

- □ Brief Clustering Review
- $\ \square$ Similarity Graph
- □ Graph Partitioning
- □ Graph Laplacian Properties
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- Practical Details

- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Partitioning
- ☐ Graph Laplacian Properties
- □ Spectral Clustering Algorithm
- ☐ Graph Cut Point of View
- □ Random Walk Point of View
- □ Practical Details

Clustering Review

Clustering

Groups together "similar" instances in the data sample

Basic clustering problem:

- distribute data into k different groups such that data points similar to each other are in the same group
- Similarity between data points is defined in terms of some distance metric (can be chosen)

Clustering is useful for:

- Similarity/Dissimilarity analysis
 Analyze what data points in the sample are close to each other
- Dimensionality reduction
 High dimensional data replaced with a group (cluster) label

CS 2750 Machine Learning

K-means Clustering

Given a set of observations $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into k sets $(k \le n)$ $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS):

$$\underset{S}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - u_i\|^2$$

where μ_i is the mean of points in S_i .

K-means Clustering

Standard Algorithm

1) k initial "means" (in this case k=3) are randomly selected from the data set.

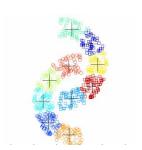
2) k clusters are created by associating every observation with the nearest mean.

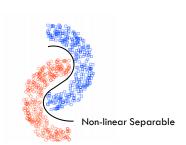
3) The centroid of each of the k clusters becomes the new means.

4) Steps 2 and 3 are repeated until convergence has been reached.

K-means Shortcomings

- □ K-means
 - □ Criteria: Compactness of clusters
 - Major drawback:
 - It can't separate clusters that are non-linearly separable





 $\arg\min_{S} \sum_{i=1}^{k} \sum_{x_j \in S_i} \|x_j - u_i\|^2$

K-means Shortcomings

- Spectral Clustering
 - □ Criteria: Connectivity

- Instead of linear similarities use non-linear distance/similarity of data or geodesic distance of points
 - Similarity Graph

- □ Brief Clustering Review
- Similarity Graph
- □ Graph Partitioning
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- □ Practical Details

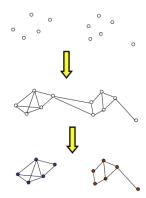
General Idea

First – graph representation of data (largely, application dependent)

Second - graph partitioning:

Partition Properties:

- Weakly connections in between components
- Strongly connections within components



Graph Notation

G=(V,E):

- $\quad \quad \square \quad \text{Vertex set} \qquad V = \{v_1, \dots, v_n\}$
- □ Weighted adjacency matrix:

$$v_m$$

$$W = \left(w_{ij}\right)i, j = 1, ..., n \quad w_{ij} \geq 0 \text{ and } w_{ij} = w_{ji}$$

figspace **Degree matrix D** Diagonal matrix with the degrees d_1,\ldots,d_n on the diagonal.

Graph Notation

G=(V,E):

- □ A is a **subset** of V
 - $\bar{A} = V \setminus A$

- $\label{eq:location} \ensuremath{\blacksquare} \ensuremath{\text{Indicator Vector}} \quad \mathbb{1}_{A} = (f_1, \dots, f_n)' \in \ensuremath{\mathbb{R}}^n \quad f_i \in \{0, 1\}$
- \square "Size" of a subset $A \subseteq V$

$$|A| :=$$
the number of vertices in A $vol(A) := \sum_{i \in A} d_i$

Similarity/Connectivity of two subsets A and B

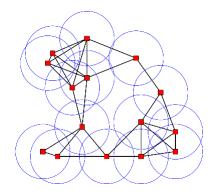
$$W(A,B) \coloneqq \sum_{i \in A, j \in B} w_{ij}$$

Graph Notation

- □ **Connected Subset** A subset A of a graph is connected if any two vertices in A can be joined by a path such that all intermediate points also lie in A.
- fill Connected Component it is connected and if there are no connections between vertices in A and \bar{A} .
- **Partition:** A set of nonempty sets A_1,\ldots,A_k form a partition of the graph if $A_i\cap A_j=\emptyset \text{ and } A_1\cup\cdots\cup A_k=V.$

