LABEL PROPAGATION ON GRAPHS. SEMI-SUPERVISED LEARNING

----Changsheng Liu 10-30-2014

Agenda

- Semi Supervised Learning
- Topics in Semi Supervised Learning
 - Label Propagation
 - Local and global consistency
 - Graph Kernels by Spectral Transforms
 - Gaussian field and Harmonic Function
- Reference

Semi Supervised Learning

- Semi-supervised learning is a class of supervised learning tasks and techniques that also make use of unlabeled data for training - typically a small amount of labeled data with a large amount of unlabeled data.
- Why
 - Labeled data is hard to get
 - Expensive, human annotation, time consuming
 - May require experts
 - Unlabeled data is cheap

Why unlabeled data helps[1]

- assuming each class is a coherent group (e.g. Gaussian)
- with and without unlabeled data: decision boundary shift

Label Propagation[2]

- Assumption
 - Closer data points tend to have similar class labels.
- General Idea
 - A node's labels propagate to neighboring nodes according to their proximity
 - Clamp the labels on the labeled data, so the labeled data could act like a sources that push out labels to unlabeled data.

Set up

- □ Input x, label y
- □ Labeled data $(x_1,y_1),(x_2,y_2)...(x_l,y_l)$
- □ Unlabeled data (x_{l+1},y_{l+1}) (x_{l+u},y_{l+u})
- □ << u</p>
- weight $w_{ij} = \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right) = \exp\left(-\frac{\sum_{d=1}^D (x_i^d x_j^d)^2}{\sigma^2}\right)$

Probabilistic Transition Matrix

Allow larger edge weight to propagate labels easier

$$T_{ij} = P(j \to i) = \frac{w_{ij}}{\sum_{k=1}^{l+u} w_{kj}}$$

- \Box T_{ij} is the probability to jump from node j to l
- Normalized T

$$T_{ij} = \frac{T_{ij}}{\sum_k T_{ik}}$$

(0.7)

0.5

For example:

0.6

The probability node 3 jump to Node 1 is 0.5

The probability node 2 jump to Node 3 is 0.7

Matrix Y

- Define (I+u) * C label matrix Y, whose ith row representing label probability distribution of node x_i
 - \square $Y_{ij}=1$, if the class of x_i is c_i , else 0, for labeled data
 - The initialization of row of Y corresponding to unlabeled data is not important
 - $0 \quad 1 \quad 0$ Node 1 is labeled as label 2.
- □ 0.2 0.5 0.3
 - (0.7) 0.2 0.1

The label distribution of node 3. For example, 0.7 is the probability that node 3 is label 1.

Algorithm

- □ 1 Propagate Y ← TY
 - Labels spread information along local structure
- 2 Row normalize Y
 - Keep proper distribution over classes
- 3 Clamp the labeled data, Repeat from step 1 until
 Y converges
 - Keep originally labeled points

Convergence

- □ The first two steps $Y \leftarrow \bar{T}Y$
- \square Split T $\bar{T} = \begin{bmatrix} \bar{T}_{ll} & \bar{T}_{lu} \\ \bar{T}_{ul} & \bar{T}_{uu} \end{bmatrix}$
- \square Yu $Y_U \leftarrow \bar{T}_{uu}Y_U + \bar{T}_{ul}Y_L$
- $\Box \text{ General from } Y_U = \lim_{n \to \infty} \bar{T}_{uu}^n Y^0 + [\sum_{i=1}^n \bar{T}_{uu}^{(i-1)}] \bar{T}_{ul} Y_L$
- $oxedsymbol{\square}$ $ar{T}$ is row normalized, $ar{T}_{\mathrm{uu}}$ is submatrix of $ar{T}$

$$\exists \gamma < 1, \sum_{i=1}^{u} \bar{T}_{uu_{ij}} \le \gamma, \forall i = 1 \dots u$$

Convergence(cont)

Consider the row sum

$$\sum_{j} \bar{T}_{uu_{ij}}^{n} = \sum_{j} \sum_{k} \bar{T}_{uu_{ik}}^{(n-1)} \bar{T}_{uu_{kj}}$$

$$= \sum_{k} \bar{T}_{uu_{ik}}^{(n-1)} \sum_{j} \bar{T}_{uu_{kj}}$$

$$\leq \sum_{k} \bar{T}_{uu_{ik}}^{(n-1)} \gamma$$

$$\leq \gamma^{n}$$

$$Y_{IJ} = (I - \bar{T}_{uu})^{-1} \bar{T}_{uI} Y_{L}$$

No need to iterate!

Parameter Setting

- \square How to choose parameter σ
- First, use a heuristic method. Finding a minimum spanning tree over all data points with Euclidean distances d_{ii} with Kruskal's Algorithm(The famous greedy algorithm in data structure).
- □ Choose the first tree edge that connect two components with different labeled points. The length is d_0 .
- \square Set $\sigma = d_0/3$

The effect of σ

Optimizing o

- Single parameter σ controls spread of labels
 - For σ →0, classification of unlabeled points dominated by nearest labeled point
 - □ For $\sigma \rightarrow \infty$, class probabilities just become class frequencies (no information from label proximity)
- Can minimize entropy of class labels
- \square H=- $\sum_{ij} Y_{ij} log Y_{ij}$
 - Leads to confident classifications
 - However, minimum entropy at σ =0

Optimizing $\sigma(cont)$

 \square Add uniform transition component ($\mathbf{U_{ij}} = 1/N$) to T $\widetilde{T} = \varepsilon \mathbf{U} + (1-\varepsilon)T$

- \Box For small σ , uniform component dominates
 - \blacksquare Minimum entropy no longer at $\sigma=0$
- \square Use $\sigma_1 \dots \sigma_N$ to scale each dimension independently
- Perform gradient descent with respect to σ's in order to minimize entropy

$$\frac{\partial H}{\partial \sigma_d} = \sum_{i=L+1}^{L+U} \sum_{c=1}^{C} \frac{\partial H}{\partial Y_{ic}} \frac{\partial Y_{ic}}{\partial \sigma_d}$$

Rebalancing Class Proportions

- How should we assign classes to unlabeled points?
- Could choose most likely class
 - ML method does not explicitly control class proportions
- Suppose we want labels to fit a known or estimated distribution over classes
 - Normalize class mass scale columns of Y_U to fit class distribution and then pick ML class
 - Does not guarantee strict label proportions
 - Perform label bidding each entry $Y_U(i,c)$ is a "bid" of sample i for class c
 - Handle bids from largest to smallest
 - Bid is taken if class c is not full, otherwise it is discarded

Experiment result

3 bands dataset and Spring dataset

Figure 1: The 3 Bands dataset. Labeled data are color symbols and unlabeled data are dots in (a). kNN ignores unlabeled data structure, while label propagation uses it.

Figure 2: The Springs dataset.

Learning with local and global consistency[4]

- The key to semi- supervised learning
 - Nearby points are likely to have the same label
 - Points on the same structure (cluster or manifold) are likely to have the same label

A toy example

Figure 1: Classification on the two moons pattern. (a) toy data set with two labeled points; (b) classifying result given by the SVM with a RBF kernel; (c) k-NN with k = 1; (d) ideal classification that we hope to obtain.

Objective

Design a classifying function which is sufficiently smooth with respect to the intrinsic structure

Algorithm

- 1. Form the affinity matrix W defined by $W_{ij} = \exp(-\|x_i x_j\|^2/2\sigma^2)$ if $i \neq j$ and $W_{ii} = 0$.
- 2. Construct the matrix $S = D^{-1/2}WD^{-1/2}$ in which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of W.
- 3. Iterate $F(t+1) = \alpha SF(t) + (1-\alpha)Y$ until convergence, where α is a parameter in (0,1).
- 4. Let F^* denote the limit of the sequence $\{F(t)\}$. Label each point x_i as a label $y_i = \arg\max_{j \le c} F_{ij}^*$.

Receive information from its neighbour

Retain Initial information

Convergence

 \square The sequence $\{F(t)\}$ converges, suppose F(0)=Y

$$F^*=(1-\alpha)(I-\alpha S)^{-1}Y$$

The proof is similar to Label Propagation

Regularization Framework(A different pespective)

$$Q(F) = \frac{1}{2} \sum_{i,j=1}^{n} W_{ij} \left\| \frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}} \right\|^2 + \mu \sum_{i=1}^{n} \|F_i - Y_i\|^2$$

Smoothness term, capture the local variations, a good function should not change too much between nearby points

Fitting constraints, loss function, a good classifying function should not change too much from initial label assignment

Regularization Framework

Property of Laplacian Matrix
$$\frac{1}{2}\sum_{i,j=1}^{n}W_{ij}\left\|\frac{F_{i}}{\sqrt{D_{ii}}}-\frac{F_{j}}{\sqrt{D_{jj}}}\right\|^{2}=f^{T}D^{-1/2}L_{sym}D^{-1/2}f$$

$$L_{sym}=D^{-1/2}LD^{-1/2}=\text{I}-D^{-1/2}WD^{-1/2}$$

- lacksquare Differentiating $Q(\mathsf{F})$ with respect to F
- $\left. \frac{\partial \mathcal{Q}}{\partial F} \right|_{F=F*} = F^* SF^* + \mu(F^* Y) = 0$
- $\alpha = \frac{1}{1+\mu}$, and $\beta = \frac{\mu}{1+\mu}$
- $\square (I \alpha S)F^* = \beta Y$
- \square $I \alpha S$ is invertible, $F^* = \beta (I \alpha S)^{-1} Y$

Experiment

Figure 2: Classification on the pattern of two moons. The convergence process of our iteration algorithm with t increasing from 1 to 400 is shown from (a) to (d). Note that the initial label information are diffused along the moons.

