{y})$$

$$= (\mathbf{x} - \mathbf{y})^{T} \mathbf{L}^{T} \mathbf{L} (\mathbf{x} - \mathbf{y})$$

$$= (\mathbf{L}\mathbf{x} - \mathbf{L}\mathbf{y})^{T} (\mathbf{L}\mathbf{x} - \mathbf{L}\mathbf{y})$$

$$= d^{2}(\mathbf{L}\mathbf{x}, \mathbf{L}\mathbf{y})$$

- If we learn **M** so that the distances between observed points are "good", then the same distance metric can be applied to unobserved points.
- Note: **M** must be positive semidefinite (PSD) ( $\mathbf{M} \in S_+^{d \times d}$ )

# MMC (Xing et al., 2003)

- <u>Main idea</u>: If initial features are bad for clustering, provide an easy way to refine space given feedback.
- Input:

$$\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$$
  
 $S = \{(x_i, x_j) | x_i \text{ and } x_j \text{ are similar}\}$   
 $D = \{(x_k, x_l) | x_k \text{ and } x_l \text{ are dissimilar}\}$ 

• Output:

$$\mathbf{M} \in S_+^{d \times d}$$

# MMC (Xing et al., 2003)

$$\max_{\mathbf{M}} \sum_{(x_k, x_l) \in D} d_{\mathbf{M}}(\mathbf{x}_k, \mathbf{x}_l)$$
s.t 
$$\sum_{(x_i, x_j) \in S} d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) \le 1, \mathbf{M} \in S_+^{d \times d}$$

#### Algorithm:

- 1. Take objective gradient step w.r.t. M
- 2. Iterate until **M** converges
  - 1. Project **M** onto feasible region of similarity constraints
  - 2. Project **M** onto PSD cone
- 3. Iterate 1-2 until convergence

# MMC (Xing et al., 2003)

$$\max_{\mathbf{M}} \sum_{(x_k, x_l) \in D} d_{\mathbf{M}}(\mathbf{x}_k, \mathbf{x}_l)$$
s.t 
$$\sum_{(x_i, x_j) \in S} d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) \le 1, \mathbf{M} \in S_+^{d \times d}$$

#### Algorithm:

- 1. Take objective gradient step w.r.t. M
- 2. Iterate until **M** converges
  - 1. Project **M** onto feasible region of similarity constraints
  - 2. Project **M** onto PSD cone  $(O(d^3))$  operation
- 3. Iterate 1-2 until convergence

- <u>Main idea</u>: Learn a metric for *k* nearest neighbor classification, but without having constraints over every pair of points.
  - Instead, ensure local neighborhoods contain only objects of the same class.
- Input:

$$\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$$

$$T = \{ \forall_{x_i} (x_i, x_j) | x_j \text{ is a "target neighbor"} \}$$

$$I = \{ \forall_{x_i} (x_i, x_j, x_l) | x_j \text{ is a "target neighbor"} \text{ and } x_l \text{ is an "impostor"} \}$$

• Output:

$$\mathbf{M} \in S_+^{d \times d}$$



$$\varepsilon_{\text{pull}}(\mathbf{M}) = \sum_{(x_i, x_j) \in T} d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) \\
\varepsilon_{\text{push}}(\mathbf{M}) = \sum_{(x_i, x_j, x_l) \in I} [1 + d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) - d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_l)]$$

$$\min_{\mathbf{M}} (1 - \mu) \, \varepsilon_{\text{pull}}(\mathbf{M}) + \mu \varepsilon_{\text{push}}(\mathbf{M})$$
s. t.  $\mathbf{M} \in S_{+}^{d \times d}$ 

Algorithm (Works with **L** not **M**):

- 1. Take objective gradient step w.r.t. L
- 2. Update impostor set
- 3. Iterate 1-2 until convergence

$$\varepsilon_{\text{pull}}(\mathbf{M}) = \sum_{(x_i, x_j) \in T} d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) \\
\varepsilon_{\text{push}}(\mathbf{M}) = \sum_{(x_i, x_j, x_l) \in I} [1 + d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j) - d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_l)]$$

$$\min_{\mathbf{M}} (1 - \mu) \, \varepsilon_{\text{pull}}(\mathbf{M}) + \mu \varepsilon_{\text{push}}(\mathbf{M})$$
s. t.  $\mathbf{M} \in S_{+}^{d \times d}$ 