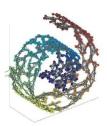
Similarity Graph Construction

- □ Goal: Model local neighborhood relationships between data points
- \square ε -neighborhood graph
 - lacksquare Connect all points whose pairwise distances are smaller than arepsilon
 - Considered unweighted graph



Similarity Graph Construction

- □ k-nearest neighbor graph
 - lacksquare Connect vertex v_i with vertex v_i if v_i is among the k-nearest neighbors of v_i .
 - Is directed graph
 - Knn graph: obtained by loosing directions
 - Mutual knn graph: connect only if both vertices have the other in their knn



Similarity Graph Construction

- Fully connected graph
 - Connect all points with positive similarity with each other
 - Not modeling local neighborhoods
 - We have to use similarity function has to do it (Gaussian Similarity Function)

$$W_{ij} = e^{\frac{\left|x_i - x_j\right|^2}{2\sigma^2}}$$

σ controls size of neighborhood

All of introduced graphs are regularly used in spectral clustering!

- □ Brief Clustering Review
- □ Similarity Graph
- Graph Partitioning
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- □ Practical Details

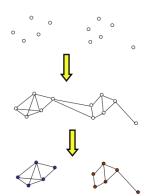
Graph Partitioning

First – graph representation of data (largely, application dependent)

Second— graph partitioning:

Partition Properties:

- Weakly connections in between components
- Strongly connections within components



Graph Cut

G=(V,E):

 $\hfill\Box$ For two not necessarily disjoint set $A,B\subset V$, we define

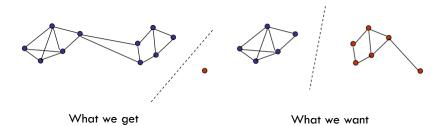
$$W(A,B) \coloneqq \sum_{i \in A, j \in B} w_{ij}$$

 $\hfill\Box$ Minicut: choosing a partition A_1,A_2,\ldots,A_K which minimizes

$$cut(A_1,\dots,A_k):=\frac{1}{2}\sum_{i=1}^k W(A_i,\overline{A_i})$$

Graph Cut Shortcoming

Sensitive to outliers



Solutions

"Size" of a subset $A \subset V$ could be defined:

|A| := the number of vertices in A

 $vol(A) := \sum_{i \in A} d_i$

Solutions:

RatioCut(Hagen and Kahng, 1992)

$$RatioCut(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

Ncut(Shi and Malik, 2000)

$$Ncut(A_1, ..., A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{vol(A_i)}$$

Problem

NP hard!!!: can't be solved in polynomial time

$$\min RatioCut(A_1,\dots,A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i,\overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{cut(A_i,\overline{A_i})}{|A_i|}$$

$$\min Ncut(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{vol(A_i)} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{vol(A_i)}$$

Solution: Approximation

Solving Simple Case

- □ Approximation RatioCut for **k=2**
 - Our goal is to solve the optimization problem:

$$\min_{A \subseteq V} RatioCut(A, \bar{A})$$

We can also write:

$$\begin{aligned} \min_{A \subset V} RatioCut(A, \bar{A}) &= \min_{A \subset V} \left(\frac{1}{|V|} |V| RatioCut(A, \bar{A}) \right) \\ \min_{A \subset V} \left(|V| RatioCut(A, \bar{A}) \right) \end{aligned}$$

Solving Simple Case

We know:

$$RatioCut(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A_i})}{|A_i|} = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

Hence, we can rewrite the objective function as:

$$|V|RatioCut(A, \bar{A}) = |V|(\frac{cut(A, \bar{A})}{|A|} + \frac{cut(A, \bar{A})}{|\bar{A}|})$$

$$= cut(A, \bar{A}) \left(\frac{|A| + |\bar{A}|}{|A|} + \frac{|A| + |\bar{A}|}{|\bar{A}|}\right)$$

$$= cut(A, \bar{A}) \left(\frac{|\bar{A}|}{|A|} + \frac{|A|}{|\bar{A}|} + 2\right)$$

