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Learning

Starts with data & prior knowledge

Typical steps in learning:
* Define a model space

* Define an objective criterion: criterion for measuring the
goodness of a model (fit to data)

* Optimization: finding the best model

Alternative: optimization is replaced with the inference, e.g.

Bayesian inference in the Bayesian learning

Evaluation/application:
* Model learned from the training data
* generalization to the future (test) data
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Density estimation
Data: p-(p D,.,D,}

D, =x, a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n samples estimate

[I—
p(X) 7| D={D,D,...D,} H(X)

Standard (iid) assumptions: Samples
» are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

« the distribution is modeled using a set of parameters ©
p(X|©)

+ Example: mean and covariances of multivariate normal

» Estimation: find parameters © that fit the data D the best

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the distribution

* The density for a point x is influenced by examples in its
neighborhood
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Basic criteria

What is the best set of parameters?
* Maximum likelihood (ML)

maximize p(D|©,&)
& - represents prior (background) knowledge
* Maximum a posteriori probability (MAP)
maximize p(@|D,&)

Selects the mode of the posterior

p(D[6,5)pO]5)

®|D,&)=
PO D:5) p(D|E)
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Example. Bernoulli distribution.

Outcomes: two possible values — 0 or 1 (head or tail)
Data: D asequence of outcomes x; with 0,1 values

Model: probability of an outcome 1
probability of 0 (1-6)

P(x,|0)=0"(1-0 )™ Bernoulli distribution

Objective:
We would like to estimate the probability of seeing 1:

~

o
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Maximum likelihood (ML) estimate.

Likelihood of data: n 1
P05 =] Jo"a-0)"

Maximum likelihood estimate
0,, =argmax P(D|6,&)
g
Optimize log-likelihood
I(D,0)=1og P(D]6,&)=log| [6" (1-6)" =

i=

Ex,. logf +(1-x,)log(1-6) = 1og02x,. +10g(1—¢9)2(1—xi)
i =] =]

i=1

N, - number of 1s seen N, - number of 0s seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)=N,logf+ N, log(1-6)
Set derivative to zero
ADO) NN, _
00 g (1-0)

Solving 0 =

ML Solution:
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Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

Orap = arggnax p(@|D,§)

P(D]6,5)p0]8)
P(D[&)
P(D|6,5) -is the likelihood of data

P(D|6,&) = f‘[exf 1-6)"" =M 1-6)"

p(H|D9§)=

(via Bayes rule)

p(B1&) - is the prior probability on &

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution

I +a,)

p(0|&) = Beta(0| o, ;) = T(a)[(@,)

00{1 -1 (1 _ 0)0{2 -1

Why?
Beta distribution “fits” binomial sampling - conjugate choices

P(D|6,&5)=60"(1-6)"

P(D|6,5)Beta(0 | a,,t,)

p@|D,5) = P(D|&)

= Beta(@|a, + N,,a, + N,)

a +N, -1
a+o,+N +N,-2

MAP Solution:

HMAP =

CS 3750 Advanced Machine Learning




Beta distribution

3.5

. .

—— a=0.5, p=0.5

— a=25, f=2.5
=25, f=5

0.5 -
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Bayesian learning

* Both ML or MAP pick one parameter value
— Is it always the best solution?
* Full Bayesian approach
— Remedies the limitation of one choice
— Keeps and uses a complete posterior distribution
« How is it used? Assume we want: P(A|D,&)
— Considers all parameter settings and averages the result

P(A|D,&) = [P(A]6,85)p(@] D,E)do

— Example: predict the result of the next outcome
« Choose outcome 1 if P(x=1|D,&) is higher
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Other distributions

The same ideas can be applied to other distributions
— Typically we choose distributions that behave well so that
computations lead to a nice solutions

* Exponential family of distributions

Conjugate choices (sample — prior combinations) for some of the
distributions from the exponential family:
— Binomial — Beta
— Multinomial - Dirichlet
— Exponential - Gamma
— Poisson — Inverse Gamma
— Gaussian - Gaussian (mean) and Wishart (covariance)
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Non-parametric density estimation

