
LABEL PROPAGATION ON GRAPHS.

SEMI-SUPERVISED LEARNING

 ----Changsheng Liu

 10-30-2014

http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class19x.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class19x.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class19x.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/lectures/class19x.pdf

Agenda

 Semi Supervised Learning

 Topics in Semi Supervised Learning

 Label Propagation

 Local and global consistency

 Graph Kernels by Spectral Transforms

 Gaussian field and Harmonic Function

 Reference

Semi Supervised Learning

 Semi-supervised learning is a class of supervised
learning tasks and techniques that also make use of
unlabeled data for training - typically a small
amount of labeled data with a large amount of
unlabeled data.

 Why

 Labeled data is hard to get

 Expensive, human annotation, time consuming

 May require experts

 Unlabeled data is cheap

Why unlabeled data helps[1]

 assuming each class is a coherent group (e.g. Gaussian)

 with and without unlabeled data: decision boundary shift

Label Propagation[2]

 Assumption

 Closer data points tend to have similar class labels.

 General Idea

 A node’s labels propagate to neighboring nodes

according to their proximity

 Clamp the labels on the labeled data, so the labeled

data could act like a sources that push out labels to

unlabeled data.

Set up

 Input x, label y

 Labeled data (x1,y1),(x2,y2)…(xl,yl)

 Unlabeled data (xl+1,yl+1)……(xl+u,yl+u)

 l<<u

 weight

Probabilistic Transition Matrix

 Allow larger edge weight to propagate labels easier

𝑇𝑖𝑗 = 𝑃 𝑗 → 𝑖 =
𝑤𝑖𝑗

 𝑤𝑘𝑗
𝑙+𝑢
𝑘=1

 Tij is the probability to jump from node j to I

 Normalized T

 𝑇𝑖𝑗 =
𝑇𝑖𝑗

 𝑇𝑖𝑘𝑘

For example:

0.3 0.2 0.5
0.2 0.1 0.7
0.5 0.7 0.6

The probability node 3

jump to Node 1 is 0.5

The probability node 2

jump to Node 3 is 0.7

Matrix Y

 Define (l+u) * C label matrix Y, whose ith row

representing label probability distribution of node xi

 Yij=1, if the class of xi is cj, else 0, for labeled data

 The initialization of row of Y corresponding to unlabeled

data is not important

0 1 0
0.2 0.5 0.3
0.7 0.2 0.1

Node 1 is labeled as label 2.

The label distribution of node 3. For

example, 0.7 is the probability that

node 3 is label 1 .

Algorithm

 1 Propagate Y TY

Labels spread information along local

structure

 2 Row normalize Y

 Keep proper distribution over classes

 3 Clamp the labeled data, Repeat from step 1 until

Y converges

 Keep originally labeled points

Convergence

 The first two steps

 Split T

 Yu

 General from

 𝑇 is row normalized, 𝑇 uu is submatrix of 𝑇

Convergence(cont)

 Consider the row sum

No need to iterate!

Parameter Setting

 How to choose parameter σ

 First, use a heuristic method. Finding a minimum
spanning tree over all data points with Euclidean
distances dij with Kruskal’s Algorithm(The famous
greedy algorithm in data structure).

 Choose the first tree edge that connect two

components with different labeled points. The length

is d0.

 Set σ=d0/3

The effect of σ

Optimizing σ

 Single parameter σ controls spread of labels

 For σ→0, classification of unlabeled points dominated

by nearest labeled point

 For σ→∞, class probabilities just become class

frequencies (no information from label proximity)

 Can minimize entropy of class labels

 H=- 𝑌𝑖𝑗𝑙𝑜𝑔𝑌𝑖𝑗𝑖𝑗

 Leads to confident classifications

 However, minimum entropy at σ=0

Optimizing σ(cont)

 Add uniform transition component (Uij=1/N) to T

 For small σ, uniform component dominates

 Minimum entropy no longer at σ=0

 Use σ1… σN to scale each dimension independently

 Perform gradient descent with respect to σ’s in

order to minimize entropy

TT)1(
~

 U

 UL

Li

C

c d

ic

icd

Y

Y

HH

1 1

Rebalancing Class Proportions

 How should we assign classes to unlabeled points?

 Could choose most likely class

 ML method does not explicitly control class proportions

 Suppose we want labels to fit a known or estimated
distribution over classes

 Normalize class mass – scale columns of YU to fit class
distribution and then pick ML class
 Does not guarantee strict label proportions

 Perform label bidding – each entry YU(i,c) is a “bid” of
sample i for class c
 Handle bids from largest to smallest

 Bid is taken if class c is not full, otherwise it is discarded

Experiment result

 3 bands dataset and Spring dataset

Learning with local and global

consistency[4]

 The key to semi- supervised learning

 Nearby points are likely to have the same label

 Points on the same structure (cluster or manifold) are

likely to have the same label

A toy example

Objective

Design a classifying function which is sufficiently

smooth with respect to the intrinsic structure

Algorithm

Retain Initial

information

Receive information

from its neighbour

Convergence

 The sequence {F(t)} converges, suppose F(0)=Y

F*=(1-α)(I-αS)-1Y

The proof is similar to Label Propagation

Regularization Framework(A different

pespective)

Fitting constraints, loss

function, a good classifying

function should not change

too much from initial label

assignment

Smoothness term, capture the local

variations, a good function should not

change too much between nearby points

𝒬(F)=
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖
−

𝐹𝑗

𝐷𝑗𝑗

2 + 𝜇 𝐹𝑖 − 𝑌𝑖
2𝑛

𝑖=1
𝑛
𝑖,𝑗=1

Regularization Framework

 Differentiating 𝒬(F) with respect to F

𝜕𝒬

𝜕𝐹

𝐹=𝐹∗

= 𝐹∗ − 𝑆𝐹∗ + 𝜇 𝐹∗ − 𝑌 = 0

 𝐹∗ −
1

1+𝜇
𝑆𝐹∗ −

𝜇

1+𝜇
𝑌 = 0

 𝛼 =
1

1+𝜇
, 𝑎𝑛𝑑 𝛽 =

𝜇

1+𝜇

 𝐼 − 𝛼𝑆 𝐹∗ = 𝛽𝑌

 𝐼 − 𝛼𝑆 is invertible, 𝐹∗ = 𝛽(𝐼 − 𝛼𝑆)−1𝑌

Property of

Laplacian Matrix
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖

−
𝐹𝑗

𝐷𝑗𝑗

2

𝑛

𝑖,𝑗=1

= 𝑓𝑇𝐷−1/2𝐿𝑠𝑦𝑚𝐷−1/2𝑓

𝐿𝑠𝑦𝑚 = 𝐷−1/2𝐿𝐷−1/2=I-𝐷−1/2𝑊𝐷−1/2

 =I-S

Experiment

Graph Kernels by Spectral

Transforms[5]

 Graph-based semi-supervised learning methods can

be viewed as imposing smoothness conditions on the

target function

 Eigenvectors with small eigenvalues are smooth, and

ideally represent large cluster structures within the

data.

Smoothness

 Consider the Laplacian L

Smoothness

 Semi-supervised learning creates a smooth function

over unlabeled points

 Generally, smooth if f(i)≈f(j) for pairs with large Wij

 The smoothness of an eigenvector is

N

ji

ij

T jfifWLff
1,

2))()((
2

1

Eigenvectors with

smaller eigenvalues

are smoother

Smoothness of Eigenvectors

 The complete orthonormal set of eigenvectors ø1,

ø2.. øn

𝐿 = 𝜆𝑖

𝑛

𝑖=1

𝜙𝑖𝜙𝑖
𝑇

Kernels by Spectral Transform

 Different weightings (i.e. spectral transforms) of
Laplacian eigenvalues leads to different smoothness
measures

 We want a kernel K that respects smoothness

 Define using eigenvectors of Laplacian (φ) and
eigenvalues of K (μ)

 Can also define in terms of a spectral transform of
Laplacian eigenvalues

N

i

T

iiiK
1

N

i

T

iiirK
1

)(

Types of Transforms

 r(λi) is a non-negative and decreasing transform

 Reverses order of eigenvalues, so smooth
eigenvectors have larger eigenvalues in K

 Is there an optimal transform?

