
1 

 
CS 3750 Advanced Machine Learning 

 

CS 3750  Machine Learning 

   
 
 
 
 
 
 
Milos Hauskrecht 
milos@cs.pitt.edu 
5329 Sennott Square, x4-8845 
 
http://www.cs.pitt.edu/~milos/courses/cs3750/ 

Lecture 2 

Advanced Machine Learning 

 
CS 3750 Advanced Machine Learning 

 

Learning 

Starts with data & prior knowledge 
 
Typical steps in learning:   
•  Define a model space  
•  Define an objective criterion: criterion for measuring the 
goodness of a model (fit to data) 
•  Optimization: finding the best model 
Alternative: optimization is replaced with the inference, e.g. 
Bayesian inference in the Bayesian learning 
 
Evaluation/application:  
•  Model learned from the training data 
•  generalization to the future (test) data 
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Density estimation 
Data:  
 
 
Objective:  try to estimate the underlying true probability 

distribution over variables       ,           ,  using examples in  D 
 
 
 
 
 
Standard (iid) assumptions: Samples  
•  are independent of each other 
•  come from the same (identical) distribution (fixed          )  
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Density estimation 

Types of density estimation: 
Parametric 
•  the distribution is modeled using a set of parameters             

•  Example: mean and covariances of multivariate normal 
•  Estimation: find parameters       that fit the data D the best 
Non-parametric 
•  The model of the distribution utilizes all examples in D 
•  As if all examples were parameters of the distribution 
•  The density for a point x is influenced by examples in its 

neighborhood 

Θ
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Basic criteria 

What is the best set of parameters?  
•  Maximum likelihood (ML) 

•  Maximum a posteriori probability (MAP) 

),|( ξΘDpmaximize 

ξ - represents prior (background) knowledge 

),|( ξDp Θmaximize 
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Selects the mode of the posterior 

 
CS 3750 Advanced Machine Learning 

 

Example. Bernoulli distribution. 
Outcomes: two possible values – 0 or 1 (head or tail) 
Data:  D    a sequence of outcomes       with 0,1 values  
 
Model:  probability of an outcome 1 
              probability of 0 
 
 
 
Objective:  

 We would like to estimate the probability of seeing 1: 
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Bernoulli distribution 
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Maximum likelihood (ML) estimate. 

  

Maximum likelihood estimate 

1N - number of 1s seen 2N - number of 0s seen 
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Maximum likelihood (ML) estimate. 

  

21

11

NN
N

N
N

ML +
==θML Solution: 

Optimize log-likelihood 
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Maximum a posteriori estimate 

Maximum a posteriori estimate 
–  Selects the mode of the posterior distribution 

 
 
 
 
 
 
 
 
 
 
 
How to choose the prior probability? 
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Prior distribution 
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Choice of prior: Beta distribution    

Beta distribution “fits” binomial sampling - conjugate choices 
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Beta distribution 
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Bayesian learning 

•  Both ML or MAP pick one parameter value  
–  Is it always the best solution? 

•  Full Bayesian approach 
–  Remedies the limitation of one choice 
–  Keeps and uses a complete posterior distribution 

•  How is it used? Assume we want:  
–  Considers all parameter settings and averages the result 

–  Example: predict the result of the next outcome  
•  Choose outcome 1 if                         is higher 

θξθξθξ
θ

dDpPDP ),|(),|(),|( ∫ Δ=Δ

),|1( ξDxP =

),|( ξDP Δ



7 

 
CS 2750 Machine Learning 

 

Other distributions 

 The same ideas can be applied to other distributions 
–  Typically we choose distributions that behave well so that 

computations lead to a nice solutions 
 
•  Exponential family of distributions 

Conjugate choices (sample – prior combinations) for some of the 
distributions from the exponential family: 
–  Binomial – Beta 
–  Multinomial - Dirichlet 
–  Exponential – Gamma 
–  Poisson – Inverse Gamma 
–  Gaussian  - Gaussian (mean) and Wishart (covariance) 
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Non-parametric density estimation 

Parametric density estimation: 
•  A set of random variables  
•  A model of the distribution over variables in X 

 with parameters       :  
•  Data 
Objective: find parameters        such that                 models D  
Parametric models are: 
•  restricted to specific forms, which may not always be suitable;  
•  Nonparametric approaches: 
•  make few assumptions about the overall shape of the 

distribution being modelled. 
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Nonparametric Methods 

Histogram methods: 
partition the data space into 
distinct bins with widths ∆i and 
count the number of 
observations, ni, in each bin. 

•   Often, the same width is 
used for all bins, ∆ i = ∆. 
•  ∆ acts as a smoothing 
parameter. 