Since we know:

$$cut(A_i,\overline{A_i}) = W(A,B) := \sum_{i \in A, j \in B} w_{ij}$$

$$=\frac{1}{2}\sum_{i\in A, j\in \bar{A}}w_{ij}(\sqrt{\frac{|\bar{A}|}{|A|}}+\sqrt{\frac{|A|}{|\bar{A}|}})^2+\sum_{i\in A, j\in A}w_{ij}(-\sqrt{\frac{|\bar{A}|}{|A|}}-\sqrt{\frac{|A|}{|\bar{A}|}})^2$$

Solving Simple Case

$$=\frac{1}{2}\sum_{i\in A, j\in \bar{A}}w_{ij}(\sqrt{\frac{|\bar{A}|}{|A|}}+\sqrt{\frac{|A|}{|\bar{A}|}})^2+\sum_{i\in A, j\in A}w_{ij}(-\sqrt{\frac{|\bar{A}|}{|A|}}-\sqrt{\frac{|A|}{|\bar{A}|}})^2$$

If we define f_i as:

$$f_i = \begin{cases} \sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in A \\ -\sqrt{|A|/|\bar{A}|}, & \text{if } v_i \in \bar{A} \end{cases}$$

$$\sum_{j=1}^n \sum_{i=1}^n w_{ij} f_j^2 = \sum_{j=1}^n d_j f_j^2$$
ion as:

We can rewrite the objective function as:

$$= \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

$$= \frac{1}{2} (\sum_{i,j=1}^{n} w_{ij} f_i^2 - 2 \sum_{i,j=1}^{n} w_{ij} f_i f_j + \sum_{i,j=1}^{n} w_{ij} f_j^2)$$

$$= \frac{1}{2} (\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2)$$

$$= \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$

$$= \int_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$

$$= \int_{i=1}^{n} f_i f_j w_{ij}$$

Solving Simple Case

$$\min_{A \subset V} f'Lf \quad \text{if} \quad f_i = \begin{cases} \sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in A \\ -\sqrt{|A|/|\bar{A}|}, & \text{if } v_i \in \bar{A} \end{cases}$$

We can say that f is orthogonal to the constant vector \mathbb{I}

$$f\mathbb{I} = \ \textstyle \sum_{i=1}^n f_i = \ \textstyle \sum_{i \in A} \sqrt{\frac{|A|}{|A|}} - \sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}} = |A| \sqrt{\frac{|\bar{A}|}{|A|}} - |\bar{A}| \sqrt{\frac{|A|}{|\bar{A}|}} = 0$$

f satisfies:

$$||f||^2 = \sum_{i=1}^n f_i^2 = |A| \sqrt{\frac{|\bar{A}|}{|A|}} + |\bar{A}| \sqrt{\frac{|A|}{|\bar{A}|}} = n$$

New Objective

 $\min_{A \subset V} f' L f$ subject to $f \perp \mathbb{I}$, f_i as defined in (1), $\left| |f| \right| = \sqrt{n}$

$$f_i = \begin{cases} \sqrt{|A|/|A|}, & \text{if } v_i \in A \\ -\sqrt{|A|/|A|}, & \text{if } v_i \in \bar{A} \end{cases}$$

- $\ \square$ A discrete optimization problem in which f is only allowed to have two particular values.
- There are no efficient algorithms for solving optimization problems with discrete values

NP hard!!! => RELXATION

Relaxed Objective

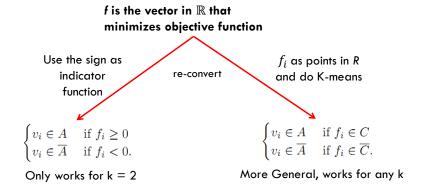
- Relaxation:
 - We remove constraints to create a relax version of the objective function which can be solved in polynomial time

$$\min_{A \subseteq V} f' L f$$
 , subject to $f \perp \mathbb{I} ||f|| = \sqrt{n}$

 $\hfill\Box$ The Relaxed version can be solved efficiency to get f that minimizes the objective function

Creating the Partition

□ Approximation RatioCut for k=2



Eigenvectors and Eigenvalues

An **eigenvector** of a square matrix A is a non-zero vector v that, when the matrix multiplies v, yields the same as when some scalar multiplies v, the scalar multiplier often being denoted by λ . That is:

$$Av = \lambda v => v^{-1}Av$$

 λ is also called the eigenvalue of A

We also know that eigenvectors are orthogonal to each other

$$\min_{A \subseteq V} f' L f$$
 , subject to $f \perp \mathbb{I} \mid ||f|| = \sqrt{n}$

f is the second eigenvector of L with eigenvalue equal to

$$\lambda = \text{RatioCut}(A, \bar{A})$$

 \mathbb{I} is the first one with eigenvalue 0.