Parametric density estimation:
* A set of random variables X={X,X,,....X,}
* A model of the distribution over variables in X
with parameters © : p(X|0)
e Data D={D,D,,.,D, }
Objective: find parameters @ such that p(X|©) models D
Parametric models are:
« restricted to specific forms, which may not always be suitable;
* Nonparametric approaches:

» make few assumptions about the overall shape of the
distribution being modelled.
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Nonparametric Methods

Histogram methods:

partition the data space into [a=o0t I
distinct bins with widths Ajand
count the number of P a5 1
observations, n;, in each bin. £ =0.08 i

p; = A’,l_g (5)0 0.5 1

' A =025

* Often, the same width is — - i
used for all bins, A ; = A. % 05 o

. MP bins!
* A acts as a smoothing

parameter.
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Nonparametric Methods

* Assume observations drawn  [f the volume of R, V, is

fr om a density p(x) gnd sufficiently small, p(x) is
consider a small region R approximately constant over
containing x such that R and

P = [ p(x)dx P=p(x)V

R
* The probability that K out of  Thus
N observations lie inside R p(x) = P
is Bin(K,N,P ) and if N is V
large
K = NP PO=y
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Nonparametric Methods: kernel methods

Kernel Density Estimation:
Fix V, estimate K from the data. Let R be a hypercube
centred on X and define the kernel function (Parzen window)

k(x—xn) 1 |(x;—x,)|/h=<1/2 i=1,...D

h 0 otherwise
h
» It follows that . .
N X=X LI .' ° b ° °
° = 2 ) ﬁ.\\‘
and hence K ; k( P ) . X
° s. [ ]
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Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x)
because of sharp boundaries
use a smooth kernel, e.g. a

Gaussian 5
L N
_ L 0
p(x) = N Z (27h2)D/2 50
n=1

/k(u) du = 1 h acts as a smoother.

* will work.
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Nonparametric Methods: kNN estimation

Nearest Neighbour Density
Estimation:

fix K, estimate V from the
data. Consider a hyper-sphere
centred on X and let it grow to
a volume, V*, that includes K
of the given N data points.
Then

K acts as a smoother
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Modeling complex multivariate distributions

How to model complex multivariate parametric distributions p(X)
with large number of variables?

One solution:
* Decompose the distribution. Reduce the number of
parameters, using some form of independence.

Two models:
* Bayesian belief networks (BBNs)
* Markov Random Fields (MRFs)

* Learning. Relies on the decomposition.
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Bayesian belief network.

1. Directed acyclic graph

Nodes = random variables
Links = direct (causal) dependencies between variables
» Missing links encode independences

e

@ P(A|B,E)

P(J|A) P(MIA)

Gomeats) — (Marycany
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Bayesian belief network.

2. Local conditional distributions

relate variables and their parents

-

@ P(A|B,E)

P(J|A) P(M[A)

Gomncans)  (Marycats
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Bayesian belief network.

P(B) P(E)
| T F | T F |
Burglary )| 0.001 0.999 Earthquake ) [0.002 0.998
P(A|B,E)

B E T F

T T | 0.95 0.05

T F | 0.94 0.06

F T | 0.29 0.71

F F | 0.001 0.999

\\\ P(M|A)
A T F

M-
oo
(@3N
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,. X,...X,) = [[P(X, | pa(X,)
i=l,.n

QOB E
Example: \ f
Assume the following assignment A
of values to random variables C)/ E
B=T,E=T,A=T,J=T,M=F I M

Then its probability is:
PB=T,E=T,A=T,J=T,M =F)=
P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)PM =F|A=T)

CS 3750 Advanced Machine Learning

12



Learning of BBN

Learning.

* Learning of parameters of conditional probabilities
* Learning of the network structure

Variables:

* Observable — values present in every data sample

* Hidden — they values are never observed in data

» Missing values — values sometimes present,
sometimes not
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Estimation of parameters of BBN

* Idea: decompose the estimation problem for the full joint
over a large number of variables to a set of smaller estimation
problems corresponding to local parent-variable conditionals.

