Learning Models of Similarity: Metric and Kernel Learning

Eric Heim, University of Pittsburgh

Standard Machine Learning Pipeline

Features MUST be "good" for a model to perform a task!

Standard Machine Learning Pipeline

Standard Machine Learning Pipeline

How to Learn a Similarity Model?

- Inputs:
- Objects as Features
- $\mathbf{x}_{i} \in \mathbf{X} \subset \mathbb{R}^{d}$
- Constraints
- Similarity/Dissimilarity
- $x_{i}, x_{j} \in S, x_{i}, x_{k}$
- Set/class membership
- $x_{i} \in A, x_{j} \in B$
- Relative
- x_{i} is more similar to x_{j} than x_{k}
- Tasks
- Classification, regression, clustering, ranking, etc.
- Methods:
- What we will focus on throughout the talk.

Outline

- Methods
- Mahalanobis Distance Metric Learning
- Kernel Learning
- Multiple Kernel Learning
- Current Trends
- Representation Learning

Mahalanobis Distance Metrics

- Mahalanobis Distance:

$$
d_{\boldsymbol{\Sigma}}(\mathbf{x}, \mathbf{y})=(\mathbf{x}-\mathbf{y})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mathbf{y})
$$

- Generalized Mahalanobis Distance Metric:

$$
d_{\mathbf{M}}(\mathbf{x}, \mathbf{y})=(\mathbf{x}-\mathbf{y})^{T} \mathbf{M}(\mathbf{x}-\mathbf{y})
$$

- $d_{\mathbf{M}}$ defines the squared Euclidean distance after a linear transformation.

$$
\begin{aligned}
d_{\mathbf{M}}(\mathbf{x}, \mathbf{y}) & =(\mathbf{x}-\mathbf{y})^{T} \mathbf{M}(\mathbf{x}-\mathbf{y}) \\
& =(\mathbf{x}-\mathbf{y})^{T} \mathbf{L}^{T} \mathbf{L}(\mathbf{x}-\mathbf{y}) \\
& =(\mathbf{L x}-\mathbf{L y})^{T}(\mathbf{L x}-\mathbf{L y}) \\
& =d^{2}(\mathbf{L x}, \mathbf{L y})
\end{aligned}
$$

- If we learn \mathbf{M} so that the distances between observed points are "good", then the same distance metric can be applied to unobserved points.
- Note: \mathbf{M} must be positive semidefinite (PSD) $\left(\mathbf{M} \in S_{+}^{d x d}\right)$

MMC (Xing et al., 2003)

- Main idea: If initial features are bad for clustering, provide an easy way to refine space given feedback.
- Input:

$$
\begin{gathered}
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d} \\
S=\left\{\left(x_{i}, x_{j}\right) \mid x_{i} \text { and } x_{j} \text { are similar }\right\} \\
D=\left\{\left(x_{k}, x_{l}\right) \mid x_{k} \text { and } x_{l} \text { are dissimilar }\right\}
\end{gathered}
$$

- Output:

$$
\mathbf{M} \in S_{+}^{d \times d}
$$

MMC (Xing et al., 2003)

$$
\begin{gathered}
\max _{\mathbf{M}} \sum_{\left(x_{k}, x_{l}\right) \in D} d_{\mathbf{M}}\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right) \\
\text { s.t } \sum_{\left(x_{i}, x_{j}\right) \in S} d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq 1, \mathbf{M} \in S_{+}^{d \times d}
\end{gathered}
$$

Algorithm:

1. Take objective gradient step w.r.t. \mathbf{M}
2. Iterate until \mathbf{M} converges
3. Project \mathbf{M} onto feasible region of similarity constraints
4. Project \mathbf{M} onto PSD cone
5. Iterate 1-2 until convergence

MMC (Xing et al., 2003)

$$
\begin{aligned}
& \max _{\mathbf{M}} \sum_{\left(x_{k}, x_{l}\right) \in D} d_{\mathbf{M}}\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right) \\
& \text { s.t } \sum_{\left(x_{i}, x_{j}\right) \in S} d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \leq 1, \mathbf{M} \in S_{+}^{d \times d}
\end{aligned}
$$

Algorithm:

1. Take objective gradient step w.r.t. \mathbf{M}
2. Iterate until \mathbf{M} converges
3. Project \mathbf{M} onto feasible region of similarity constraints
4. Project \mathbf{M} onto PSD cone ($O\left(d^{3}\right)$ operation)
5. Iterate 1-2 until convergence

LMNN (Weinberger et al., 2005)