Idea of Spectral Clustering

- □ We found K=2 eigenvectors of matrix L
 - L is Laplacian Matrix of Laplacian Graph
- □ We took data to a new dimensional system where data has linear structure
- □ We used K-Means to find best partition (clustering)

The fundamental idea of Spectral Clustering

Agenda

- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- Practical Details

STATE OF THE PARTY OF THE PARTY

Graph Laplacians

Unnormalized Graph Laplacian

D= degree matrix where
$$d_i = \sum_{j=1}^n w_{ij}$$

$$L = D - W \longrightarrow W = (w_{ij}) \ i, j = 1, ..., n \quad w_{ij} \geq 0$$

Properties of L

Proposition 1 The matrix L satisfies the following properties:

1. For every $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

Graph Laplacians

Unnormalized Graph Laplacian

$$L = D - W$$

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

- 1. L is symmetric and positive semi-definite.
 - L is symmetric since W and D are
 - $f'Lf \ge =$ therfore positive semidefinite
- 2. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$
- 3. L has n non-negative, real-valued eigenvalues $0=\lambda_i\leq \lambda_2\leq \cdots \leq \lambda_n$.

STATE OF THE PARTY OF THE PARTY

Graph Laplacians

Unnormalized Graph Laplacian

$$L = D - W$$

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

Proof:

When k = 1

$$Lf = 0 f \quad (\lambda = 0) \quad \ => \quad \quad 0 = f' L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} \big(f_i - f_j \big)^2$$

Only happens if $f_i = f_j$

Graph Laplacians

Unnormalized Graph Laplacian

$$L = D - W$$

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1_{Proof} ; 1_{A_k} of those components.

When k > 1, L can be written in a block form. the spectrum of L is given by the union of the spectra of L_i , and the corresponding eigenvectors of L are the eigenvectors of L_i , filled with 0 at the positions of the other blocks.

$$L = \begin{pmatrix} L_1 & & & \\ & L_2 & & \\ & & \ddots & \\ & & & L_k \end{pmatrix}$$

CHESTON CONTROL OF THE CONTROL OF TH

Graph Laplacians

Normalized Graph Laplacian

$$\begin{split} L_{sym} &:= D^{-\frac{1}{2}} L D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}} \\ L_{rw} &:= D^{-1} L = I - D^{-1} W \end{split}$$

We denote the first matrix by L_{sym} as it is a symmetric matrix, and the second one by L_{rw} as it is closely related to a random walk.

Graph Laplacians

Proposition 3 (Properties of L_{sym} **and** L_{rw} **)** The normalized Laplacians statisfy the following properties:

1. For every $f \in \mathbb{R}^n$ we have

$$f'L_{sym}f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij}^{2} \left(\frac{f_{i}}{\sqrt{d_{i}}} - \frac{f_{j}}{\sqrt{d_{j}}} \right)^{2} \qquad L_{sym} \coloneqq D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}} \\ L_{rw} \coloneqq D^{-1}L = I - D^{-1}W$$

- 2. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ is an eigenvalue of L_{sym} with eigenvector $w = D^{1/2}u$.
- 3. λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigen problem $Lu=\lambda Du$. ($\Theta D^{-\frac{1}{2}}Lu=\lambda Du$)

TSBU HE

Graph Laplacians

$$f'L_{sym}f = \frac{1}{2}\sum_{i,j=1}^{n}w_{ij}^{2}\left(\frac{f_{i}}{\sqrt{d_{i}}} - \frac{f_{j}}{\sqrt{d_{j}}}\right)^{2} \qquad L_{sym} \coloneqq D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

