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Semi Supervised Learning

Semi-supervised learning is a class of supervised
learning tasks and techniques that also make use of
unlabeled data for training - typically a smaill
amount of labeled data with a large amount of
unlabeled data.

Why
Labeled data is hard to get

Expensive, human annotation, time consuming
May require experts

Unlabeled data is cheap



Why unlabeled data helps[1]

labeled data
————— decision boundary (labeled)
(O unlabeled data
decision boundary (labeled and unlabeled)
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11 assuming each class is a coherent group (e.g. Gaussian)
71 with and without unlabeled data: decision boundary shift



Label Propagation|2]

Assumption
Closer data points tend to have similar class labels.
General Idea

A node’s labels propagate to neighboring nodes
according to their proximity

Clamp the labels on the labeled data, so the labeled

data could act like a sources that push out labels to
unlabeled data.



Set up

Input x, label y

Labeled data (XllY])I(X2,Y2)“°(XIIYI)
Unlabeled data (x;.;,Y41)---- (X (40 Yi0)
I<<u

2 Do, Pl 2
Weigh’r wij = exp (— (ii.j) = exp (— 2z (‘rf — 7)) )

a? o



Probabilistic Transition Matrix

Allow larger edge weight to propagate labels easier

T, is the probability to jump from node j to |

Normalized T

Tij
T:. =
o Yk Tik
For exqmple: > (05 The probability node 3
0.3 O. . jump to Node 1 is 0.5
0.2 0.1 0.7
The probability node 2 0.50.7) 0.6

jump to Node 3 is 0.7



Matrix Y

Define (I+u) * C label matrix Y, whose ith row
representing label probability distribution of node x.
Y;=1, if the class of x; is ¢, else O, for labeled data

The initialization of row of Y corresponding to unlabeled
data is not important

O 1 O Node 1 is labeled as label 2.
0.2 0.5 0.3
0.7 0.2 0.1

The label distribution of node 3. For

example, 0.7 is the probability that
node 3 is label 1.



Algorithm

1 Propagate Y& TY

Labels spread information along local
structure

2 Row normalize Y
Keep proper distribution over classes

3 Clamp the labeled data, Repeat from step 1 until
Y converges

Keep originally labeled points



Convergence

The first two steps v «1r
Split T 7- [ Tu T ]

T.a T

ul T

YU v, T Yy+T,Y;

General from Yo = lim T3,y + [} 707 |Tul,

i=1

T is row normalized, 7, is submatrix of T

w
Iy <L) Ty, <7,Vi=1...u



Convergence(cont)
—

1 Consider the row sum
Z S ZZT&;,}i’TM
= ZTTEE;UZT““JHJ
< Y Tty
< A"

YU = (I - Tuu]_ITuIYL

No need to iterate!



Parameter Setting

How to choose parameter o

First, use a heuristic method. Finding a minimum
spanning tree over all data points with Euclidean
distances d; with Kruskal’s Algorithm(The famous
greedy algorithm in data structure).

Choose the first tree edge that connect two
components with different labeled points. The length
is dj.

Set 0=d,/3



The effect of O
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Optimizing O

Single parameter 0 controls spread of labels

For 0—0, classification of unlabeled points dominated
by nearest labeled point

For 0—, class probabilities just become class
frequencies (no information from label proximity)

Can minimize entropy of class labels
Leads to confident classifications

However, minimum entropy at =0



Optimizing o(cont)

Add uniform transition component (U= /N)to T
T =eU+(1—&)T
For small ¢, uniform component dominates
Minimum entropy no longer at 6=0
Use 0,... Oy to scale each dimension independently

Perform gradient descent with respect to 0’s in
order to minimize entropy

U C oH aY,
oo, ZZ@Y oo,

ao'd i=L+1 c=1




Rebalancing Class Proportions

How should we assign classes to unlabeled points?

Could choose most likely class
ML method does not explicitly control class proportions

Suppose we want labels to fit a known or estimated
distribution over classes
Normalize class mass — scale columns of Y, to fit class
distribution and then pick ML class
Does not guarantee strict label proportions
Perform label bidding — each entry Y (i,c) is a “bid” of
sample i for class ¢
Handle bids from largest to smallest
Bid is taken if class c is not full, otherwise it is discarded



Experiment result
—

1 3 bands dataset and Spring dataset
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(a) The data (b) kNN (e] Label propagation

Figure 1: The 3 Bands dataset. Labeled data are color symbals and unlabeled
data are dots in (a). kNN ignores unlabeled data structure, while label propa-

gatlon uses it.

(a) The data (b) kNN (¢] Label propagation

Figure 2: The Springs dataset.



Learning with local and global

ist 4
- consistency[4]

1 The key to semi- supervised learning
Nearby points are likely to have the same label

Points on the same structure (cluster or manifold) are
likely to have the same label



A toy example
N

{a) Toy Data (Two Moons) (b) SVM (REF Kernel)
+  unlabeled point
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Figure 1: Classification on the two moons pattern. (a) toy data set with two labeled points;
(b) classifying result given by the SVM with a RBF kernel; (c) £-NN with & = 1; (d) ideal
classification that we hope to obtain.



Obijective

Design a classifying function which is sufficiently
smooth with respect to the intrinsic structure



Algorithm

1. Form the affinity matrix W defined by W;; = exp(=|jz; — z;||*/20%) if i # j
and Wii = ().

2. Construct the matrix S = D~Y/2WD~1/2 in which D is a diagonal matrix with
its (i, 7)-element equal to the sum of the i-th row of W.

3. Iterate F'(t+1)
in (0, 1).
4. Let F'* denote the limit of the sequence

—_ *
yi = argmax;</ Fi-.

until convergence, where « is a parameter

F(t)}. Label each point z; as a label

Receive information Retain Initial
from its neighbour information



Convergence

The sequence {F(t)} converges, suppose F(0)=Y

F*=(1-a)(l-aS) 'Y

The proof is similar to Label Propagation



Regularization Framework(A different
pespective)

F; Fj

Dii — yDjj

2+ MZ?=1”FL' — Yl”2

1
QF)=2 251 Wi

Smoothness term, capture the local
variations, a good function should not
change too much between nearby points

Fitting constraints, loss
function, a good classifying
function should not change
too much from initial label
assignment



Regularization Framework

Property of 1 n

F; F;
Laplacian Matrix — Z W R | TD—l/ZLS mD—l/Z
2 2, o || T e
L]= Lsym — D—1/2LD—1/2:|_D—1/2WD—1/2
Differentiating Q(F) with respect to F =I-S
0
99| = F —SF 4+ u(F*—Y)=0
OF F=Fx
1
F* ——SF*——Y =0
1+u 1+u
1
a=—,and f = ——
1+u 1+u

(I —aS)F* =Y
I — as is invertible, F* = B(I — aS)~1Y



Experiment

(2} t=10
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Figure 2: Classification on the pattern of two moons. The convergzence process of our
iteration algorithm with ¢ increasing from 1 to 400 is shown from (a) to (d). Note that the
initial label information are diffused along the moons.



Graph Kernels by Spectral
Transforms[5]

Graph-based semi-supervised learning methods can
be viewed as imposing smoothness conditions on the
target function

Eigenvectors with small eigenvalues are smooth, and
ideally represent large cluster structures within the
data.



Smoothness
B

11 Consider the Laplacian L

Proposition 1 (Properties of L) The matriz L satisfies the following properties:
1. For every vector f € R™ we have

1 i
fLf= 3 z wii (fi — f5)°.
i.g=1
2. L is symmetric and positive semi-definite.
3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = Ay < Ay < ... < A,



Smoothness

Semi-supervised learning creates a smooth function

over unlabeled points
f:[n] — R,

N
FILE =2 W, (F () - F()°
i, j=1
Generally, smooth if f(i)=f(j) for pairs with large W,

The smoothness of an eigenvector is

T . .
Gf’?; LG% = \; Elgenvec’r.ors with
smaller eigenvalues
are smoother



Smoothness of Eigenvectors

I
-1 The complete orthonormal set of eigenvectors g,,

¢2.. ¢n

-0 38 -066 k =1.00

=179 12=2-21 13-2.62 h,,=2.62 h,s=3.00
16334 17362 18-3-62 19-3-83 o= 3-96

(b) the eigenvectors and eigenvalues of the Laplacian L

Figure 1.1 A simple graph and its Laplacian spectral decomposition. Note the eigen-
vectors become rougher with larger eigenvalues.