Graph Kernels by Spectral Transforms[5]

- Graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target function
- Eigenvectors with small eigenvalues are smooth, and ideally represent large cluster structures within the data.

Smoothness

Consider the Laplacian L

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- 2. L is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.
- 4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

Smoothness

 Semi-supervised learning creates a smooth function over unlabeled points

$$f:[n]\to\mathbb{R},$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

- \square Generally, smooth if $f(i) \approx f(j)$ for pairs with large W_{ij}
- The smoothness of an eigenvector is

$$\phi_i^{\top} L \phi_i = \lambda_i \qquad \blacksquare$$

Eigenvectors with smaller eigenvalues are smoother

Smoothness of Eigenvectors

 \square The complete orthonormal set of eigenvectors \emptyset_1 ,

$$L = \sum_{i=1}^{n} \lambda_i \, \phi_i \phi_i^T$$
(a) a linear unweighted graph with two segments
$$\lambda_1 = 0.00 \qquad \lambda_2 = 0.00 \qquad \lambda_3 = 0.04 \qquad \lambda_4 = 0.17 \qquad \lambda_5 = 0.38$$

$$\lambda_6 = 0.38 \qquad \lambda_7 = 0.66 \qquad \lambda_8 = 1.00 \qquad \lambda_9 = 1.38 \qquad \lambda_{10} = 1.38$$

$$\lambda_{11} = 1.79 \qquad \lambda_{12} = 2.21 \qquad \lambda_{13} = 2.62 \qquad \lambda_{14} = 2.62 \qquad \lambda_{15} = 3.00$$
(b) the eigenvectors and eigenvalues of the Laplacian L

Figure 1.1 A simple graph and its Laplacian spectral decomposition. Note the eigenvectors become rougher with larger eigenvalues.

Kernels by Spectral Transform

- Different weightings (i.e. spectral transforms) of Laplacian eigenvalues leads to different smoothness measures
- We want a kernel K that respects smoothness
 - Define using eigenvectors of Laplacian (φ) and eigenvalues of K (μ)

$$K = \sum_{i=1}^N \mu_i \phi_i \phi_i^T$$

 Can also define in terms of a spectral transform of Laplacian eigenvalues

$$K = \sum_{i=1}^{N} r(\lambda_i) \phi_i \phi_i^T$$

Types of Transforms

 $r(\lambda_i)$ is a non-negative and decreasing transform

Regularized Laplacian
$$r(\lambda) = \frac{1}{\lambda + \varepsilon}$$

Diffusion Kernel $r(\lambda) = \exp\left(-\frac{\sigma^2}{2}\lambda\right)$

1-step Random Walk $r(\lambda) = (\alpha - \lambda), \alpha \ge 2$

p-step Random Walk $r(\lambda) = (\alpha - \lambda)^p, \alpha \ge 2$

Inverse Cosine $r(\lambda) = \cos(\lambda \pi / 4)$

Step Function $r(\lambda) = 1$ if $\lambda \le \lambda_{cut}$

- Reverses order of eigenvalues, so smooth eigenvectors have larger eigenvalues in K
- sthere an optimal transform? We need to find a regularizer here

Kernel Alignment

- Assess fitness of a kernel to training labels
- \Box Empirical kernel alignment compares kernel matrix K_{tr} for training data to target matrix T for training data
 - $T_{ij} = 1$ if $y_i = y_i$, otherwise $T_{ij} = -1$

$$\hat{A}(K_{tr},T) = \frac{\left\langle K_{tr},T\right\rangle_F}{\sqrt{\left\langle K_{tr},K_{tr}\right\rangle_F\left\langle T,T\right\rangle_F}} \qquad \frac{\left\langle M,N\right\rangle_F = Tr(MN)}{\text{Frobenius Product}}$$

- \square Alignment measure computes cosine between K_{tr} and T
- □ Find the optimal spectral transformation $r(\lambda_i)$ using the kernel alignment notion

Convex Optimization

- Convex set
- Convex function
- Convex Optimization
 - Linear Programming
 - \blacksquare Minimize c^Tx+d
 - Subject to Gx≤h Ax=b

Figure 1: Examples of a convex set (a) and a non-convex set (b).

- Quadratically Constrained Quadratic Programming
 - Minimize $1/2x^TPx+c^Tx+d$
 - Subject to $1/2x^{T}Q_{i}X+r_{i}^{T}x+s_{i} \leq =0$ Ax=b

QCQP

- □ Kernel alignment between K_{tr} and T is a convex function of kernel eigenvalues μ_i
 - No assumption on parametric form of transform $r(\lambda_i)$
- Need K to be positive semi-definite
 - \blacksquare Restrict eigenvalues of K to be ≥ 0
- Leads to computationally efficient Quadratically Constrained Quadratic Program
 - Minimize convex quadratic function over smaller feasible region
 - Both objective function and constraints are quadratic
 - Complexity comparable to linear programs

Impose Order Constraints

- We would like to keep decreasing order on spectral transformation
 - Smooth functions are preferred bigger eigenvalues for smoother eigenvectors
- An order constrained semi-supervised kernel K is the solution to the following convex optimization problem.

$$max_{K} \qquad \qquad \hat{A}(K_{tr}, T)$$

$$subject \ to \qquad \qquad K = \sum_{i=1}^{n} \mu_{i} K_{i}$$

$$\qquad \qquad \qquad \mu_{i} \geq 0$$

$$\text{Tr}(K) = 1$$

$$\qquad \qquad \qquad \mu_{i} \geq \mu_{i+1}, \quad i = 1 \cdots n - 1$$

Improved Order Constraints

- Constant eigenvectors act as a bias term in the graph kernel
 - $\square \lambda_1 = 0$, corresponding eigenvector φ_i is constant
 - Need not constrain bias terms
- Improved Order constrains
 - Ignore the constant eigenvectors

$$\mu_i \ge \mu_{i+1}$$
, $i = 1 \dots n-1$, and \emptyset_i not constant

Harmonic Functions (Zhu, 2003)[3]

- Now define class labeling f in terms of a Gaussian over continuous space, instead of random field over discrete label set
- Distribution on f is a Gaussian field

$$p_{\beta}(f) = \frac{e^{-\beta E(f)}}{Z_{\beta}}$$
$$Z_{\beta} = \int_{f|_{L=f}} \exp(-\beta E(f)) df$$

- Useful for multi-label problems (NP-hard for discrete random fields)
 - ML configuration is now unique, attainable by matrix methods, and characterized by harmonic functions

Harmonic Energy

 \square "Energy" of solution labeling f is defined as:

$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^{2}$$

- Nearby points should have similar labels
- \square Solution which minimizes E(f) is harmonic
 - \square Δf =0 for unlabeled points, where Δ =D-W (combinatorial Laplacian)
 - $\square \Delta f = f_i$ for labeled points
 - Value of f at an unlabeled point is the average of f at neighboring points

$$f(j) = \frac{1}{d_j} \sum_{i \sim j} w_{ij} f(i), \text{ for } j = L+1, ..., L+U$$

$$f = D^{-1}Wf$$

Harmonic Solution

□ As before, split problem into:

$$f = \begin{bmatrix} f_l \\ f_u \end{bmatrix}$$
 $W = \begin{bmatrix} W_{ll} & W_{lu} \\ W_{ul} & W_{uu} \end{bmatrix}$ $P = D^{-1}W$

□ Solve using $\Delta f = 0$, $f|_{L} = f_{L}$:

$$f_{u} = (D_{uu} - W_{uu})^{-1} W_{ul} f_{l} = (I - P_{uu})^{-1} P_{ul} f_{l}$$

 Can be viewed as heat kernel classification, but independent of time parameter

Summary

- Label Propagation
 - Propagate and clamp data
- Local and global consistency
 - \blacksquare Allow $f(X_l)$ to be different from $Y_{l,}$ but penalize it
 - Introduce a balance between labeled data fit and graph energy
- Graph Kernels by Spectral Transforms
 - Smoothness, using eigenvector of Laplacian to keep smooth
 - Use kernel alignment
- Gaussian field and Harmonic Function
 - The label is descrete (Gaussian)

Reference

- [1] Zhu, Semi supervised learning tutorial
 (http://pages.cs.wisc.edu/~jerryzhu/pub/sslicml07.pdf)
- [2] Zhu, Ghahramani <u>Learning from labeled and unlabeled data</u>
- [3]Zhu, Ghahramani, Lafferty <u>Semi-Supervised Learning</u>
 <u>Using Gaussian Fields and Harmonic Functions</u>
- [4]Zhou at al <u>Learning with Local and Global</u>
 <u>Consistency</u>
- [5]Zhu et al <u>Semi-supervised learning</u>
- [6]Matt Stokes, Semi-Supervised Learning