- 4. 0 is an eigenvalue of L_{rw} with the constant one vector $\mathbb 1$ as eigenvector. 0 is an eigenvalue of L_{svm} with eigenvector $D^{1/2}\mathbb 1$. (former is obvious, latter derives from (2))
- 5. L_{sym} and L_{rw} are positive semi-definite and have n non-negative real-valued eigenvalues $0=\lambda_i\leq \lambda_2\leq \cdots \leq \lambda_n.$

Graph Laplacians

Normalized Graph Laplacian

$$L_{sym} := D^{-\frac{1}{2}} L D^{-\frac{1}{2}} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

$$L_{rw} := D^{-1} L = I - D^{-1} W$$

Proposition 4 (Number of connected components and spectra of L_{sym} and L_{rw}) Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A_1, \ldots, A_k in the graph. For L_{rw} the eigenspace of 0 is spanned by the indicator vectors $\mathbb{1}_{A_i}$ of those components. For L_{sym} , the eigenspace of 0 is spanned by the vectors $D^{1/2}\mathbb{1}_{A_i}$.

Proof. The proof is analogous to the one of Proposition 2, using Proposition 3.

- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Laplacian
- Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- Practical Details

Algorithm

- $\hfill\Box$ Main trick is to change the representation of the abstract data points x_i to points $y_i \in \Re^k$
 - Unnormalized Spectral Clustering
 - Normalized Spectral Clustering 1
 - Normalized Spectral Clustering 2

Algorithm

Unnormalized Graph Laplacian

$$L = D - W$$

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- ullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of L.
- ullet Let $U\in\mathbb{R}^{n imes k}$ be the matrix containing the vectors u_1,\dots,u_k as columns.
- For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- ullet Cluster the points $(y_i)_{i=1,\dots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\dots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Algorithm

Normalized Graph Laplacian

$$L_{rw} := D^{-1}L = I - D^{-1}W$$

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- ullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the unnormalized Laplacian L.
- Compute the first k generalized eigenvectors u_1, \ldots, u_k of the generalized eigenproblem $\underline{Lu = \lambda Du}$.
- ullet Let $U\in\mathbb{R}^{n imes k}$ be the matrix containing the vectors u_1,\dots,u_k as columns.
- For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- Cluster the points $(y_i)_{i=1,\dots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\dots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Proposition 3 (Properties of L_{sym} and L_{rw}) The normalized Laplacians satisfy the following properties:

 λ is an eigenvalue of L_{rw} with eigenvector u if and only if λ and u solve the generalized eigenproblem Lu = λDu.

Algorithm

Normalized Graph Laplacian

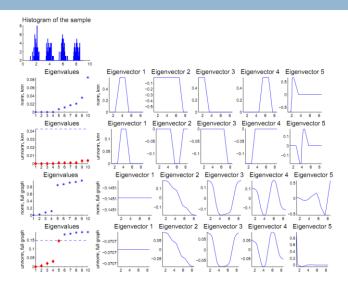
$$L_{sym} := D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- ullet Construct a similarity graph by one of the ways described in Section 2. Let Wbe its weighted adjacency matrix.
- ullet Compute the normalized Laplacian $L_{
 m sym}$.
- Compute the first k eigenvectors u_1, \ldots, u_k of L_{sym} .
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \dots, u_k as columns.
- Form the matrix $T \in \mathbb{R}^{n \times k}$ from U by normalizing the rows to norm 1,
- that is set $t_{ij}=u_{ij}/(\sum_k u_{ik}^2)^{1/2}$. For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of T.
- ullet Cluster the points $(y_i)_{i=1,\dots,n}$ with the k-means algorithm into clusters C_1,\dots,C_k . Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Algorithm



- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- Practical Details

Graph Cut

□ Approximation RatioCut for k=2

$$\min_{A\subset V} \mathrm{RatioCut}(A,\overline{A}).$$

$$f_i = \begin{cases} \sqrt{|\bar{A}|/|A|}, & \text{if } v_i \in A \\ -\sqrt{|A|/|\bar{A}|}, & \text{if } v_i \in \bar{A} \end{cases}$$

 $\min_{A \subset V} f' L f$ subject to $f \perp \mathbb{I}$, f_i as defined in (1), $||f|| = \sqrt{n}$

Relaxation !!!