- Main idea: Learn a metric for k nearest neighbor classification, but without having constraints over every pair of points.
- Instead, ensure local neighborhoods contain only objects of the same class.
- Input:

$$
\begin{gathered}
\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d} \\
T=\left\{\forall_{x_{i}}\left(x_{i}, x_{j}\right) \mid x_{j} \text { is a "target neighbor" }\right\} \\
I=\left\{\forall_{x_{i}}\left(x_{i}, x_{j}, x_{l}\right) \mid x_{j} \text { is a "target neighbor" and } x_{l}\right. \text { is an } \\
\text { "impostor" }\}
\end{gathered}
$$

- Output:

$$
\mathbf{M} \in S_{+}^{d \times d}
$$

LMNN (Weinberger et al., 2005)

BEFORE
AFTER

LMNN (Weinberger et al., 2005)

$$
\varepsilon_{\text {pull }}(\mathbf{M})=\sum_{\left(x_{i}, x_{j}\right) \in T} d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

$$
\begin{gathered}
\varepsilon_{\text {push }}(\mathbf{M})=\sum_{\left(x_{i}, x_{j}, x_{l}\right) \in I}\left[1+d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{l}\right)\right] \\
\min _{\mathbf{M}}(1-\mu) \varepsilon_{\text {pull }}(\mathbf{M})+\mu \varepsilon_{\text {push }}(\mathbf{M}) \\
\text { s.t. } \mathbf{M} \in S_{+}^{d x d}
\end{gathered}
$$

Algorithm (Works with \mathbf{L} not \mathbf{M}):

1. Take objective gradient step w.r.t. L
2. Update impostor set
3. Iterate 1-2 until convergence

LMNN (Weinberger et al., 2005)

$$
\varepsilon_{\text {pull }}(\mathbf{M})=\sum_{\left(x_{i}, x_{j}\right) \in T} d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

$$
\begin{gathered}
\varepsilon_{\text {push }}(\mathbf{M})=\sum_{\left(x_{i}, x_{j}, x_{l}\right) \in I}\left[1+d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{l}\right)\right] \\
\min _{\mathbf{M}}(1-\mu) \varepsilon_{\text {pull }}(\mathbf{M})+\mu \varepsilon_{\text {push }}(\mathbf{M}) \\
\text { s.t. } \mathbf{M} \in S_{+}^{d \times d}
\end{gathered}
$$

Algorithm (Works with \mathbf{L} not \mathbf{M}):

1. Take objective gradient step w.r.t. L
2. Update impostor set every p iterations
3. Iterate $1-2$ until convergence

Other Considerations

- Regularization?
- Frobenius Norm
- Trace (= trace/nuclear-norm)
- Can we learn \mathbf{M} directly without having to perform expensive projections onto PSD cone?
- Yes!
- Information-theoretic Metric Learning (ITML, Davis et al. 2007)
- Uses Log-Determinant divergence measure as an objective and performs bregman-like projections to satisfy constraints
- Maintains, low-rank and PSD without explicitly projecting.
- Kind of!
- Linear Similarity Learning (Qamar, 2008; Chechik et al., 2009; Bellet et al., 2012; Cheng 2013)
- Learn a generalized cosine similarity:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\frac{\mathbf{x}_{i}^{T} \mathbf{M} \mathbf{x}_{j}}{N\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}
$$

More Recent Topics in Metric Learning

- Non-linear metrics (Chopra, 2005; Salakhutdinov and Hinton, 2007; Xu et al., 2012; Kedem et al., 2012)
- Local Metric Learning (Weinberger and Saul, 2008; Noh et al., 2010; Wang et al., 2012; Xiong et al. 2012)
- Extensions (Parameswaran and Weinberger, 2010; Zhang and Yeung, 2010; McFee and Lankreit 2011)
- Few theoretical guarantees...
- http://arxiv.org/pdf/1306.6709v4.pdf

Kernels

$$
\begin{gathered}
k\left(x_{i}, x_{j}\right)=\left\langle x_{i}, x_{j}\right\rangle_{k}=\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle \\
\mathbf{K} \in \mathbb{R}^{n \times n}, \mathbf{K}^{i j}=\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle, \mathbf{K} \in S_{+}^{n \times n}
\end{gathered}
$$

- Common Kernel Types:
- Linear: $k\left(x_{i}, x_{j}\right)=\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
- d-Degree Polynomial: $k\left(x_{i}, x_{j}\right)=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}+c\right)^{d}$
- Gaussian (RBF): $k\left(x_{i}, x_{j}\right)=\exp \left(-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}^{2}}{2 \sigma^{2}}\right)$
- Kernel Trick: Easy non-linear transformation
- Even for Mahalanobis Distance Metrics!

$$
k\left(x_{i}, x_{j}\right)=\exp \left(-\frac{d_{\mathbf{M}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)}{2 \sigma^{2}}\right)
$$

Learning a Kernel Directly

- Can we learn a kernel directly from information that cannot be directly modeled by features?
- Examples:
- Survey data
- Feedback through mouse clicks

	Strongly Disagree	Disagree	Undecided	Agree	Strongly Agree
Scale Week is a worthwhile feature on The Research Bunker Blog.	0	0	0	0	0
I would like to read more	0	0	0	0	0
posts about survey rating scales.	0	0	0	0	0
Vance Marriner is, without a doubt, the most insightful contributor to The Research Bunker Blog.		0			

- Yes!