Kernels by Spectral Transform

Different weightings (i.e. spectral transforms) of
Laplacian eigenvalues leads to different smoothness

measures
We want a kernel K that respects smoothness

Define using eigenvectors of Laplacian (¢) and
eigenvalues of K ()

K= Z/Ji¢i¢iT

Can also define in terms of a spectral transform of

Laplacian eigenvalues
N

K= Z r(4)éd

=1



Types of Transforms

r(A) is a non-negative and decreqsin% transform

Regularized Laplacian r(i) =
A+g

2
Diffusion Kernel r(4) =exp (—%;LJ

1-stepRandomWalk r(A)=(a—-A),a=>2

p-stepRandomWalk r(A1)=(a—A4)",a>2
Inverse Cosine r(A) =cos(Ax /4)
Step Function r(A)=1if A< A4

cut

Reverses order of eigenvalues, so smooth
eigenvectors have larger eigenvalues in K

s there an optimal transform?2 —— We need to find o
regularizer here



Kernel Alignment

Assess fitness of a kernel to training labels

Empirical kernel alignment compares kernel matrix K,
for training data to target matrix T for training data

T.=1if y=y, otherwise T.=-1

oo (K T), (M,N)_ =Tr(MN)
) Frobenius Product
J(Ke Ke) (T.T),

Alignment measure computes cosine between K, and T

A(K

tr?

Find the optimal spectral transformation r(A.) using the
kernel alignment notion



Convex Optimization

Convex set

Convex function e

Convex Optimization o

Linear Programming
Minimize c'x+d
Subject to Gx<h

Ax=b

Quadratically Constrained Quadratic Programming
Minimize 1/2x"Px+c'x+d
Subject to 1/2x'"QX+r,"x+s, <=0

Ax=b




QCQP

Kernel alignment between K, and T is a convex function
of kernel eigenvalues [,

No assumption on parametric form of transform r(A)

Need K to be positive semi-definite

Restrict eigenvalues of K to be >0
Leads to computationally efficient Quadratically
Constrained Quadratic Program

Minimize convex quadratic function over smaller feasible
region

Both objective function and constraints are quadratic
Complexity comparable to linear programs



Impose Order Constraints

We would like to keep decreasing order on spectral
transformation

Smooth functions are preferred — bigger eigenvalues
for smoother eigenvectors

An order constrained semi-supervised kernel K is the
solution to the following convex optimization

problem. s A(K, T)
subject to K=5%" K,
i =0
Tr(K)=1

pi 2 pit1, i=1---n—1



Improved Order Constraints

Constant eigenvectors act as a bias term in the
graph kernel

A,=0, corresponding eigenvector . is constant

Need not constrain bias terms
Improved Order constrains

Ignore the constant eigenvectors
Ui = tir1, L =1....n—1,and @; not constant



Harmonic Functions (Zhu, 2003)[3]

Now define class labeling f in terms of a Gaussian over
continuous space, instead of random field over discrete
label set

Distribution on f is a Gaussian field
o~ /E(T)
py(f)= -
s
Z,= [exp(-BE(f))df

fliy
Useful for multi-label problems (NP-hard for discrete
random fields)

ML configuration is now unique, attainable by matrix
methods, and characterized by harmonic functions



Harmonic Energy

“Energy” of solution Iclbellng f is defined as:
E(T)=> Z ;(F()—1())°
Nearby points should hqve similar labels

Solution which minimizes E(f) is harmonic

Af=0 for unlabeled points, where A=D-W (combinatorial
Laplacian)

Af=f, for labeled points

Value of f at an unlabeled point is the average of f at
neighboring pom’rs

f(j)= Z (i), for j=L+1...,L+U
f_DWf



Harmonic Solution

As before, split problem into:

f — f' W _ _WII Wlu P
f _Wul Wuu
Solve using Af=0, f| = f,:
fu — (Duu _Wuu)_lwul fl — (I o I:)uu)_1 I:)ul fl

D~W

Can be viewed as heat kernel classification, but
independent of time parameter



Summary

Label Propagation
Propagate and clamp data
Local and global consistency
Allow (X)) to be different from Y, but penalize it

Introduce a balance between labeled data fit and graph
energy

Graph Kernels by Spectral Transforms
Smoothness, using eigenvector of Laplacian to keep smooth
Use kernel alignment

Gaussian field and Harmonic Function
The label is descrete (Gaussian)
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