 \perp

 $\min_{A\subset V} f'Lf$, subject to $f\perp_{\mathbb{T}} ||f||=\sqrt{n}$

Rayleigh-Ritz Theorem

f is the eigenvector corresponding to the second smallest eigenvalue of L (the smallest eigenvalue of L is 0 with eigenvector \mathbb{I})

Graph Cut Point of View

- □ It can be shown that:
 - Unnormalized Spectral Clustering algorithm is approximation of Ratio Cut Graph Partitioning
 - Normalized Spectral Clustering algorithms are approximations of Ncut Graph Partition

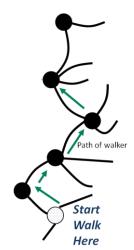
Abstract

- Spectral Clustering gives an approximate solution to the solution of graph cut problem
- □ There is no guarantee on getting on the quality of the solution
- In general, efficient algorithms to approximate balanced graphs cut to a constant factor is also a NP-hard problem

- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- □ Perturbation Theory Point of View
- Practical Details

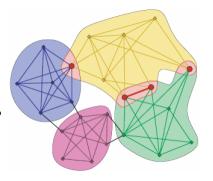
Random Walk

 A random walk on a graph is a stochastic process which randomly jumps from vertex to vertex.



Random Walk in Similarity Graph

- Random walk stays long within the same cluster and seldom jumps between clusters.
- A balanced partition with a low cut will also have the property that the random walk does not have many opportunities to jump between clusters.



Random walk

 $lue{}$ Transition probability p_{ij} of jumping from v_i to v_j

$$p_{ij} = w_{ij}/d_i$$

lacksquare The **transition matrix** $P=(p_{ij})$ i,j = 1,...,n of random walk is defined by

$$P = D^{-1}W$$

 \square If the graph is connected and non-bipartite, the random walk always processes a unique stationary distribution $\pi=(\pi_1,\ldots,\pi_n)'$, where

$$\pi_i = d_i/vol(V)$$

$$d_i = \sum_{j=1}^n w_{ij} \qquad vol(V) := \sum_{i \in V} d_i$$

Random walk

 $\ \square$ Relationship between L_{rw} and $\emph{P}.$

$$L_{rw} = I - P$$
 $L_{rw} := D^{-1}L = I - D^{-1}W$

- $\ \square$ The largest eigenvectors of P and the smallest eigenvectors of L_{rw} can be used to describe cluster properties of the graph.

Random walk

Random walks and Ncut

Proposition 5 (Ncut **via transition probabilities**) Let G be connected and non bi-partite. Assume that we run the random walk $(X_t)_{t\in N}$ starting with X_0 in the stationary distribution π . For disjoint subsets $A,B\subset V$, denote by $P(B|A):=P(X_1\in B|X_0\in A)$. Then:

$$Ncut(A, \bar{A}) = P(\bar{A}|A) + P(A|\bar{A}).$$

It tells us that when minimizing Ncut, we actually look for a cut through the graph such that **A random walk seldom transitions from A to** \overline{A} and vice versa.

Random walk

□ What is commute distance

The commute distance (resistance distance) c_{ij} between two vertices v_i and v_j is the expected time it takes the random walk to travel from vertex v_i to vertex v_i and back.

The commute distance between two vertices **decrease** if there are **many different short ways** to get from vertex v_i to vertex v_j .

instead of only shortest path

Random walk

The commute distance between two vertices **decrease** if there are **many different short ways** to get from vertex v_i to vertex v_j .

· instead of only shortest path

Points which are **connected by a short path** in the graph and **lie in the same high-density region** of the graph are considered closer to each other than points which are connected by a short path but lie in different high-density regions of the graph.

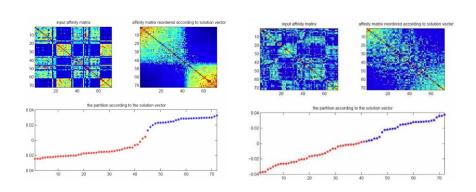
Well-suited for Clustering

- □ Brief Clustering Review
- □ Similarity Graph
- □ Graph Laplacian
- □ Spectral Clustering Algorithm
- □ Graph Cut Point of View
- □ Random Walk Point of View
- Practical Details

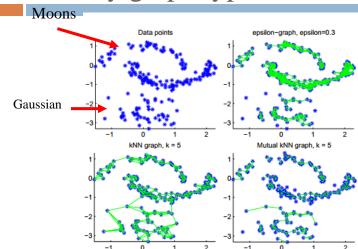
Similarity function

- Constructing the similarity graph
 - 1. Similarity Function Itself
 - Make sure that points which are considered to be "very similar" by the similarity function are also closely related in the application the data comes from.
 - Global-range behavior of similarity function is not important
 - Domain specific

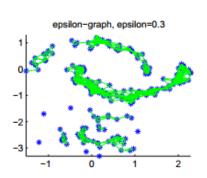
Similarity function



Similarity graph type

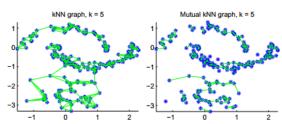


Similarity graph type



- Difficult to choose ε
 - Points on the moon are strongly connected
 - Points on Gaussian are barely connected
- Problem of "data on different scales"

Similarity graph type



- K-nearest neighbor graph
 - Can handle "data on different scales"
 - Can break into disconnected components if there are densely connected regions
- Mutual k-nearest neighbor
 - Can act in presence of data at different densities but doesn't mix them together
 - Well suited

Parameters of similarity graphs

- Significance of having connected similarity graph
 - In general, if the similarity graph contains more connected components than the number of clusters we ask the algorithm to detect, then spectral clustering will trivially return connected components as clusters
 - Unless one is perfectly sure that those connected components are the correct clusters, one should make sure that the similarity graph is connected, or only consists of "few" connected components and very few or no isolated vertices.
 - □ To prevent **outliers** to affect result
 - Set parameters small enough to address local structure of data while insuring connectivity

Parameters of similarity graphs

- 1. Parameters of Similarity Graph(k or ε)
 - 1. KNN:
 - k in order of log(n);
 - . Mutual KNN:
 - 1. Has much fewer edges than knn
 - 1. k significantly larger than standard KNN;
 - Maintain the aforementioned advantage of not connected regions of different density
 - 1. Keep it small enough
 - 3. Unfortunately, no general heuristics

Parameters of similarity graphs

1. Parameters of Similarity Graph(k or ε)

£-neighborhood graph:

- longest edge of MST;
- 2. Order of $(\log(n)/n)^d$
- 3. A significantly large ε will be selected when (too large):
 - 1. Data contains outlies
 - 2. Several tight components very far from each other

fully connected graph:

- 1. Select σ in a way that similarity is "not too small not too large"
- 2. Select σ in order of the mean distance of a point to its k-th nearest neighbor. Or choose $k=\varepsilon$.

Computing eigenvectors

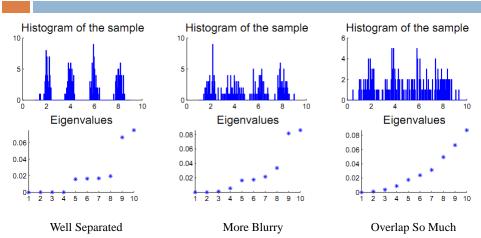
Computing Eigenvectors

- 1. How to compute the first eigenvectors efficiently for large L
- 2. For sparse graphs from knn or ε
 - Efficient methods exist to compute the first eigenvectors of sparse matrices. The speed of convergence of those algorithms depends on the size of the eigengap (also called spectral gap)
 - 2. Eigengap: $\gamma_k = |\lambda_k \lambda_{k+1}|$
 - 3. The large the Eigengap the faster the algorithms

Determining k

- Well-justified criteria in model-based clustering settings
 - Based on log-likelihood of the data
- Methods specific to Spectral Clustering
 - Eigengap Heuristic
 - Used for all 3 graph laplacian
 - Choose K that $\lambda_1 ... \lambda_k$ are very small, but, λ_{k+1} is relatively large
 - based on **perturbation theory**, where we observe that in the ideal case of k completely disconnected clusters, the eigenvalue 0 has multiplicity k, and then there is a gap to the (k+1)th eigenvalue $\lambda k+1 > 0$

DETERMINING K



Eigengap Heuristic usually works well if the data contains very well pronounced clusters, but in ambiguous cases it also returns ambiguous results.