GNMDS (Agarwal et al., 2007)

- Main Idea: Given relative comparisons between objects, learn a kernel that reflects these comparisons.
- Relative Comparison: "Object A is more similar to object B than object C is to object D "
- Input:
$C=\{(a, b, c, d) \mid a$ is more similar to b than c is to $d\}$
- Output:

$$
\mathbf{K} \in S_{+}^{n \times n}
$$

No information about the objects other than C

GNMDS (Agarwal et al., 2007)

$$
\begin{gathered}
\min _{\mathbf{K}, \xi_{a b c d}} \sum_{(a, b, c, d) \in C} \xi_{a b c d}+\lambda \operatorname{Trace}(\mathbf{K}) \\
\text { s.t. } d_{\mathbf{K}}\left(x_{c}, x_{d}\right)-d_{\mathbf{K}}\left(x_{a}, x_{b}\right) \geq 1-\xi_{a b c d} \\
\sum_{a b} \mathbf{K}^{a b}=0, \mathbf{K} \in S_{+}^{n \times n} \\
d_{\mathbf{K}}\left(x_{a}, x_{b}\right)=\mathbf{K}^{a a}+\mathbf{K}^{b b}-2 \mathbf{K}^{a b}
\end{gathered}
$$

- By learning \mathbf{K} we are implicitly learning ϕ
- Thus, we are implicitly learning an embedding of the objects in a kernel space.

Metric Learning vs. Direct Kernel Learning

- Metric Learning:
- Learn a generating function $\mathbf{L x}$
- Can be used on unobserved objects (inductive)
- Does not guarantee satisfaction of all constraints
- Direct Kernel Learning
- Learns a kernel K over observed objects
- Cannot be used on unobserved objects (transductive)
- Guarantees satisfaction of all constraints (McFee and Lanckreit 2011)
- Given that constraints are consistent

The burning question of kernel methods

- The true goal of machine learning (in many people's opinion)...
Create methods that can be used without ANY domain knowledge or expertise into the method.
- For kernel methods the big hurdle is which kernel function to choose.
- Linear? Polynomial? Gaussian? Something else?
- Even with a choice of kernel, what is the best parameter setting?
- Motivates Multiple Kernel Learning (MKL)

MKL, a brief history

- Choose kernel and parameterization through some criteria
- Cristianini and Shawe-Taylor, 2000; Scholkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004
- Transductive Setting (Lanckreit et al., 2004)
- Learn a kernel directly that minimizes a cost function
- SVM loss
- Introduced the idea of learning a linear combination of predefined kernels.
- Goal of MKL:
- Instead of finding the best single kernel, find the best combination of many different predefined kernels.
- Flood of papers afterward:
- https://sites.google.com/site/xinxingxu666/mklsurvey

GMKL (Varma and Babu, 2009)

- Input:

$$
\begin{gathered}
\mathbf{K}_{1}, \mathbf{K}_{2}, \ldots, \mathbf{K}_{m} \in S_{+}^{n \times n} \\
y_{1}, y_{2}, \ldots, y_{n}
\end{gathered}
$$

- Main Idea: Create a framework for MKL for different kernel combinations, regularizers, and error functions.
- Kernel combinations:
- Sum: $\mathbf{K}=\sum_{i=1}^{m} d_{i} \mathbf{K}_{i}$
- Product: $\mathbf{K}=\prod_{i=1}^{m} d_{i} \mathbf{K}_{i}$
- More complicated combinations
- Regularizers:
- $l_{1}:\|\mathbf{d}\|_{1}$
- $l_{2}:\|\mathbf{d}\|_{2}$
- Error Functions:
- SVM regression and classification

GMKL (Varma and Babu, 2009)

Algorithm:

1. $i \leftarrow 0$
2. $\quad \mathbf{d}^{0} \leftarrow$ random initialization
3. repeat
4. $\quad \mathbf{K} \leftarrow k\left(\mathbf{d}^{i}\right)$
5. Use any SVM solver with \mathbf{K} to find dual variables
6. Update \mathbf{d}^{i+1} with gradient of objective w.r.t \mathbf{d}^{i}
7. $\quad i \leftarrow i+1$
8. until converged

Conclusion

- Finding a good way to compare objects is vital to many machine learning tasks
- This process can be guided by:
- Side information (constraints)
- The task to be accomplished
- Models discussed:
- Metrics
- Kernels
- Different take on the problem: Representation Learning:
- http://arxiv.org/pdf/1206.5538.pdf
- http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial

