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Semi Supervised Learning 

 Semi-supervised learning is a class of supervised 
learning tasks and techniques that also make use of 
unlabeled data for training - typically a small 
amount of labeled data with a large amount of 
unlabeled data. 

 Why 

 Labeled data is hard to get 

 Expensive, human annotation, time consuming  

 May require experts  

 Unlabeled data is cheap 



Why unlabeled data helps[1] 

 

 

 

 

 

 

 

 

 assuming each class is a coherent group (e.g. Gaussian) 

 with and without unlabeled data: decision boundary shift 

  



Label Propagation[2] 

 Assumption 

 Closer data points tend to have similar class labels. 

 General Idea 

 A node’s labels propagate to neighboring nodes 

according to their proximity 

 Clamp the labels on the labeled data, so the labeled 

data could act like a sources that push out labels to 

unlabeled data. 



Set up 

 Input x, label y 

 Labeled data (x1,y1),(x2,y2)…(xl,yl) 

 Unlabeled data (xl+1,yl+1)……(xl+u,yl+u) 

 l<<u 

 weight 



Probabilistic Transition Matrix  

 Allow larger edge weight to propagate labels easier 

𝑇𝑖𝑗 = 𝑃 𝑗 → 𝑖 =
𝑤𝑖𝑗

 𝑤𝑘𝑗
𝑙+𝑢
𝑘=1

 

 Tij is the probability to jump from node j to I 

 Normalized T 

    𝑇𝑖𝑗 =
𝑇𝑖𝑗

 𝑇𝑖𝑘𝑘
 

For example: 

0.3 0.2 0.5
0.2 0.1 0.7
0.5 0.7 0.6

 

 

 

The probability node 3 

jump to Node 1 is 0.5 

The probability node 2 

jump to Node 3 is 0.7 



Matrix Y 

 Define (l+u) * C label matrix Y, whose ith row 

representing label probability distribution of node xi 

 Yij=1, if the class of xi is cj, else 0, for labeled data 

 The initialization of row of Y corresponding to unlabeled 

data is not important 

  

0 1 0
0.2 0.5 0.3
0.7 0.2 0.1

 
Node 1 is labeled as label 2. 

The label distribution of node 3. For 

example, 0.7 is the probability that 

node 3 is label 1 . 



Algorithm 

 1 Propagate Y TY 

Labels spread information along local 

structure 

 2 Row normalize Y 

 Keep proper distribution over classes 

 3 Clamp the labeled data, Repeat from step 1 until 

Y converges 

 Keep originally labeled points 

 



Convergence 

 The first two steps 

 Split T 

 Yu 

 General from 

 𝑇  is row normalized, 𝑇 uu is submatrix of 𝑇   



Convergence(cont) 

 Consider the row sum  

No need to iterate! 



Parameter Setting 

 How to choose parameter σ 

 First, use a heuristic method. Finding a minimum 
spanning tree over all data points with Euclidean 
distances dij with Kruskal’s Algorithm(The famous 
greedy algorithm in data structure).   

 Choose the first tree edge that connect two 

components with different labeled points. The length 

is d0. 

 Set σ=d0/3 



The effect of σ 

 



Optimizing σ 

 Single parameter σ controls spread of labels 

 For σ→0, classification of unlabeled points dominated 

by nearest labeled point 

 For σ→∞, class probabilities just become class 

frequencies (no information from label proximity) 

 Can minimize entropy of class labels 

 H=- 𝑌𝑖𝑗𝑙𝑜𝑔𝑌𝑖𝑗𝑖𝑗  

 Leads to confident classifications 

 However, minimum entropy at σ=0 

 



Optimizing σ(cont) 

 Add uniform transition component (Uij=1/N) to T 

 

 For small σ, uniform component dominates 

 Minimum entropy no longer at σ=0 

 Use σ1… σN to scale each dimension independently 

 Perform gradient descent with respect to σ’s in 

order to minimize entropy 

TT )1(
~

  U




  










 UL

Li

C

c d

ic

icd

Y

Y

HH

1 1 



Rebalancing Class Proportions 

 How should we assign classes to unlabeled points? 

 Could choose most likely class 

 ML method does not explicitly control class proportions 

 Suppose we want labels to fit a known or estimated 
distribution over classes 

 Normalize class mass – scale columns of YU to fit class 
distribution and then pick ML class 
 Does not guarantee strict label proportions 

 Perform label bidding – each entry YU(i,c) is a “bid” of 
sample i for class c 
 Handle bids from largest to smallest 

 Bid is taken if class c is not full, otherwise it is discarded 

 



Experiment result 

 3 bands dataset and Spring dataset 



Learning with local and global 

consistency[4] 

 The key to semi- supervised learning 

  Nearby points are likely to have the same label 

 Points on the same structure (cluster or manifold) are 

likely to have the same label 



A toy example 

 



Objective 

 

 

Design a classifying function which is sufficiently 

smooth with respect to the intrinsic structure  



Algorithm 

 

Retain Initial 

information 

Receive information 

from its neighbour 



Convergence 

 The sequence {F(t)} converges, suppose F(0)=Y  

 

F*=(1-α)(I-αS)-1Y  

 

The proof is similar to Label Propagation 



Regularization Framework(A different 

pespective) 

 

Fitting constraints, loss 

function, a good classifying 

function should not change 

too much from initial label 

assignment 

Smoothness term, capture the local 

variations, a good function should not 

change too much between nearby points 

𝒬(F)=
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖
−

𝐹𝑗

𝐷𝑗𝑗

2 + 𝜇  𝐹𝑖 − 𝑌𝑖
2𝑛

𝑖=1
𝑛
𝑖,𝑗=1  



Regularization Framework 

 

 

 

 Differentiating 𝒬(F) with respect to F 



𝜕𝒬

𝜕𝐹
 
𝐹=𝐹∗

= 𝐹∗ − 𝑆𝐹∗ + 𝜇 𝐹∗ − 𝑌 = 0 

  𝐹∗ −
1

1+𝜇
𝑆𝐹∗ −

𝜇

1+𝜇
𝑌 = 0 

 𝛼 =
1

1+𝜇
, 𝑎𝑛𝑑 𝛽 =

𝜇

1+𝜇
 

 𝐼 − 𝛼𝑆 𝐹∗ = 𝛽𝑌 

 𝐼 − 𝛼𝑆 is invertible, 𝐹∗ = 𝛽(𝐼 − 𝛼𝑆)−1𝑌 

 

 

Property of 

Laplacian Matrix 
1

2
 𝑊𝑖𝑗

𝐹𝑖

𝐷𝑖𝑖

−
𝐹𝑗

𝐷𝑗𝑗

2

𝑛

𝑖,𝑗=1

= 𝑓𝑇𝐷−1/2𝐿𝑠𝑦𝑚𝐷−1/2𝑓 

𝐿𝑠𝑦𝑚 = 𝐷−1/2𝐿𝐷−1/2=I-𝐷−1/2𝑊𝐷−1/2 

  =I-S 



Experiment 

 



Graph Kernels by Spectral 

Transforms[5] 

 Graph-based semi-supervised learning methods can 

be viewed as imposing smoothness conditions on the 

target function 

 Eigenvectors with small eigenvalues are smooth, and 

ideally represent large cluster structures within the 

data. 



Smoothness 

 Consider the Laplacian L 

 

 

 

 

 

 



Smoothness 

 Semi-supervised learning creates a smooth function 

over unlabeled points 

 

 

 

 Generally, smooth if f(i)≈f(j) for pairs with large Wij 

 The smoothness of an eigenvector is  
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Eigenvectors with 

smaller eigenvalues 

are smoother 



Smoothness of Eigenvectors 

 The complete orthonormal set of eigenvectors ø1, 

ø2.. øn 

 

𝐿 =  𝜆𝑖

𝑛

𝑖=1

𝜙𝑖𝜙𝑖
𝑇
 



Kernels by Spectral Transform 

 Different weightings (i.e. spectral transforms) of 
Laplacian eigenvalues leads to different smoothness 
measures 

 We want a kernel K that respects smoothness 

 Define using eigenvectors of Laplacian (φ) and 
eigenvalues of K (μ) 

 

 

 Can also define in terms of a spectral transform of 
Laplacian eigenvalues 
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Types of Transforms 

 r(λi) is a non-negative and decreasing transform 

 

 

 

 

 

 

 Reverses order of eigenvalues, so smooth 
eigenvectors have larger eigenvalues in K 

 Is there an optimal transform? 
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We need to find a 

regularizer here 



Kernel Alignment 

 Assess fitness of a kernel to training labels 

 Empirical kernel alignment compares kernel matrix Ktr 

for training data to target matrix T for training data 

 Tij=1 if yi=yj, otherwise Tij=-1 

 

 

 Alignment measure computes cosine between Ktr and T 

 Find the optimal spectral transformation r(λi) using the 

kernel alignment notion 
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Frobenius Product 



Convex Optimization 

 Convex set  

 Convex function 

 Convex Optimization 

 Linear Programming 

 Minimize cTx+d 

 Subject to Gx≤h 
 Ax=b 

 Quadratically Constrained Quadratic Programming  

 Minimize 1/2xTPx+cTx+d 

 Subject to 1/2xTQiX+ri
Tx+si ≤=0 

Ax=b 

 

 

 



QCQP 

 Kernel alignment between Ktr and T is a convex function 
of kernel eigenvalues μi 

 No assumption on parametric form of transform r(λi) 

 Need K to be positive semi-definite 

 Restrict eigenvalues of K to be ≥0 

 Leads to computationally efficient Quadratically 
Constrained Quadratic Program 

 Minimize convex quadratic function over smaller feasible 
region 

 Both objective function and constraints are quadratic 

 Complexity comparable to linear programs 



Impose Order Constraints 

 We would like to keep decreasing order on spectral 

transformation 

 Smooth functions are preferred – bigger eigenvalues 

for smoother eigenvectors 

 An order constrained semi-supervised kernel K is the 

solution to the following convex optimization 

problem. 

 

 



Improved Order Constraints 

 Constant eigenvectors act as a bias term in the 

graph kernel 

 λ1=0, corresponding eigenvector φi is constant 

 Need not constrain bias terms 

 Improved Order constrains 

 Ignore the constant eigenvectors 

𝜇𝑖 ≥ 𝜇𝑖+1, 𝑖 = 1 … . . 𝑛 − 1, 𝑎𝑛𝑑 ∅𝑖 𝑛𝑜𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

 



Harmonic Functions (Zhu, 2003)[3] 

 Now define class labeling f in terms of a Gaussian over 
continuous space, instead of random field over discrete 
label set 

 Distribution on f is a Gaussian field 

 

 

 

 Useful for multi-label problems (NP-hard for discrete 
random fields) 

 ML configuration is now unique, attainable by matrix 
methods, and characterized by harmonic functions 
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Harmonic Energy 

 “Energy” of solution labeling f is defined as: 

 

 Nearby points should have similar labels 

 Solution which minimizes E(f) is harmonic 

 Δf=0 for unlabeled points, where Δ=D-W (combinatorial 

Laplacian) 

 Δf=fl for labeled points 

 Value of f at an unlabeled point is the average of f at 

neighboring points 
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Harmonic Solution 

 As before, split problem into: 

 

 

 Solve using Δf=0, f|L= fl : 

 

 Can be viewed as heat kernel classification, but 

independent of time parameter 
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Summary 

 Label Propagation 

 Propagate and clamp data 

 Local and global consistency 

 Allow f(Xl) to be different from Yl, but penalize it 
 Introduce a balance between labeled data fit and graph 

energy  

 Graph Kernels by Spectral Transforms 

 Smoothness, using eigenvector of Laplacian to keep smooth  

 Use kernel alignment  

 Gaussian field and Harmonic Function 

 The label is descrete (Gaussian) 
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