•  In a D-dimensional space, using M 
bins in each dimen-sion will require 
MD bins! 
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Nonparametric Methods 

•  Assume observations drawn 
from a density p(x) and 
consider a small region R 
containing x such that 

•  The probability that K out of 
N observations lie inside R 
is  Bin(K,N,P ) and if N is 
large 

If the volume of R, V, is 
sufficiently small, p(x) is 
approximately constant over 
R and 
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Nonparametric Methods: kernel methods 

Kernel Density Estimation:  
Fix V, estimate K from the data. Let R be a hypercube 
centred on x and define the kernel function (Parzen window) 

•   It follows  that  

•    and hence 
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Nonparametric Methods: smooth kernels 
To avoid discontinuities in p(x) 
because of sharp boundaries 
use a smooth kernel, e.g. a 
Gaussian 

•  Any kernel such that 

•   will work. 

h	  acts	  as	  a	  smoother.	  
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Nonparametric Methods: kNN estimation 

Nearest Neighbour Density 
Estimation:  
fix K, estimate V  from the 
data. Consider a hyper-sphere 
centred on x and let it grow to 
a volume, V*, that includes K 
of the given N data points. 
Then 

K	  acts	  as	  a	  smoother	  
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Modeling complex multivariate distributions 

 How to model complex multivariate parametric distributions            
with large number of variables? 

 
One solution: 
•  Decompose the distribution. Reduce the number of 

parameters, using some form of independence.   

Two models: 
•  Bayesian belief networks (BBNs) 
•  Markov Random Fields (MRFs) 

•  Learning. Relies on the decomposition.  

)(ˆ Xp
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Bayesian belief network. 

  

Burglary Earthquake 

JohnCalls MaryCalls 

Alarm 

P(B) P(E) 

P(A|B,E) 

P(J|A) P(M|A) 

1.  Directed acyclic graph  
•  Nodes = random variables 
•  Links = direct (causal) dependencies between variables 

•  Missing links encode independences 
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Bayesian belief network. 

  2.  Local conditional distributions  
•  relate variables and their parents 

 

Burglary Earthquake 

JohnCalls MaryCalls 

Alarm 

P(B) P(E) 

P(A|B,E) 

P(J|A) P(M|A) 
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Bayesian belief network. 

  

Burglary Earthquake 

JohnCalls MaryCalls 

Alarm 

B   E       T       F 

T   T     0.95   0.05 
T   F     0.94   0.06 
F   T     0.29   0.71 
F   F     0.001 0.999 

P(B) 

0.001 0.999 

P(E) 

0.002  0.998 

A     T      F 

T    0.90  0.1 
F    0.05  0.95 

A      T      F 

T    0.7    0.3 
F    0.01   0.99 

P(A|B,E) 

P(J|A) P(M|A) 

 T        F  T         F 
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Full joint distribution in BBNs 

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule): 
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Then its probability is: 

Assume the following assignment 
of values to random variables 
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Learning of BBN 

Learning.  
•  Learning of parameters of conditional probabilities  
•  Learning of the network structure 
Variables: 
•  Observable – values present in every data sample 
•  Hidden – they values are never observed in data 
•  Missing values – values sometimes present, 

sometimes not 
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Estimation of parameters of BBN 

•  Idea:  decompose the estimation problem for the full joint 
over a large number of variables to a set of smaller estimation 
problems corresponding to local parent-variable conditionals.   

•  Example: Assume A,E,B are binary with True, False values 

•  Assumption that enables the decomposition: parameters of 
conditional distributions are independent 

B E 

A 

P(A|B=T,E=T) 

P(A|B,E) P(A|B=T,E=F) 
P(A|B=F,E=T) 
P(A|B=F,E=F) 

4  estimation problems 
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Estimates of parameters of BBN 

•  Two assumptions that permit the decomposition: 
–  Sample independence 

–  Parameter independence 
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Parameters of each conditional (one for every assignment of 
values to parent variables) can be learned independently  

# of nodes 
# of parents values 
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Learning of BBN parameters. Example. 

Example: 
 

Pneumonia 

Cough Fever Paleness High WBC 

P(Pneumonia) 

  ?         ?    
 T         F 

Pn      T      F 

T        ?      ? 
F        ?      ? 

P(HWBC|Pneum) 

P(Cough|Pneum) P(Fever|Pneum) P(Palen|Pneum) 
  ?            ?            ?          
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Learning of BBN parameters. Example. 

Data D (different patient cases): 
Pal  Fev  Cou HWB  Pneu 
T       T     T      T        F 
T       F     F      F        F 
F       F     T      T        T 
F       F     T      F        T 
F      T      T      T       T 
T       F     T      F        F 
F       F     F      F        F 
T       T     F      F        F 
T       T     T      T       T 
F       T     F      T        T 
T       F     F      T        F 
F       T     F      F        F 
 
 

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Example. 