* Example: Assume A,E,B are binary with True, False values
G 4 estimation problems
P(A|B=T,E=T)
P(A|B=T,E=F)
P(A|B,E)

o P(A|B=FE=T)
P(A|B=F,E=F)

* Assumption that enables the decomposition: parameters of
conditional distributions are independent
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Estimates of parameters of BBN

» Two assumptions that permit the decomposition:
— Sample independence

P(D]0,8) = HP(DH 19,5)

— Parameter independence

# of nodes
// # of parents values

p©0.8)=[][r0,10.)

Parameters of each conditional (one for every assignment of
values to parent variables) can be learned independently
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Learning of BBN parameters. Example.

Example: P(Pneumonia)
T F

? ?
Pneumonia

P(HWBC|Pneum)
Pn T F
T ? ?
F ? ?
(eever

P(Palen|Pneum) P(Fever|Pneum) P(Cough|Pneum)

? ? ?
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Learning of BBN parameters. Example.

Data D (different patient cases):

Pal Fev Cou HWB Pneu

T T T
T F F
F F T
F F T
F T T
T F T
F F F
T T F
T T T
F T F
T F F
F T F

T

oo e g o 5 T o=

F

I R B e
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu

R R R R
R R R R
R R R e R "=

e e I B IS I e B R I

F

oo o = o g S g

Pneumonia
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Learning of BBN parameters. Example.
Learn: P(Fever | Pneumonia =T)

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu
F F T T

T
T
T
F

- - =
e e B

F F
F T
T T
F T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)

Step 2: Select values of the random variable defining the
distribution of Fever

Pneumonia

Pal Fev Cou HWB Pneu
F F T T

T
T
T
F

- -] =
===

F F
F T
T T
F T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 2: Ignore the rest

Fev

= =
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 3a: Learning the ML estimate

Pneumonia

Fev

R

P(Fever | Pneumonia =T)

T F
0.6 0.4
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Learning of BBN parameters. Bayesian learning.

Learn: P(Fever | Pneumonia =T)
Step 3b: Learning the Bayesian estimate

Assume the prior

Fever|Pneumonia=T ~ Beta (394)
Fev
F
! <>
T
T
T
Posterior:
0Fever|Pneumonia=T ~ Beta(6>6)
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Hidden variables

Modeling assumption:
Variables X=1{X,X,,....X, }
» Additional variables are hidden — never observed in data
Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables
E . Hidden class variable
xample: c
» Latent variable models
— hidden classes (categories) PX|C=i)
X
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Latent variable models

*  We can have a model with hidden variables

* Hidden variables may help us to induce the decomposition of
a complex distribution
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Learning with hidden variables and
missing values

A

Goal: Find the set of parameters ©
Estimation criteria:
— ML mgxp(D |9,8)
— Bayesian p@®|D,&)
Optimization methods for ML: gradient-ascent, conjugate
gradient, Newton-Rhapson, etc.

Problem: No or very small advantage from the structure of the
corresponding belief network when unobserved variable values

Expectation-maximization (EM) method
— An alternative optimization method
— Suitable when there are missing or hidden values
— Takes advantage of the structure of the belief network
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of @ for
the completed data

Stop when no improvement possible
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Latent variable models

* More general latent variable models
* Various relations in between hidden and observable variables
« Example: Continuous vector quantizer (CVQ) model

Hidden binary variables

Real variables

* Possible uses:
* A probabilistic model
* A low dimensional representation of observable data
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Markov Random Fields (MRFs)

Undirected graph
* Nodes = random variables
* Links = direct relations between variables

* BBNs used to model asymetric dependencies (most often
causal),

* MRFs model symmetric dependencies (bidirectional effects)
such as spatial dependences
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Markov Random Fields (MRFs)

A probability distribution is defined in terms of potential
functions defined over cliques of the graph

POX, X, X,) =~ w(C)

Ci&cliques(G)
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Markov random fields

* regular lattice
(Ising model)

« Arbitrary graph
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Markov random fields

* regular lattice
(Ising model)

* Arbitrary graph
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