WHICH GRAPH LAPLACIAN

The k-means step

It is not necessary. People also use other techniques

Which graph Laplacian should be used?

When does it become important?

If the distribution of degrees in graph is very regular and most vertices have approximately the same degree, then all the Laplacians are very similar to each other, and will work equally well for clustering. However, if the degrees in the graph are very broadly distributed, then the Laplacians differ considerably.

WHICH GRAPH LAPLACIAN

Which graph Laplacian should be used?

Why normalized is better than unnormalized spectral clustering?

Objective1:

1. We want to find a partition such that points in different clusters are dissimilar to each other, that is we want to minimize the between-cluster similarity. In the graph setting, this means to minimize $cut(A, \bar{A})$.

Both RatioCut and Ncut directly implement

Objective2:

2. We want to find a partition such that points in the same cluster are similar to each other, that is we want to maximize the within-cluster similarities W(A,A), and $W(\bar{A},\bar{A})$.

Only Ncut implements

Normalized spectral clustering implements both clustering objectives mentioned above, while unnormalized spectral clustering only implements the first obejctive.

WHICH GRAPH LAPLACIAN

□ Ncut:

- $W(A,A) = W(A,V) W(A,\bar{A}) = vol(A) cut(A,\bar{A})$
- lacktriangledown the within-cluster similarity is maximized if $cut(A, \bar{A})$ is small and if vol(A) is large.
- As this is exactly what we achieve by minimizing Ncut
- Ncut criterion implements the second objective

□ RatioCut:

- Objective is to maximize |A| and $|\bar{A}|$ instead of vol(A) and vol(\bar{A})
- \square |A| and | \bar{A} | are not necessary related to the within-cluster similarity since within-cluster similarity depends on the edges and not the number of nodes
- A graph with a lot of vertices with low weight edges to each other

WHICH GRAPH LAPLACIAN

- Second perspective: Consistency Issue
 - $\mathbf{x}_1 \dots \mathbf{x}_k$ have been sampled i.i.d according to some probability distribution P on some underlying data space X
 - The most fundamental question is then the question of consistency: if we draw more and more data points, do the clustering results of spectral clustering converge to a useful partition of the underlying space X ?

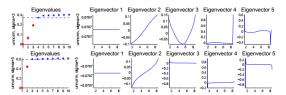
WHICH GRAPH LAPLACIAN

□ Normalized Spectral clustering:

All consistency statements about normalized spectral clustering hold, for both Lsym and Lrw, under very mild conditions which are usually satisfied in real world applications

Unnromalized:

All consistency statements about normalized spectral clustering hold, for both Lsym and Lrw, under very mild conditions which are usually satisfied in real world applications



WHICH GRAPH LAPLACIAN

Which graph Laplacian should be used?

Why the eigenvectors of L_{rw} are better than those of L_{sym} ?

- 1. Eigenvectors of L_{rw} are cluster indicator vectors \mathbb{I}_{A_i} , while the eigenvectors of L_{sym} are additionally multiplied with $D^{1/2}$, which might lead to undesired artifacts.
- 2. Using L_{Sym} also does not have any computational advantages.

REFERENCE

- Ulrike Von Luxburg. A Tutorial on Spectral Clustering. Max Planck Institute for Biological Cybernetics Technical Report No. TR-149.
- Marina Meila and Jianbo Shi. A random walks view of spectral segmentation. In Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS), 2001.
- A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems (NIPS),14, 2001.
- A. Azran and Z. Ghahramani. A new Approach to Data Driven Clustering. In International Conference on Machine Learning (ICML),11, 2006.
- A. Azran and Z. Ghahramani. Spectral Methods for Automatic Multiscale Data Clustering. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2006.
- Arik Azran. A Tutorial on Spectral Clustring. http://videolectures.net/mlcued08_azran_mcl/
- A. Singh, Spectral Clustering

Thanks