cut

p

r
r

r

r

r

r

 if 1)(
)4/cos()(

Function Step
Cosine Inverse

2 ,)()(WalkRandom step-p

2),()(WalkRandom step-1

2
exp)(KernelDiffusion

1
)(Laplacian dRegularize

2

We need to find a

regularizer here

Kernel Alignment

 Assess fitness of a kernel to training labels

 Empirical kernel alignment compares kernel matrix Ktr

for training data to target matrix T for training data

 Tij=1 if yi=yj, otherwise Tij=-1

 Alignment measure computes cosine between Ktr and T

 Find the optimal spectral transformation r(λi) using the

kernel alignment notion

)(, MNTrNM
F

FFtrtr

Ftr

tr

TTKK

TK
TKA

,,

,
),(ˆ

Frobenius Product

Convex Optimization

 Convex set

 Convex function

 Convex Optimization

 Linear Programming

 Minimize cTx+d

 Subject to Gx≤h
 Ax=b

 Quadratically Constrained Quadratic Programming

 Minimize 1/2xTPx+cTx+d

 Subject to 1/2xTQiX+ri
Tx+si ≤=0

Ax=b

QCQP

 Kernel alignment between Ktr and T is a convex function
of kernel eigenvalues μi

 No assumption on parametric form of transform r(λi)

 Need K to be positive semi-definite

 Restrict eigenvalues of K to be ≥0

 Leads to computationally efficient Quadratically
Constrained Quadratic Program

 Minimize convex quadratic function over smaller feasible
region

 Both objective function and constraints are quadratic

 Complexity comparable to linear programs

Impose Order Constraints

 We would like to keep decreasing order on spectral

transformation

 Smooth functions are preferred – bigger eigenvalues

for smoother eigenvectors

 An order constrained semi-supervised kernel K is the

solution to the following convex optimization

problem.

Improved Order Constraints

 Constant eigenvectors act as a bias term in the

graph kernel

 λ1=0, corresponding eigenvector φi is constant

 Need not constrain bias terms

 Improved Order constrains

 Ignore the constant eigenvectors

𝜇𝑖 ≥ 𝜇𝑖+1, 𝑖 = 1 … . . 𝑛 − 1, 𝑎𝑛𝑑 ∅𝑖 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Harmonic Functions (Zhu, 2003)[3]

 Now define class labeling f in terms of a Gaussian over
continuous space, instead of random field over discrete
label set

 Distribution on f is a Gaussian field

 Useful for multi-label problems (NP-hard for discrete
random fields)

 ML configuration is now unique, attainable by matrix
methods, and characterized by harmonic functions

lfL
f

fE

dffEZ

Z

e
fp

))(exp(

)(
)(

Harmonic Energy

 “Energy” of solution labeling f is defined as:

 Nearby points should have similar labels

 Solution which minimizes E(f) is harmonic

 Δf=0 for unlabeled points, where Δ=D-W (combinatorial

Laplacian)

 Δf=fl for labeled points

 Value of f at an unlabeled point is the average of f at

neighboring points

2

,

))()((
2

1
)(jfifwfE

ji

ij

WfDf

ULLjifw
d

jf
ji

ij

j
1

~

 , ,1for),(
1

)(

Harmonic Solution

 As before, split problem into:

 Solve using Δf=0, f|L= fl :

 Can be viewed as heat kernel classification, but

independent of time parameter

luluululuuuuu fPPIfWWDf 11)()(

WDP
WW

WW
W

f

f
f

uuul

lull

u

l 1

Summary

 Label Propagation

 Propagate and clamp data

 Local and global consistency

 Allow f(Xl) to be different from Yl, but penalize it
 Introduce a balance between labeled data fit and graph

energy

 Graph Kernels by Spectral Transforms

 Smoothness, using eigenvector of Laplacian to keep smooth

 Use kernel alignment

 Gaussian field and Harmonic Function

 The label is descrete (Gaussian)

Reference

 [1] Zhu, Semi supervised learning tutorial
(http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf)

 [2] Zhu, Ghahramani Learning from labeled and
unlabeled data

 [3]Zhu, Ghahramani, Lafferty Semi-Supervised Learning
Using Gaussian Fields and Harmonic Functions

 [4]Zhou at al Learning with Local and Global
Consistency

 [5]Zhu et al Semi-supervised learning

 [6]Matt Stokes, Semi-Supervised Learning

http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_label_propagation_2002.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_label_propagation_2002.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_SSL_harmonic.pdf.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_SSL_harmonic.pdf.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_SSL_harmonic.pdf.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_SSL_harmonic.pdf.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhou_local_global_consistency_2004.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhou_local_global_consistency_2004.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_Graph_kernels_2005.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_Graph_kernels_2005.pdf
http://people.cs.pitt.edu/~milos/courses/cs3750/Readings/SSL/Zhu_Graph_kernels_2005.pdf