Algorithm (Works with L not M):

- 1. Take objective gradient step w.r.t. L
- 2. Update impostor set every *p* iterations
- 3. Iterate 1-2 until convergence

#### Other Considerations

- Regularization?
  - Frobenius Norm
  - Trace (= trace/nuclear-norm)
- Can we learn **M** directly without having to perform expensive projections onto PSD cone?
  - Yes!
    - Information-theoretic Metric Learning (ITML, Davis et al. 2007)
      - Uses Log-Determinant divergence measure as an objective and performs bregman-like projections to satisfy constraints
        - Maintains, low-rank and PSD without explicitly projecting.
  - Kind of!
    - Linear Similarity Learning (Qamar, 2008; Chechik et al., 2009; Bellet et al., 2012; Cheng 2013)
    - Learn a generalized cosine similarity:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \frac{\mathbf{x}_i^T \mathbf{M} \mathbf{x}_j}{N(\mathbf{x}_i, \mathbf{x}_j)}$$

### More Recent Topics in Metric Learning

- Non-linear metrics (Chopra, 2005; Salakhutdinov and Hinton, 2007; Xu et al., 2012; Kedem et al., 2012)
- Local Metric Learning (Weinberger and Saul, 2008; Noh et al., 2010; Wang et al., 2012; Xiong et al. 2012)
- Extensions (Parameswaran and Weinberger, 2010; Zhang and Yeung, 2010; McFee and Lankreit 2011)
- Few theoretical guarantees...
- http://arxiv.org/pdf/1306.6709v4.pdf

#### Kernels

$$k(x_i, x_j) = \langle x_i, x_j \rangle_k = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle$$
  

$$\mathbf{K} \in \mathbb{R}^{n \times n}, \mathbf{K}^{ij} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle, \mathbf{K} \in S_+^{n \times n}$$

- Common Kernel Types:
  - Linear:  $k(x_i, x_j) = \mathbf{x}_i^T \mathbf{x}_j$
  - *d*-Degree Polynomial:  $k(x_i, x_j) = (\mathbf{x}_i^T \mathbf{x}_j + c)^d$
  - Gaussian (RBF):  $k(x_i, x_j) = \exp(-\frac{\|\mathbf{x}_i \mathbf{x}_j\|_2^2}{2\sigma^2})$
- Kernel Trick: Easy non-linear transformation
  - Even for Mahalanobis Distance Metrics!

$$k(x_i, x_j) = \exp(-\frac{d_{\mathbf{M}}(\mathbf{x}_i, \mathbf{x}_j)}{2\sigma^2})$$

### Learning a Kernel Directly

- Can we learn a kernel directly from information that cannot be directly modeled by features?
- Examples:
  - Survey data
  - Feedback through mouse clicks

|                                                                                                        | Strongly<br>Disagree | Disagree | Undecided | Agree | Strongly<br>Agree |
|--------------------------------------------------------------------------------------------------------|----------------------|----------|-----------|-------|-------------------|
| Scale Week is a worthwhile feature on The Research Bunker Blog.                                        | 0                    | 0        | 0         | •     | 0                 |
| I would like to read more posts about survey rating scales.                                            | ( )                  | 0        | 0         | 0     | •                 |
| Vance Marriner is, without a doubt,<br>the most insightful contributor<br>to The Research Bunker Blog. |                      | 0        | 0         | 0     | 0                 |

Yes!



