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K-means Clustering 

Given a set of observations (x1, x2, …, xn), where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observations 

into k sets (k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 

squares (WCSS): 

 

 

 

 

 

where μi is the mean of points in Si. 

 

arg min
𝑆

  𝑥𝑗 − 𝑢𝑖
2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 

K-means Clustering 

1) k initial "means" 

(in this case k=3) 

are randomly 

selected from the 

data set. 

2) k clusters are created 

by associating every 

observation with the 

nearest mean. 

3) The centroid of 

each of the k 

clusters becomes 

the new means. 

4) Steps 2 and 3 

are repeated until 

convergence has 

been reached. 

Standard Algorithm 
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 K-means 

 Criteria: Compactness of clusters 

 Major drawback: 

 It can’t separate clusters that are non-linearly separable 

arg min
𝑆

  𝑥𝑗 − 𝑢𝑖
2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1

 

K-means Shortcomings 

Non-linear Separable 

 Spectral Clustering 

 Criteria: Connectivity 

 

 

 

 

 

 Instead of linear similarities use non-linear distance/similarity 

of data or geodesic distance of points 

 Similarity Graph 

K-means Shortcomings 
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(largely, application dependent) 
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Graph Notation 

G=(V,E) : 

 Vertex set       𝑉 = {𝑣1, … , 𝑣𝑛} 

 Weighted adjacency matrix: 

 𝑾 = 𝒘𝒊𝒋  𝒊, 𝒋 = 𝟏, … , 𝒏    𝒘𝒊𝒋 ≥ 𝟎  and  𝒘𝒊𝒋 = 𝒘𝒋𝒊 

 

 Degree      𝑑𝑖 =  𝑤𝑖𝑗
𝑛
𝑗=1  

 

 Degree matrix  D  Diagonal matrix with the degrees 𝑑1, … , 𝑑𝑛 on the diagonal. 

 

𝑣𝑛 

𝑣𝑚 

𝑣𝑛 

Graph Notation 

G=(V,E) : 

 A is a subset of V 

 𝐴 = 𝑉\A 

 Indicator Vector    𝟙𝐴 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛      𝑓𝑖 ∈ {0,1} 

 “Size” of a subset  𝐴 ⊂ 𝑉 

 

 

 Similarity/Connectivity of two subsets A and B 

 

 

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔  𝑑𝑖
𝑖∈𝐴

 

 

𝑊 𝐴, 𝐵 ≔  𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵
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 Connected Subset    A subset A of a graph is connected if any two vertices 

in A can be joined by a path such that all intermediate points also lie in A. 

 Connected Component    it is connected and if there are no connections 

between vertices in A and 𝐴 .  

 Partition: A set of nonempty sets 𝐴1, … , 𝐴𝑘 form a partition of the graph if 

𝐴𝑖 ∩ 𝐴𝑗 =  ∅ and 𝐴1 ∪⋯∪ 𝐴𝑘 = 𝑉. 

 

Graph Notation 

Similarity Graph Construction 

 Goal: Model local neighborhood relationships between data points 

 𝜀-neighborhood graph 

 Connect all points whose pairwise distances are smaller than 𝜀 

 Considered unweighted graph 
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Similarity Graph Construction 

 k-nearest neighbor graph 

 Connect vertex 𝑣𝑖 with vertex 𝑣𝑗 if 𝑣𝑗 is among the k-nearest neighbors of 𝑣𝑖 . 

 Is directed graph 

 Knn graph: obtained by loosing directions 

 Mutual knn graph: connect only if both vertices have the other in their knn 

Similarity Graph Construction 

 Fully connected graph  

 Connect all points with positive similarity with each other 

 Not modeling local neighborhoods 

 We have to use similarity function has to do it (Gaussian Similarity Function) 

 

 

 

 σ controls size of neighborhood 

 

All of introduced graphs are regularly used in spectral clustering! 