Learn: 
Step 1: Select data points with Pneumonia=T 

  
Pal  Fev  Cou HWB  Pneu 
T       T     T      T        F 
T       F     F      F        F 
F       F     T      T        T 
F       F     T      F        T 
F      T      T      T       T 
T       F     T      F        F 
F       F     F      F        F 
T       T     F      F        F 
T       T     T      T       T 
F       T     F      T        T 
T       F     F      T        F 
F       T     F      F        F 
 
 

)|( TPneumoniaFever =P

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Example. 

Learn: 
Step 1:   Ignore the rest 
 
 
Pal  Fev  Cou HWB  Pneu 
F       F     T      T        T 
F       F     T      F        T 
F      T      T      T       T 
T       T     T      T       T 
F       T     F      T        T 
 

)|( TPneumoniaFever =P

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Example. 

Learn: 
Step 2: Select values of the random variable defining the 

distribution of Fever  
 
Pal  Fev  Cou HWB  Pneu 
F       F     T      T        T 
F       F     T      F        T 
F      T      T      T       T 
T       T     T      T       T 
F       T     F      T        T 
 

)|( TPneumoniaFever =P

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Example. 

Learn: 
Step 2: Ignore the rest  
 
Fev 
F  
F 
T 
T  
T 

)|( TPneumoniaFever =P

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Example. 

Learn: 
Step 3a: Learning the ML estimate  
 
Fev 
F  
F 
T 
T  
T 

)|( TPneumoniaFever =P

)|( TPneumoniaFever =P

  0.6     0.4    
 T         F 

Pneumonia 

Cough Fever Paleness High WBC 
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Learning of BBN parameters. Bayesian learning. 

Learn: 
Step 3b: Learning the Bayesian estimate  
Assume the prior 
 
Fev 
F  
F 
T 
T  
T 
 

Posterior:  

)|( TPneumoniaFever =P

Pneumonia 

Cough Fever Paleness High WBC 

)4,3(~| BetaTPneumoniaFever =θ

)6,6(~| BetaTPneumoniaFever =θ
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Hidden variables 
Modeling assumption:  
Variables 
•  Additional variables are hidden – never observed in data 
Why to add hidden variables? 
•  More flexibility in describing the distribution 
•  Smaller parameterization of  

–  New independences can be introduced via hidden 
variables 

Example:  
•  Latent variable models 

–   hidden classes (categories) 

},,,{ 21 nXXX …=X

)(XP

Hidden class variable 

)(XP

X

)|( iCP =X

C
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Latent variable models 

•  We can have a model with hidden variables 
•  Hidden variables may help us to induce the decomposition of 

a complex distribution 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x1 

x2 

x1,x2 
 

 c 
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Learning with hidden variables and 
missing values 

Goal: Find the set of parameters           
Estimation criteria: 
–  ML 

Optimization methods for ML:  gradient-ascent, conjugate 
gradient, Newton-Rhapson, etc. 

Problem: No or very small advantage from the structure of the 
corresponding belief network when unobserved variable values 

Expectation-maximization (EM) method 
–  An alternative optimization method 
–  Suitable when there are missing or hidden values 
–  Takes advantage of the structure of the belief network 

),|(max ξΘ
Θ

Dp

Θ̂

),|( ξDp Θ–  Bayesian 
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General EM 

The key idea of a method:  
Compute the parameter estimates iteratively by performing the 

following two steps:  
Two steps of the EM: 
1.  Expectation step. Complete all hidden and missing variables 

with expectations for the current set of parameters 
2.  Maximization step. Compute the new estimates of        for 

the completed data  
Stop when no improvement possible 
 

'Θ
Θ
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Latent variable models 

•  More general latent variable models 
•  Various relations in between hidden and observable variables 
•  Example: Continuous vector quantizer (CVQ) model 

•  Possible uses: 
•  A probabilistic model 
•  A low dimensional representation of observable data 

Hidden binary variables 

Real variables 
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Markov Random Fields (MRFs) 

  
Undirected graph  

•  Nodes = random variables 
•  Links = direct relations between variables 

•  BBNs used to model asymetric dependencies (most often 
causal),  

•  MRFs model symmetric dependencies (bidirectional effects) 
such as spatial dependences 
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Markov Random Fields (MRFs) 

  
A probability distribution is defined in terms of potential 

functions defined over cliques of the graph 
  

∏
∈

Ψ=
)(
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in
i

C
Z

XXXP



22 

 
CS 3750 Advanced Machine Learning 

 

Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   
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Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   