# GNMDS (Agarwal et al., 2007)

- <u>Main Idea</u>: Given *relative comparisons* between objects, learn a kernel that reflects these comparisons.
  - Relative Comparison: "Object A is more similar to object B than object C is to object D"
- Input:

 $C = \{(a, b, c, d) \mid a \text{ is more similar to } b \text{ than } c \text{ is to } d\}$ 

• Output:

$$\mathbf{K} \in S_+^{n \times n}$$

No information about the objects other than *C* 

# GNMDS (Agarwal et al., 2007)

$$\min_{\mathbf{K}, \xi_{abcd}} \sum_{(a,b,c,d) \in C} \xi_{abcd} + \lambda \operatorname{Trace}(\mathbf{K})$$
s.t.  $d_{\mathbf{K}}(x_c, x_d) - d_{\mathbf{K}}(x_a, x_b) \ge 1 - \xi_{abcd}$ 

$$\sum_{ab} \mathbf{K}^{ab} = 0, \mathbf{K} \in S_+^{n \times n}$$

$$d_{\mathbf{K}}(x_a, x_b) = \mathbf{K}^{aa} + \mathbf{K}^{bb} - 2\mathbf{K}^{ab}$$

- By learning **K** we are implicitly learning  $\phi$ 
  - Thus, we are implicitly learning an embedding of the objects in a kernel space.

#### Metric Learning vs. Direct Kernel Learning

- Metric Learning:
  - Learn a generating function **Lx** 
    - Can be used on unobserved objects (inductive)
  - Does not guarantee satisfaction of all constraints

- Direct Kernel Learning
  - Learns a kernel **K** over observed objects
    - Cannot be used on unobserved objects (transductive)
  - Guarantees satisfaction of all constraints (McFee and Lanckreit 2011)
    - Given that constraints are consistent

#### The burning question of kernel methods

• The true goal of machine learning (in many people's opinion)...

Create methods that can be used without ANY domain knowledge or expertise into the method.

- For kernel methods the big hurdle is which kernel function to choose.
  - Linear? Polynomial? Gaussian? Something else?
- Even with a choice of kernel, what is the best parameter setting?
- Motivates Multiple Kernel Learning (MKL)

#### MKL, a brief history

- Choose kernel and parameterization through some criteria
  - Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004
- Transductive Setting (Lanckreit et al., 2004)
  - Learn a kernel directly that minimizes a cost function
    - SVM loss
  - Introduced the idea of learning a linear combination of predefined kernels.
- Goal of MKL:
  - Instead of finding the best single kernel, find the best combination of many different predefined kernels.
- Flood of papers afterward:
  - <a href="https://sites.google.com/site/xinxingxu666/mklsurvey">https://sites.google.com/site/xinxingxu666/mklsurvey</a>

### GMKL (Varma and Babu, 2009)

• Input:

$$\mathbf{K}_1, \mathbf{K}_2, \dots, \mathbf{K}_m \in S^{n \times n}_+$$
  
 $y_1, y_2, \dots, y_n$ 

- <u>Main Idea</u>: Create a framework for MKL for different kernel combinations, regularizers, and error functions.
  - Kernel combinations:
    - Sum:  $\mathbf{K} = \sum_{i=1}^{m} d_i \mathbf{K}_i$
    - Product:  $\mathbf{K} = \prod_{i=1}^m d_i \mathbf{K}_i$
    - More complicated combinations
  - Regularizers:
    - $l_1: \|\mathbf{d}\|_1$
    - $l_2: \|\mathbf{d}\|_2$
  - Error Functions:
    - SVM regression and classification

### GMKL (Varma and Babu, 2009)

#### Algorithm:

- 1.  $i \leftarrow 0$
- 2.  $\mathbf{d}^0 \leftarrow random\ initialization$
- 3. repeat
- 4.  $\mathbf{K} \leftarrow k(\mathbf{d}^i)$
- 5. Use any SVM solver with **K** to find dual variables
- 6. Update  $\mathbf{d}^{i+1}$  with gradient of objective w.r.t  $\mathbf{d}^{i}$
- 7.  $i \leftarrow i + 1$
- 8. **until** converged

#### Conclusion

- Finding a good way to compare objects is vital to many machine learning tasks
- This process can be guided by:
  - Side information (constraints)
  - The task to be accomplished
- Models discussed:
  - Metrics
  - Kernels
- Different take on the problem: Representation Learning:
  - http://arxiv.org/pdf/1206.5538.pdf
  - http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial