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Semi Supervised Learning 

 Semi-supervised learning is a class of supervised 
learning tasks and techniques that also make use of 
unlabeled data for training - typically a small 
amount of labeled data with a large amount of 
unlabeled data. 

 Why 

 Labeled data is hard to get 

 Expensive, human annotation, time consuming  

 May require experts  

 Unlabeled data is cheap 



Why unlabeled data helps[1] 

 

 

 

 

 

 

 

 

 assuming each class is a coherent group (e.g. Gaussian) 

 with and without unlabeled data: decision boundary shift 

  



Label Propagation[2] 

 Assumption 

 Closer data points tend to have similar class labels. 

 General Idea 

 A node’s labels propagate to neighboring nodes 

according to their proximity 

 Clamp the labels on the labeled data, so the labeled 

data could act like a sources that push out labels to 

unlabeled data. 



Set up 

 Input x, label y 

 Labeled data (x1,y1),(x2,y2)…(xl,yl) 

 Unlabeled data (xl+1,yl+1)……(xl+u,yl+u) 

 l<<u 

 weight 



Probabilistic Transition Matrix  

 Allow larger edge weight to propagate labels easier 

𝑇𝑖𝑗 = 𝑃 𝑗 → 𝑖 =
𝑤𝑖𝑗

 𝑤𝑘𝑗
𝑙+𝑢
𝑘=1

 

 Tij is the probability to jump from node j to I 

 Normalized T 

    𝑇𝑖𝑗 =
𝑇𝑖𝑗

 𝑇𝑖𝑘𝑘
 

For example: 

0.3 0.2 0.5
0.2 0.1 0.7
0.5 0.7 0.6

 

 

 

The probability node 3 

jump to Node 1 is 0.5 

The probability node 2 

jump to Node 3 is 0.7 



Matrix Y 

 Define (l+u) * C label matrix Y, whose ith row 

representing label probability distribution of node xi 

 Yij=1, if the class of xi is cj, else 0, for labeled data 

 The initialization of row of Y corresponding to unlabeled 

data is not important 

  

0 1 0
0.2 0.5 0.3
0.7 0.2 0.1

 
Node 1 is labeled as label 2. 

The label distribution of node 3. For 

example, 0.7 is the probability that 

node 3 is label 1 . 



Algorithm 

 1 Propagate Y TY 

Labels spread information along local 

structure 

 2 Row normalize Y 

 Keep proper distribution over classes 

 3 Clamp the labeled data, Repeat from step 1 until 

Y converges 

 Keep originally labeled points 

 



Convergence 

 The first two steps 

 Split T 

 Yu 

 General from 

 𝑇  is row normalized, 𝑇 uu is submatrix of 𝑇   



Convergence(cont) 

 Consider the row sum  

No need to iterate! 



Parameter Setting 

 How to choose parameter σ 

 First, use a heuristic method. Finding a minimum 
spanning tree over all data points with Euclidean 
distances dij with Kruskal’s Algorithm(The famous 
greedy algorithm in data structure).   

 Choose the first tree edge that connect two 

components with different labeled points. The length 

is d0. 

 Set σ=d0/3 



The effect of σ 

 



Optimizing σ 

 Single parameter σ controls spread of labels 

 For σ→0, classification of unlabeled points dominated 

by nearest labeled point 

 For σ→∞, class probabilities just become class 

frequencies (no information from label proximity) 

 Can minimize entropy of class labels 

 H=- 𝑌𝑖𝑗𝑙𝑜𝑔𝑌𝑖𝑗𝑖𝑗  

 Leads to confident classifications 

 However, minimum entropy at σ=0 

 



Optimizing σ(cont) 

 Add uniform transition component (Uij=1/N) to T 

 

 For small σ, uniform component dominates 

 Minimum entropy no longer at σ=0 

 Use σ1… σN to scale each dimension independently 

 Perform gradient descent with respect to σ’s in 

order to minimize entropy 
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Rebalancing Class Proportions 

 How should we assign classes to unlabeled points? 

 Could choose most likely class 

 ML method does not explicitly control class proportions 

 Suppose we want labels to fit a known or estimated 
distribution over classes 

 Normalize class mass – scale columns of YU to fit class 
distribution and then pick ML class 
 Does not guarantee strict label proportions 

 Perform label bidding – each entry YU(i,c) is a “bid” of 
sample i for class c 
 Handle bids from largest to smallest 

 Bid is taken if class c is not full, otherwise it is discarded 

 



Experiment result 

 3 bands dataset and Spring dataset 



Learning with local and global 

consistency[4] 

 The key to semi- supervised learning 

  Nearby points are likely to have the same label 

 Points on the same structure (cluster or manifold) are 

likely to have the same label 



A toy example 

 



Objective 

 

 

Design a classifying function which is sufficiently 

smooth with respect to the intrinsic structure  



Algorithm 

 

Retain Initial 

information 

Receive information 

from its neighbour 



Convergence 

 The sequence {F(t)} converges, suppose F(0)=Y  

 

F*=(1-α)(I-αS)-1Y  

 

The proof is similar to Label Propagation 



Regularization Framework(A different 

pespective) 

 

Fitting constraints, loss 

function, a good classifying 

function should not change 

too much from initial label 

assignment 

Smoothness term, capture the local 

variations, a good function should not 

change too much between nearby points 

𝒬(F)=
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖
−

𝐹𝑗

𝐷𝑗𝑗

2 + 𝜇  𝐹𝑖 − 𝑌𝑖
2𝑛

𝑖=1
𝑛
𝑖,𝑗=1  



Regularization Framework 

 

 

 

 Differentiating 𝒬(F) with respect to F 



𝜕𝒬

𝜕𝐹
 
𝐹=𝐹∗

= 𝐹∗ − 𝑆𝐹∗ + 𝜇 𝐹∗ − 𝑌 = 0 

  𝐹∗ −
1

1+𝜇
𝑆𝐹∗ −

𝜇

1+𝜇
𝑌 = 0 

 𝛼 =
1

1+𝜇
, 𝑎𝑛𝑑 𝛽 =

𝜇

1+𝜇
 

 𝐼 − 𝛼𝑆 𝐹∗ = 𝛽𝑌 

 𝐼 − 𝛼𝑆 is invertible, 𝐹∗ = 𝛽(𝐼 − 𝛼𝑆)−1𝑌 

 

 

Property of 

Laplacian Matrix 
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖

−
𝐹𝑗

𝐷𝑗𝑗

2

𝑛

𝑖,𝑗=1

= 𝑓𝑇𝐷−1/2𝐿𝑠𝑦𝑚𝐷−1/2𝑓 

𝐿𝑠𝑦𝑚 = 𝐷−1/2𝐿𝐷−1/2=I-𝐷−1/2𝑊𝐷−1/2 

  =I-S 



Experiment 

 



Graph Kernels by Spectral 

Transforms[5] 

 Graph-based semi-supervised learning methods can 

be viewed as imposing smoothness conditions on the 

target function 

 Eigenvectors with small eigenvalues are smooth, and 

ideally represent large cluster structures within the 

data. 



Smoothness 

 Consider the Laplacian L 

 

 

 

 

 

 



Smoothness 

 Semi-supervised learning creates a smooth function 

over unlabeled points 

 

 

 

 Generally, smooth if f(i)≈f(j) for pairs with large Wij 

 The smoothness of an eigenvector is  
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Smoothness of Eigenvectors 

 The complete orthonormal set of eigenvectors ø1, 

ø2.. øn 

 

𝐿 =  𝜆𝑖

𝑛

𝑖=1

𝜙𝑖𝜙𝑖
𝑇
 



Kernels by Spectral Transform 

 Different weightings (i.e. spectral transforms) of 
Laplacian eigenvalues leads to different smoothness 
measures 