𝑊𝑖𝑗 =  𝑒
𝑥𝑖−𝑥𝑗

2

2𝜎2  
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Graph Partitioning 

Partition Properties: 

• Weakly connections in between 

components 

• Strongly connections within components 

First – graph representation of data 

(largely, application dependent) 

Second– graph partitioning: 
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Graph Cut 

G=(V,E) : 

 For two not necessarily disjoint set 𝐴, 𝐵 ⊂ 𝑉, we define  

 

 

 Minicut: choosing a partition 𝐴1, 𝐴2, … , 𝐴𝐾 which minimizes 

 

 

 

𝑊 𝐴,𝐵 ≔  𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 

𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘 ≔
1

2
  𝑊(𝐴𝑖 , 𝐴𝑖)

𝑘

𝑖=1

 

Graph Cut Shortcoming 

 Sensitive to outliers 

 

 

What we get What we want 
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 “Size” of a subset  𝐴 ⊂ 𝑉 could be defined:  

  

Solutions:  

 RatioCut(Hagen and Kahng, 1992) 

 

 

 Ncut(Shi and Malik, 2000) 

 

 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

  

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

Solutions 

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔  𝑑𝑖
𝑖∈𝐴

 

 

Problem 

NP hard!!!: can’t be solved in polynomial time 

 

 

 

Solution:   Approximation 

 

 

 

 

min𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

   

min𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1
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Solving Simple Case 

 Approximation RatioCut for k=2 

 Our goal is to solve the optimization problem: 

 

 

 We can also write: 

 

 

𝑚𝑖𝑛
𝐴⊂𝑉

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴, 𝐴 ) 

min
𝐴⊂𝑉

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴, 𝐴 = min
𝐴⊂𝑉

1

𝑉
𝑉 𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴, 𝐴  

 
𝒎𝒊𝒏
𝑨⊂𝑽

𝑽 𝑹𝒂𝒕𝒊𝒐𝑪𝒖𝒕 𝑨,𝑨  

|𝑉|𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴, 𝐴 ) = |𝑉|( 
𝑐𝑢𝑡 𝐴,𝐴  

|𝐴|
+

𝑐𝑢𝑡 𝐴,𝐴  

|𝐴 |
) 

= 𝑐𝑢𝑡 𝐴, 𝐴  
𝐴 + 𝐴 

𝐴
+

𝐴 + 𝐴 

𝐴 
 

= 𝑐𝑢𝑡 𝐴, 𝐴  (
𝐴 

𝐴
+

𝐴

𝐴 
+ 2) 

 

 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

  

We know: 

Hence, we can rewrite the objective function as: 

Since we know:  

𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖 =  𝑊 𝐴, 𝐵 ≔  𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 

Solving Simple Case 

= 
1

2
  𝑤𝑖𝑗(

𝐴 

𝐴
+

|𝐴|

|𝐴 |
)2

𝑖𝜖𝐴,𝑗𝜖𝐴 

+  𝑤𝑖𝑗(−
𝐴 

𝐴
−

|𝐴|

|𝐴 |
)2

𝑖𝜖𝐴 ,𝑗𝜖𝐴
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𝑓𝑖 =
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴 |,  if 𝑣𝑖 ∈ 𝐴 
 

If we define 𝑓𝑖 as:  

We can rewrite the objective function as: 

=  
1

2
  𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)

2

𝑛

𝑖,𝑗=1

  

   = 
1

2
(  𝑤𝑖𝑗𝑓𝑖

2𝑛
𝑖,𝑗=1 − 2 𝑤𝑖𝑗𝑓𝑖𝑓𝑗

𝑛
𝑖,𝑗=1 +  𝑤𝑖𝑗𝑓𝑗

2𝑛
𝑖,𝑗=1 ) 

   =
1

2
 𝑑𝑖𝑓𝑖

2𝑛
𝑖=1 − 2 𝑓𝑖𝑓𝑗𝑤𝑖𝑗

𝑛
𝑖,𝑗=1 +  𝑑𝑗𝑓𝑗

2𝑛
𝑗=1  

   = 𝑑𝑖𝑓𝑖
2𝑛

𝑖=1 −  𝑓𝑖𝑓𝑗𝑤𝑖𝑗
𝑛
𝑖,𝑗=1  

   = 𝑓′𝐷𝑓 − 𝑓′𝑊𝑓 
   =𝑓′𝐿𝑓 
 

   𝑤𝑖𝑗𝑓𝑗
2

𝑛

𝑖=1

𝑛

𝑗=1

=  𝑑𝑗𝑓𝑗
2

𝑛

𝑗=1

 

𝑑𝑗 

D= degree matrix (n*n) 

𝑊(𝑛 ∗ 𝑛) = 𝑤𝑖𝑗  𝑖, 𝑗 = 1, … , 𝑛    𝑤𝑖𝑗 ≥ 0  

L = D - W 

Solving Simple Case 

= 
1

2
  𝑤𝑖𝑗(

𝐴 

𝐴
+

|𝐴|

|𝐴 |
)2

𝑖𝜖𝐴,𝑗𝜖𝐴 

+  𝑤𝑖𝑗(−
𝐴 

𝐴
−

|𝐴|

|𝐴 |
)2

𝑖𝜖𝐴 ,𝑗𝜖𝐴

 

𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓    if    𝑓𝑖   

We can say that 𝑓 is orthogonal to the constant vector 𝕝 

f satisfies: 

Solving Simple Case 

=
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴 |,  if 𝑣𝑖 ∈ 𝐴 
 

𝑓𝕝 =   𝑓𝑖
𝑛
𝑖=1 =   

𝐴 

𝐴𝑖𝜖𝐴 −  
𝐴

𝐴 
= 𝐴

𝐴 

𝐴
− |𝐴 |𝑖𝜖𝐴 

𝐴

𝐴 
 = 0 

||𝑓||2 =   𝑓𝑖
2𝑛

𝑖=1 = 𝐴
𝐴 

𝐴
+ |𝐴 |

𝐴

𝐴 
 = n 
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𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓       , 𝑓𝑖 𝑎𝑠 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 1 , 𝑓 =  𝑛 𝕝 

NP hard!!!      =>   RELXATION 

 

 

New Objective  

 A discrete optimization problem in which 𝑓 is only allowed to have 

two particular values. 

 There are no efficient algorithms for solving optimization problems 

with discrete values 

 

𝑓𝑖 =  
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴 |,  if 𝑣𝑖 ∈ 𝐴 
 

 Relaxation: 

 We remove constraints to create a relax version of the objective 

function which can be solved in polynomial time 

 

 

 

 

 The Relaxed version can be solved efficiency to get 𝑓 that minimizes 

the objective function     

𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓       𝑓 =  𝑛 𝕝 

Relaxed Objective  
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 Approximation RatioCut for k=2 

f is the vector in ℝ that 

minimizes objective function 

Only works for k = 2 More General, works for any k 

Use the sign as 

indicator 

function 

𝑓𝑖  as points in R 

and do K-means re-convert 

Creating the Partition 

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix 

multiplies v, yields the same as when some scalar multiplies v, the scalar multiplier 

often being denoted by λ. That is: 

𝐴𝑣 = λv   => 𝑣−1𝐴𝑣 

λ is also called the eigenvalue of A 

We also know that eigenvectors are orthogonal to each other 

Eigenvectors and Eigenvalues 

𝑓 is the second eigenvector of L with eigenvalue equal to 

 

 

𝕝 is the first one with eigenvalue 0.  

𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓       𝑓 =  𝑛 𝕝 

λ = RatioCut(A,𝐴 ) 
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Idea of Spectral Clustering 

 We found K=2 eigenvectors of matrix L 

 L is Laplacian Matrix of Laplacian Graph 

 

 We took data to a new dimensional system where data has linear structure 

 

 We used K-Means to find best partition (clustering) 

𝑇ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑖𝑑𝑒𝑎 𝑜𝑓 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 

 Brief Clustering Review 

 Similarity Graph 

 Graph Laplacian 

 Spectral Clustering Algorithm 

 Graph Cut Point of View 

 Random Walk Point of View 

 Practical Details 

 

Agenda 
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Graph Laplacians 

 

 Unnormalized Graph Laplacian 

L = D - W 

  

 

Properties of L 

Proposition 1 The matrix L satisfies the following properties: 

 

1. For every 𝑓 ∈  ℝ𝑛 we have 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
𝑛

𝑖,𝑗=1

 

𝑑𝑖 =  𝑤𝑖𝑗

𝑛

𝑗=1

 D= degree matrix where  

𝑊 = 𝑤𝑖𝑗  𝑖, 𝑗 = 1, … , 𝑛    𝑤𝑖𝑗 ≥ 0  

 

 Unnormalized Graph Laplacian 

L = D - W 

  

 

 

 

1. L is symmetric and positive semi-definite. 

• L is symmetric since W and D are 

• 𝑓′𝐿𝑓 ≥= therfore positive semidefinite 

2. The smallest eigenvalue of L is 0, the corresponding eigenvector is the 

constant one vector 𝟙 

3.  L has n non-negative, real-valued eigenvalues 0 = 𝜆𝑖 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 . 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
𝑛

𝑖,𝑗=1

 

Graph Laplacians 
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 Unnormalized Graph Laplacian 

L = D - W 

  

 

Proposition 2  (Number of connected components and the spectrum of L) Let 

G be an undirected graph with non-negative weights. The multiplicity k of the 

eigenvalue 0 of L equals the number of connected components 𝐴1, … , 𝐴𝑘 in the 

graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors 

𝟙𝐴1
, … , 𝟙𝐴𝑘

 of those components. 

When k = 1 

Proof: 

𝐿𝑓 = 0f   (λ=0) =>       0 = 𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2𝑛
𝑖,𝑗=1  

Only happens if 𝑓𝑖 = 𝑓𝑗 

Graph Laplacians 

Proposition 2  (Number of connected components and the spectrum of L) Let 

G be an undirected graph with non-negative weights. The multiplicity k of the 

eigenvalue 0 of L equals the number of connected components 𝐴1, … , 𝐴𝑘 in the 

graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors 

𝟙𝐴1
, … , 𝟙𝐴𝑘

 of those components. 

 

 Unnormalized Graph Laplacian 

L = D - W 

  

 

Proof: 

When k > 1, L can be written in a 

block form. the spectrum of L is 

given by the union of the spectra of 

𝐿𝑖 , and the corresponding 

eigenvectors of L are the 

eigenvectors of 𝐿𝑖 , filled with 0 at 

the positions of the other blocks. 

Graph Laplacians 
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 Normalized Graph Laplacian 

  

 

We denote the first matrix by 𝐿𝑠𝑦𝑚 as it is a symmetric matrix, and 

the second one by 𝐿𝑟𝑤 as it is closely related to a random walk. 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 

Graph Laplacians 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 −  𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 −  𝐷−1𝑊 

Proposition 3 (Properties of 𝑳𝒔𝒚𝒎 and 𝑳𝒓𝒘)  The normalized Laplacians statisfy the following 

properties: 

1. For every 𝑓 ∈  ℝ𝑛 we have 

 

 

 

2. 𝜆 is an eigenvalue of  𝐿𝑟𝑤 with eigenvector u if and only if 𝜆 is an eigenvalue of 𝐿𝑠𝑦𝑚 with 

eigenvector 𝑤 = 𝐷1/2𝑢. 

 

3. 𝜆 is an eigenvalue of  𝐿𝑟𝑤 with eigenvector u if and only if 𝜆 and u solve the generalized 

eigen problem 𝑳𝒖 = 𝝀𝑫𝒖. (D𝐷−1Lu = 𝜆Du ) 

𝑓′𝐿𝑠𝑦𝑚𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖

𝑑𝑖
−

𝑓𝑗

𝑑𝑗

2𝑛

𝑖,𝑗=1

 

Graph Laplacians 
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𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 −  𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 −  𝐷−1𝑊 

4. 0 is an eigenvalue of 𝐿𝑟𝑤 with the constant one vector 𝟙 as eigenvector. 0 is an eigenvalue 

of 𝐿𝑠𝑦𝑚 with eigenvector 𝐷1/2𝟙. (former is obvious, latter derives from (2)) 

5. 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 are positive semi-definite and have n non-negative real-valued eigenvalues 

0 = 𝜆𝑖 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 . 

𝑓′𝐿𝑠𝑦𝑚𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖

𝑑𝑖
−

𝑓𝑗

𝑑𝑗

2𝑛

𝑖,𝑗=1

 

Graph Laplacians 

 Normalized Graph Laplacian 

  

 
𝐿𝑠𝑦𝑚  ≔ 𝐷−

1
2𝐿𝐷−

1
2 = 𝐼 −  𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 −  𝐷−1𝑊 

Proposition 4 (Number of connected components and spectra of 𝑳𝒔𝒚𝒎 and 𝑳𝒓𝒘)  

Let G be an undirected graph with non-negative weights. Then the multiplicity k of the 

eigenvalue 0 of both 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 equals the number of connected components 

𝐴1, … , 𝐴𝑘 in the graph. For 𝐿𝑟𝑤 the eigenspace of 0 is spanned by the indicator 

vectors 𝟙𝐴𝑖
 of those components. For 𝐿𝑠𝑦𝑚, the eigenspace of 0 is spanned by the 

vectors 𝐷1/2𝟙𝐴𝑖
. 

Proof.   The proof is analogous to the one of Proposition 2, using Proposition 3.  

Graph Laplacians 
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 Brief Clustering Review 

 Similarity Graph 

 Graph Laplacian 

 Spectral Clustering Algorithm 

 Graph Cut Point of View 

 Random Walk Point of View 

 Practical Details 

 

Agenda 

Algorithm 

 Main trick is to change the representation of the abstract data 

points 𝑥𝑖 to points 𝑦𝑖 ∈ ℜ𝑘 

 

 Unnormalized Spectral Clustering 

 Normalized Spectral Clustering 1 

 Normalized Spectral Clustering 2  
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 Unnormalized Graph Laplacian 

  

 

L = D - W 
 

Algorithm 

 Normalized Graph Laplacian 

  

 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 

Algorithm 
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 Normalized Graph Laplacian 

  

 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

Algorithm 

Algorithm 
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 Brief Clustering Review 

 Similarity Graph 

 Graph Laplacian 

 Spectral Clustering Algorithm 

 Graph Cut Point of View 

 Random Walk Point of View 

 Practical Details 

 

Agenda 

Graph Cut 

 Approximation RatioCut for k=2 

Relaxation !!! 

f is the eigenvector corresponding to the second 

smallest eigenvalue of L (the smallest eigenvalue of L is 

0 with eigenvector 𝕝) 

Rayleigh-Ritz Theorem 

𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓       𝑓 =  𝑛 𝕝 

𝑚𝑖𝑛
𝐴⊂𝑉

  𝑓′𝐿𝑓  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑓       , 𝑓𝑖 as defined in 1 , 𝑓 =  𝑛 𝕝 

𝑓𝑖 =
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴 |,  if 𝑣𝑖 ∈ 𝐴 
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Graph Cut Point of View 

 It can be shown that: 

 

 Unnormalized Spectral Clustering algorithm is 

approximation of Ratio Cut Graph Partitioning 

 

 Normalized Spectral Clustering algorithms are 

approximations of Ncut Graph Partition 

 

 Spectral Clustering gives an approximate solution to the solution of graph 

cut problem 

 

 There is no guarantee on getting on the quality of the solution 

 

 

 In general, efficient algorithms to approximate balanced graphs cut to a 

constant factor is also a NP-hard problem 

Abstract 
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 Brief Clustering Review 

 Similarity Graph 

 Graph Laplacian 

 Spectral Clustering Algorithm 

 Graph Cut Point of View 

 Random Walk Point of  View 

 Perturbation Theory Point of View 

 Practical Details 

 

Agenda 

Random Walk 

 A random walk on a graph is a stochastic 

process which randomly jumps from vertex 

to vertex. 
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Random Walk in Similarity Graph 

 Random walk stays long within the same 

cluster and seldom jumps between 

clusters. 

 

 A balanced partition with a low cut will 

also have the property that the random 

walk does not have many opportunities to 

jump between clusters. 

 

Random walk 

 Transition probability 𝑝𝑖j of jumping from 𝑣𝑖 to 𝑣𝑗  

 

 The transition matrix 𝑃 = (𝑝𝑖𝑗) i,j = 1,…,n of random walk is defined by 

 

 If the graph is connected and non-bipartite, the random walk always processes a 

unique stationary distribution 𝜋 = (𝜋1, … , 𝜋𝑛)′, where 

𝑝𝑖j = 𝑤𝑖j/𝑑𝑖  

𝑃 =  𝐷−1𝑊 

𝑣𝑜𝑙 𝑉 ≔  𝑑𝑖

𝑖∈𝑉

 𝑑𝑖 =  𝑤𝑖𝑗

𝑛

𝑗=1

 

𝜋𝑖 = 𝑑𝑖/𝑣𝑜𝑙(𝑉) 
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Random walk 

 Relationship between 𝐿𝑟𝑤 and P. 

 

 𝜆 is an eigenvalue of 𝐿𝑟𝑤 with eigenvector u if and only if 1 − 𝜆 is an eigenvalue 

of P with eigenvector u. 

 The largest eigenvectors of P and the smallest eigenvectors of 𝐿𝑟𝑤 can be used to 

describe cluster properties of the graph. 

 

𝐿𝑟𝑤 = 𝐼 −  𝑃 𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 

 Random walks and Ncut 

Proposition 5  (Ncut via transition probabilities) Let G be connected and non 

bi-partite. Assume that we run the random walk 𝑋𝑡 𝑡∈𝑁 starting with 𝑋0 in the 

stationary distribution 𝜋. For disjoint subsets 𝐴, 𝐵 ⊂ 𝑉, denote by 𝑃 𝐵 𝐴 ≔
𝑃 𝑋1 ∈ 𝐵 𝑋0 ∈ 𝐴). Then: 

𝑁𝑐𝑢𝑡 𝐴, 𝐴 = 𝑃 𝐴 𝐴 + 𝑃(𝐴|𝐴 ). 

It tells us that when minimizing Ncut, we actually look for a cut through the 

graph such that A random walk seldom transitions from A to 𝑨  and vice 

versa. 

Random walk 
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 What is  commute distance 

The commute distance (resistance distance) 𝑐𝑖𝑗 between two vertices 𝑣𝑖 and 𝑣𝑗 

is the expected time it takes the random walk to travel from vertex 𝒗𝒊 to 

vertex 𝒗𝒋 and back. 

The commute distance between two vertices decrease if there are many 

different short ways to get from vertex 𝑣𝑖 to vertex 𝑣𝑗. 

 

• instead of only shortest path 

Random walk 

The commute distance between two vertices decrease if there are many 

different short ways to get from vertex 𝑣𝑖 to vertex 𝑣𝑗. 

• instead of only shortest path 

Points which are connected by a short path in the graph and lie in the same 

high-density region of the graph are considered closer to each other than 

points which are connected by a short path but lie in different high-density 

regions of the graph. 

Well-suited for Clustering 

Random walk 
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 Brief Clustering Review 

 Similarity Graph 

 Graph Laplacian 

 Spectral Clustering Algorithm 

 Graph Cut Point of View 

 Random Walk Point of View 

 Practical Details 

 

Agenda 

Similarity function 

 Constructing the similarity graph 

1. Similarity Function Itself   

• Make sure that points which are considered to be “very similar” by the 

similarity function are also closely related in the application the data 

comes from. 

• Global-range behavior of similarity function is not important 

• Domain specific 
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Similarity function 

Similarity graph type 
Moons 

Gaussian 
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 Difficult to choose ε 

 Points on the moon are strongly 

connected 

 Points on Gaussian are barely 

connected 

 

 Problem of “data on different 

scales” 

Similarity graph type 

 K-nearest neighbor graph 

 Can handle “data on different scales” 

 Can break into disconnected components if there are densely connected 
regions 

 Mutual k-nearest neighbor 

 Can act in presence of data at different densities but doesn’t mix them 
together 

 Well suited 

Similarity graph type 
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Parameters of similarity graphs 

 Significance of having connected similarity graph 

 In general, if the similarity graph contains more connected components 
than the number of clusters we ask the algorithm to detect, then spectral 
clustering will trivially return connected components as clusters 

 

 Unless one is perfectly sure that those connected components are the correct 
clusters, one should make sure that the similarity graph is connected, or only 
consists of “few” connected components and very few or no isolated 
vertices. 

 

 To prevent outliers to affect result 

 

 

 Set parameters small enough to address local structure of data while 
insuring connectivity 

Parameters of similarity graphs 

1. Parameters of Similarity Graph(k or 𝜀)  

1. KNN: 

1.  k in order of log(n);  

2. Mutual KNN:  

1. Has much fewer edges than knn 

1. k significantly larger than standard KNN;  

2. Maintain the aforementioned advantage of not connected regions 

of different density 

1. Keep it small enough 

3. Unfortunately, no general heuristics 
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Parameters of similarity graphs 

1. Parameters of Similarity Graph(k or 𝜀)  

1. 𝜺-neighborhood graph:  

1. longest edge of MST;  

2. Order of (log(n)/n) 
𝑑
 

3. A significantly large 𝜺 will be selected when (too large): 

1. Data contains outlies 

2. Several tight components very far from each other 

2. fully connected graph: 

1. Select 𝜎 in a way that similarity is “not too small not too large” 

2. Select 𝜎 in order of the mean distance of a point to its k-th nearest 

neighbor. Or choose k = 𝜀. 

Computing eigenvectors 

 Computing Eigenvectors 

1. How to compute the first eigenvectors efficiently for large L 

2. For sparse graphs from knn or 𝜀 

1. Efficient methods exist to compute the first eigenvectors of sparse 

matrices. The speed of convergence of those algorithms depends 

on the size of the eigengap (also called spectral gap) 

2. Eigengap: 𝛾𝑘 =  𝜆𝑘  − 𝜆𝑘+1  

3. The large the Eigengap the faster the algorithms 
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Determining k 

 Well-justified criteria in model-based clustering settings 

 Based on log-likelihood of the data 

 

 Methods specific to Spectral Clustering 

 Eigengap Heuristic 

 Used for all 3 graph laplacian 

 Choose K that λ1… λ𝑘 are very small, but, λ𝑘+1  is relatively large 

 based on perturbation theory, where we observe that in the ideal 

case of k completely disconnected clusters, the eigenvalue 0 has 

multiplicity k, and then there is a gap to the (k + 1)th eigenvalue λk+1 

> 0 

DETERMINING K 

Well Separated More Blurry Overlap So Much 

Eigengap Heuristic usually works well if the data contains very well pronounced  

clusters, but in ambiguous cases it also returns ambiguous results. 
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WHICH GRAPH LAPLACIAN 

 The k-means step 

It is not necessary. People also use other techniques  

• Which graph Laplacian should be used? 

When does it become important? 

If the distribution of degrees in graph is very regular and most vertices 

have approximately the same degree, then all the Laplacians are very 

similar to each other, and will work equally well for clustering. However, if 

the degrees in the graph are very broadly distributed, then the 

Laplacians differ considerably. 

WHICH GRAPH LAPLACIAN 

• Which graph Laplacian should be used? 

Why normalized is better than unnormalized spectral clustering? 

Objective1: 

Both RatioCut and Ncut directly implement 

Only Ncut implements 

Normalized spectral clustering implements both clustering objectives mentioned above, 

while unnormalized spectral clustering only implements the first obejctive. 

Objective2: 

1. We want to find a partition such that points in different clusters are dissimilar to 

each other, that is we want to minimize the between-cluster similarity. In the graph 

setting, this means to minimize 𝑐𝑢𝑡(𝐴, 𝐴 ). 

2. We want to find a partition such that points in the same cluster are similar to 

each other, that is we want to maximize the within-cluster similarities 𝑊(𝐴, 𝐴), and 

𝑊(𝐴 , 𝐴 ). 
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WHICH GRAPH LAPLACIAN 

 Ncut: 

 𝑊 𝐴,𝐴 = 𝑊 𝐴, 𝑉 −𝑊 𝐴, 𝐴 = 𝑣𝑜𝑙 𝐴 − 𝑐𝑢𝑡(𝐴, 𝐴 ) 

 the within-cluster similarity is maximized if 𝑐𝑢𝑡(𝐴, 𝐴 )is small and if vol(A) is large.  

 As this is exactly what we achieve by minimizing Ncut 

 Ncut criterion implements the second objective 

 RatioCut: 

 Objective is to maximize |A| and |𝐴 |  instead of vol(A) and vol(𝐴 ) 

 |A| and |𝐴 | are not necessary related to the within-cluster similarity since within-cluster 

similarity depends on the edges and not the number of nodes 

 A graph with a lot of vertices with low weight edges to each other 

 

 Second perspective: Consistency Issue 

 x1… x𝑘 have been sampled i.i.d according to some probability 

distribution P on some underlying data space X 

 

 The most fundamental question is then the question of consistency: 

if we draw more and more data points, do the clustering results of 

spectral clustering converge to a useful partition of the underlying space 

X ? 

WHICH GRAPH LAPLACIAN 
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 Normalized Spectral clustering:  

 All consistency statements about normalized spectral clustering hold, for 

both Lsym and Lrw, under very mild conditions which are usually satisfied 

in real world applications 

 

 Unnromalized: 

 All consistency statements about normalized spectral clustering hold, for 

both Lsym and Lrw, under very mild conditions which are usually satisfied 

in real world applications 

WHICH GRAPH LAPLACIAN 

WHICH GRAPH LAPLACIAN 

• Which graph Laplacian should be used? 

Why the eigenvectors of 𝐿𝑟𝑤 are better than those of 𝐿𝑠𝑦𝑚? 

1.   Eigenvectors of 𝐿𝑟𝑤 are cluster indicator vectors 𝕀𝐴𝑖
, while 

the eigenvectors of 𝐿𝑠𝑦𝑚 are additionally multiplied with 𝐷1/2, 

which might lead to undesired artifacts. 

 

2.   Using 𝐿𝑠𝑦𝑚 also does not have any computational 

advantages. 
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