CS 3750 Machine Learning Lecture 2

Advanced Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square, x4-8845
http://www.cs.pitt.edu/~milos/courses/cs3750/

Learning

Starts with data \& prior knowledge

Typical steps in learning:

- Define a model space
- Define an objective criterion: criterion for measuring the goodness of a model (fit to data)
- Optimization: finding the best model

Alternative: optimization is replaced with the inference, e.g.
Bayesian inference in the Bayesian learning

Evaluation/application:

- Model learned from the training data
- generalization to the future (test) data

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: try to estimate the underlying true probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ

$$
p(\mathbf{X} \mid \Theta)
$$

- Example: mean and covariances of multivariate normal
- Estimation: find parameters $\hat{\Theta}$ that fit the data D the best Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- The density for a point x is influenced by examples in its neighborhood

Basic criteria

What is the best set of parameters?

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$

$$
\xi \text { - represents prior (background) knowledge }
$$

- Maximum a posteriori probability (MAP)
maximize $p(\Theta \mid D, \xi)$
Selects the mode of the posterior

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

Example. Bernoulli distribution.

Outcomes: two possible values -0 or 1 (head or tail)
Data: D a sequence of outcomes x_{i} with 0,1 values
Model: probability of an outcome $1 \quad \theta$ probability of $0 \quad(1-\theta)$
$P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \quad$ Bernoulli distribution

Objective:

We would like to estimate the probability of seeing 1 :
$\hat{\boldsymbol{\theta}}$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\theta_{M L}=\underset{\theta}{\arg \max } P(D \mid \theta, \xi)
$$

Optimize log-likelihood

$$
\begin{aligned}
& l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}= \\
& \sum_{i=1}^{n} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)=\log \theta \sum_{i=1}^{n} x_{i}+\log (1-\theta) \sum_{i=1}^{n}\left(1-x_{i}\right) \\
& N_{1} \text { - number of 1s seen } \quad N_{2} \text { - number of 0s seen }
\end{aligned}
$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

ML Solution: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}$

Maximum a posteriori estimate

Maximum a posteriori estimate

- Selects the mode of the posterior distribution

$$
\begin{gathered}
\theta_{M A P}=\underset{\theta}{\arg \max } p(\theta \mid D, \xi) \\
p(\theta \mid D, \xi)=\frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)} \quad \text { (via Bayes rule) } \\
P(D \mid \theta, \xi)-\text { is the likelihood of data } \\
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=\theta^{N_{1}}(1-\theta)^{N_{2}} \\
p(\theta \mid \xi) \quad \text { - is the prior probability on } \theta
\end{gathered}
$$

How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution

$$
p(\theta \mid \xi)=\operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{2}\right)=\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} \theta^{\alpha_{1}-1}(1-\theta)^{\alpha_{2}-1}
$$

Why?
Beta distribution "fits" binomial sampling - conjugate choices

$$
\begin{gathered}
P(D \mid \theta, \xi)=\theta^{N_{1}}(1-\theta)^{N_{2}} \\
p(\theta \mid D, \xi)=\frac{P(D \mid \theta, \xi) \operatorname{Beta}\left(\theta \mid \alpha_{1}, \alpha_{2}\right)}{P(D \mid \xi)}=\operatorname{Beta}\left(\theta \mid \alpha_{1}+N_{1}, \alpha_{2}+N_{2}\right) \\
\text { MAP Solution: } \quad \theta_{M A P}=\frac{\alpha_{1}+N_{1}-1}{\alpha_{1}+\alpha_{2}+N_{1}+N_{2}-2}
\end{gathered}
$$

Beta distribution

Bayesian learning

- Both ML or MAP pick one parameter value
- Is it always the best solution?
- Full Bayesian approach
- Remedies the limitation of one choice
- Keeps and uses a complete posterior distribution
- How is it used? Assume we want: $P(\Delta \mid D, \xi)$
- Considers all parameter settings and averages the result

$$
P(\Delta \mid D, \xi)=\int_{\theta} P(\Delta \mid \theta, \xi) p(\theta \mid D, \xi) d \theta
$$

- Example: predict the result of the next outcome
- Choose outcome 1 if $P(x=1 \mid D, \xi)$ is higher

Other distributions

The same ideas can be applied to other distributions

- Typically we choose distributions that behave well so that computations lead to a nice solutions
- Exponential family of distributions

Conjugate choices (sample - prior combinations) for some of the distributions from the exponential family:

- Binomial - Beta
- Multinomial - Dirichlet
- Exponential - Gamma
- Poisson - Inverse Gamma
- Gaussian - Gaussian (mean) and Wishart (covariance)

Non-parametric density estimation

Parametric density estimation:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters $\Theta: \hat{p}(\mathbf{X} \mid \Theta)$
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters Θ such that $p(\mathbf{X} \mid \Theta)$ models D
Parametric models are:

- restricted to specific forms, which may not always be suitable;
- Nonparametric approaches:
- make few assumptions about the overall shape of the distribution being modelled.

Nonparametric Methods

Histogram methods:

partition the data space into distinct bins with widths Δ_{i} and count the number of observations, n_{i}, in each bin.

$$
p_{i}=\frac{n_{i}}{N \Delta_{i}}
$$

- Often, the same width is used for all bins, $\Delta_{i}=\Delta$.
- Δ acts as a smoothing
 parameter.

Nonparametric Methods

- Assume observations drawn from a density $\mathrm{p}(\mathrm{x})$ and consider a small region R containing x such that

$$
P=\int_{R} p(x) d x
$$

- The probability that K out of N observations lie inside R is $\operatorname{Bin}(K, N, P)$ and if N is large

$$
K \cong N P
$$

If the volume of R, V, is sufficiently small, $\mathrm{p}(\mathrm{x})$ is approximately constant over R and

$$
P \cong p(x) V
$$

Thus

$$
p(x)=\frac{P}{V}
$$

$$
p(x)=\frac{K}{N V}
$$

Nonparametric Methods: kernel methods

Kernel Density Estimation:

Fix V, estimate \mathbf{K} from the data. Let R be a hypercube centred on \mathbf{X} and define the kernel function (Parzen window)

$$
k\left(\frac{x-x_{n}}{h}\right)=\begin{array}{cc}
1 & \left|\left(x_{i}-x_{n i}\right)\right| / h \leq 1 / 2 \\
0 & \text { otherwise }
\end{array} \quad i=1, \ldots D
$$

- It follows that
- and hence $K=\sum_{n=1}^{N} k\left(\frac{x-x_{n}}{h}\right)$

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k\left(\frac{x-x_{n}}{h}\right)
$$

Nonparametric Methods: smooth kernels

To avoid discontinuities in $\mathrm{p}(\mathrm{x})$
because of sharp boundaries use a smooth kernel, e.g. a
Gaussian

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{N} \sum_{n=1}^{N} & \frac{1}{\left(2 \pi h^{2}\right)^{D / 2}} \\
& \quad \exp \left\{-\frac{\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}}{2 h^{2}}\right\}
\end{aligned}
$$

- will work.

Nonparametric Methods: kNN estimation

Nearest Neighbour Density

Estimation:
fix K, estimate V from the data. Consider a hyper-sphere centred on X and let it grow to a volume, V^{*}, that includes K of the given N data points. Then

$$
p(\mathbf{x}) \simeq \frac{K}{N V^{\star}} .
$$

Modeling complex multivariate distributions

How to model complex multivariate parametric distributions $\hat{p}(\mathbf{X})$ with large number of variables?

One solution:

- Decompose the distribution. Reduce the number of parameters, using some form of independence.

Two models:

- Bayesian belief networks (BBNs)
- Markov Random Fields (MRFs)
- Learning. Relies on the decomposition.

Bayesian belief network.

1. Directed acyclic graph

- Nodes = random variables
- Links = direct (causal) dependencies between variables
- Missing links encode independences

Bayesian belief network.

2. Local conditional distributions

- relate variables and their parents

Bayesian belief network.

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Learning of BBN

Learning.

- Learning of parameters of conditional probabilities
- Learning of the network structure

Variables:

- Observable - values present in every data sample
- Hidden - they values are never observed in data
- Missing values - values sometimes present, sometimes not

Estimation of parameters of BBN

- Idea: decompose the estimation problem for the full joint over a large number of variables to a set of smaller estimation problems corresponding to local parent-variable conditionals.
- Example: Assume A,E,B are binary with True, False values

- Assumption that enables the decomposition: parameters of conditional distributions are independent

Estimates of parameters of BBN

- Two assumptions that permit the decomposition:
- Sample independence

$$
P(D \mid \boldsymbol{\Theta}, \xi)=\prod_{u=1}^{N} P\left(D_{u} \mid \boldsymbol{\Theta}, \xi\right)
$$

- Parameter independence

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { \# of nodes } \\
\text { \# of parents values }
\end{array} \\
& p(\boldsymbol{\Theta} \mid D, \xi)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} p\left(\theta_{i j} \mid D, \xi\right)
\end{aligned}
$$

Parameters of each conditional (one for every assignment of values to parent variables) can be learned independently

Learning of BBN parameters. Example.

Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

F $\quad \begin{array}{llll}\mathbf{F} & \mathbf{T} & \mathbf{F} & \mathbf{T}\end{array}$
F $\quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T}$
$\begin{array}{lllll}\mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T}\end{array}$
F $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{T} \quad \mathbf{T}$

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu

\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

F	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}

F $\quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad$ T
$\begin{array}{lllll}\mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T} \\ \mathbf{F} & \mathbf{T} & \mathbf{F} & \mathrm{T} & \end{array}$

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 2: Ignore the rest

Fev
F
F
T
T
T

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 3a: Learning the ML estimate

Fev
F
F
T
T
T

$\mathbf{P}($ Fever \mid Pneumonia $=T)$

\mathbf{T}	\mathbf{F}
0.6	0.4

Learning of BBN parameters. Bayesian learning.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 3b: Learning the Bayesian estimate
Assume the prior
$\theta_{\text {Fever } \mid \text { Pneumonia }=T} \sim \operatorname{Beta}(3,4)$
F
F

T
T
T

Posterior:

Hidden variables

Modeling assumption:

Variables $\quad \mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$

- Additional variables are hidden - never observed in data

Why to add hidden variables?

- More flexibility in describing the distribution $P(\mathbf{X})$
- Smaller parameterization of $P(\mathbf{X})$
- New independences can be introduced via hidden variables

Example:
Hidden class variable

- Latent variable models
- hidden classes (categories)

Latent variable models

- We can have a model with hidden variables
- Hidden variables may help us to induce the decomposition of a complex distribution

Learning with hidden variables and missing values

Goal: Find the set of parameters $\hat{\Theta}$
Estimation criteria:

- ML $\max _{\boldsymbol{\Theta}} p(D \mid \boldsymbol{\Theta}, \xi)$
- Bayesian ${ }^{\boldsymbol{\Theta}} \quad p(\boldsymbol{\Theta} \mid D, \xi)$

Optimization methods for ML: gradient-ascent, conjugate gradient, Newton-Rhapson, etc.
Problem: No or very small advantage from the structure of the corresponding belief network when unobserved variable values
Expectation-maximization (EM) method

- An alternative optimization method
- Suitable when there are missing or hidden values
- Takes advantage of the structure of the belief network

General EM

The key idea of a method:
Compute the parameter estimates iteratively by performing the following two steps:
Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables with expectations for the current set of parameters $\boldsymbol{\Theta}^{\prime}$
2. Maximization step. Compute the new estimates of $\boldsymbol{\Theta}$ for the completed data
Stop when no improvement possible

Latent variable models

- More general latent variable models
- Various relations in between hidden and observable variables
- Example: Continuous vector quantizer (CVQ) model

- Possible uses:
- A probabilistic model
- A low dimensional representation of observable data

Markov Random Fields (MRFs)

Undirected graph

- Nodes = random variables
- Links = direct relations between variables
- BBNs used to model asymetric dependencies (most often causal),
- MRFs model symmetric dependencies (bidirectional effects) such as spatial dependences

Markov Random Fields (MRFs)

A probability distribution is defined in terms of potential
functions defined over cliques of the graph

Markov random fields

- regular lattice
(Ising model)

- Arbitrary graph

Markov random fields

- regular lattice (Ising model)

- Arbitrary graph