 We want a kernel K that respects smoothness 

 Define using eigenvectors of Laplacian (φ) and 
eigenvalues of K (μ) 

 

 

 Can also define in terms of a spectral transform of 
Laplacian eigenvalues 
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Types of Transforms 

 r(λi) is a non-negative and decreasing transform 

 

 

 

 

 

 

 Reverses order of eigenvalues, so smooth 
eigenvectors have larger eigenvalues in K 

 Is there an optimal transform? 
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Kernel Alignment 

 Assess fitness of a kernel to training labels 

 Empirical kernel alignment compares kernel matrix Ktr 

for training data to target matrix T for training data 

 Tij=1 if yi=yj, otherwise Tij=-1 

 

 

 Alignment measure computes cosine between Ktr and T 

 Find the optimal spectral transformation r(λi) using the 

kernel alignment notion 
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Convex Optimization 

 Convex set  

 Convex function 

 Convex Optimization 

 Linear Programming 

 Minimize cTx+d 

 Subject to Gx≤h 
 Ax=b 

 Quadratically Constrained Quadratic Programming  

 Minimize 1/2xTPx+cTx+d 

 Subject to 1/2xTQiX+ri
Tx+si ≤=0 

Ax=b 

 

 

 



QCQP 

 Kernel alignment between Ktr and T is a convex function 
of kernel eigenvalues μi 

 No assumption on parametric form of transform r(λi) 

 Need K to be positive semi-definite 

 Restrict eigenvalues of K to be ≥0 

 Leads to computationally efficient Quadratically 
Constrained Quadratic Program 

 Minimize convex quadratic function over smaller feasible 
region 

 Both objective function and constraints are quadratic 

 Complexity comparable to linear programs 



Impose Order Constraints 

 We would like to keep decreasing order on spectral 

transformation 

 Smooth functions are preferred – bigger eigenvalues 

for smoother eigenvectors 

 An order constrained semi-supervised kernel K is the 

solution to the following convex optimization 

problem. 

 

 



Improved Order Constraints 

 Constant eigenvectors act as a bias term in the 

graph kernel 

 λ1=0, corresponding eigenvector φi is constant 

 Need not constrain bias terms 

 Improved Order constrains 

 Ignore the constant eigenvectors 

𝜇𝑖 ≥ 𝜇𝑖+1, 𝑖 = 1 … . . 𝑛 − 1, 𝑎𝑛𝑑 ∅𝑖 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 



Harmonic Functions (Zhu, 2003)[3] 

 Now define class labeling f in terms of a Gaussian over 
continuous space, instead of random field over discrete 
label set 

 Distribution on f is a Gaussian field 

 

 

 

 Useful for multi-label problems (NP-hard for discrete 
random fields) 

 ML configuration is now unique, attainable by matrix 
methods, and characterized by harmonic functions 
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Harmonic Energy 

 “Energy” of solution labeling f is defined as: 

 

 Nearby points should have similar labels 

 Solution which minimizes E(f) is harmonic 

 Δf=0 for unlabeled points, where Δ=D-W (combinatorial 

Laplacian) 

 Δf=fl for labeled points 

 Value of f at an unlabeled point is the average of f at 

neighboring points 
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Harmonic Solution 

 As before, split problem into: 

 

 

 Solve using Δf=0, f|L= fl : 

 

 Can be viewed as heat kernel classification, but 

independent of time parameter 
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Summary 

 Label Propagation 

 Propagate and clamp data 

 Local and global consistency 

 Allow f(Xl) to be different from Yl, but penalize it 
 Introduce a balance between labeled data fit and graph 

energy  

 Graph Kernels by Spectral Transforms 

 Smoothness, using eigenvector of Laplacian to keep smooth  

 Use kernel alignment  

 Gaussian field and Harmonic Function 

 The label is descrete (Gaussian) 
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