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Clustering Review
-—

Clustering

Groups together “similar” instances in the data sample

Basic clustering problem:

+ distribute data into & different groups such that data points
similar to each other are in the same group

+  Similarity between data points is defined in terms of some
distance metric (can be chosen)

Clustering is useful for:
*  Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other
* Dimensionality reduction

High dimensional data replaced with a group (cluster) label

CS 2750 Machine Learning



K-means Clustering
[

Given a set of observations (x;, X,, ..., X,), where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observations

into k sets (k < n) S ={S,, S, ..., S} so as to minimize the within-cluster sum of

squares (WCSS):

k
argsminz Z ||xj - ui”2

i=1 XjES;

where U, is the mean of points in S,

K-means Clustering
[

Standard Algorithm

® . °
H []
5] o L} [ ]
=] o = =
° =°® ®o ® k
LA sl H
] oo B
1) k initial "means"” 2) k clusters are created  3) The centroid of
(in this case k=3) by associating every each of the k
are randomly observation with the clusters becomes
selected from the nearest mean. the new means.
data set.

4) Steps 2 and 3
are repeated until
convergence has
been reached.
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K-means Shortcomings

0 K-means

k
. . . 2
o Criteria: Compactness of clusters arg mmz Z | — will
N é
o i=1 x;€ES;
£ Major drawback: s

u It can’t separate clusters that are non-linearly separable

Non-linear Separable

o Spectral Clustering

o Criteria: Connectivity

Compactness

0 Instead of linear similarities use non-linear distance /similarity
of data or geodesic distance of points
u Similarity Graph

11/15/2014
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General Idea i
[
First — graph representation of data ° o Lo
(largely, application dependent) S, o ©

Second— graph partitioning:

Partition Properties: ﬂ

*  Weakly connections in between
components @ ‘&\

e Strongly connections within components



11/15/2014

Graph Notation
[

G=(V,E) :

n
0 Vertex set V ={vyq, .., v}
0)"’”

0 Weighted adjacency matrix:

w = (W”) i,i = 1, W, n Wij >0 and wij = W]'i

0 Degree d; = Z;‘l=1 Wy
Un

o Degree matrix D Diagonal matrix with the degrees dy, ..., d,, on the diagonal.

Graph Notation

[ ]
G=(V,F) :

O Alis a subset of V
A=V\A
Indicator Vector 1, = (fy, ..., fp)' € R* f;€{0,1}

“Size” of a subset ACV

| 4| := the number of vertices in 4

vol(4) = Z d;

i€A
Similarity /Connectivity of two subsets A and B

W(A,B) = Z Wij
i€A,jJEB
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Graph Notation

11 Connected Subset A subset A of a graph is connected if any two vertices

in A can be joined by a path such that all intermediate points also lie in A.

1 Connected Component it is connected and if there are no connections

between vertices in A and A.

0 Partition: A set of nonempty sets Ay, ..., Ay form a partition of the graph if

AinAj= Q)GndAlLJ"'UAk:V.

_Similarity Graph Construction

r1 Goal: Model local neighborhood relationships between data points
0 &-neighborhood graph
Connect all points whose pairwise distances are smaller than &

m Considered unweighted graph
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Imilarity Graph Construction

S
7

0 k-nearest neighbor graph

o Connect vertex v; with vertex v; if v is among the k-nearest neighbors of v;.

o Is directed graph
m Knn graph: obtained by loosing directions

® Mutual knn graph: connect only if both vertices have the other in their knn

.
Yo !\
Oy

M.
B )

imilarity Graph Construction

S
=]

o Fully connected graph

o Connect all points with positive similarity with each other
o Not modeling local neighborhoods
= We have to use similarity function has to do it (Gaussian Similarity Function)

Jxi=x,*
VVI:' = e 202

m O controls size of neighborhood

All of introduced graphs are regularly used in spectral clustering!
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Graph Partitioning i
[
First — graph representation of data ° o Lo
(largely, application dependent) S, ° 0 ©

Second— graph partitioning:

Partition Properties: ﬂ

*  Weakly connections in between
components @ ‘&\

e Strongly connections within components

11/15/2014
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Graph Cut

G=(V,E) :

01 For two not necessarily disjoint set A,B € V, we define

W(A,B) = Z wij

i€AjEB

O Minicut: choosing a partition Ay, 4, ..., Agx which minimizes

k
cut(Ay, ., A) =5 > WA, A
i=1

N =

TSBUR,

Graph Cut Shortcoming

o Sensitive to outliers

,
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.

What we get What we want

10



11/15/2014

Solutions
[ ]

0 “Size” of a subset A € V could be defined:

| 4| := the number of vertices in 4

Solutions: vol(4) = Z d;
i€A

o RatioCut(Hagen and Kahng, 1992)

— k —
W(Al',Al') _ z Cut(Al',Al')
Al |4

k

1
RatioCut(Ay, ..., Ay) = 2 z
i=1

o Necut(Shi and Malik, 2000)

_ K _
W(A, A Z cut(4;, 4;)

k
1
Ncut(Ay, ..., Ag) —EZ vol(4;) < 4 vol(4;)
i= 1=

Problem
[

NP hard!¥: can’t be solved in polynomial time

k

W4, 4) _ Z cut(4;, A)

k
1
min RatioCut(Ay, .., A) =3 Z

L 14l 4]

1WA o cut(Ay )

A cu i

. N tA'___'A . TR =Z At

min Ncut(4, ) 2 L1 vol(A) 4 vol(4))
i= =

Solution: Approximation

11
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Solving Simple Case
[

0 Approximation RatioCut for k=2

Our goal is to solve the optimization problem:
min RatioCut(A, A)
AcV
0 We can also write:
_ 1 _
minRatioCut(A4,A) = min| — |V|RatioCut(A, A)
Acv AcV

14

Tcl{/l(IVIRathut(A, )

Solving Simple Case
[

Kk —_

1 A cut(4;, A;

RatioCut(A,, ..., Ay) = 3 Z |A - Z TAfl )
i=1 i=1 ¢

Hence, we can rewrite the objective function as:

cut(4,4) | cut(AA)
14| 14| )_ _
|A] + 4] + |A] + |A|>
A Al
1Al | 14|

=42
a it

[V|RatioCut(4,A) = |V|(

= cut(4,4) (

= cut(4,A)(G—

Since we know:

cut(A;,A;) = W(A,B) = Z W
i€A,jEB

- 1 Z W-'( @_', ﬂ)z + Z W,_(_ @_ ﬂ)z
2 L U lAL T 1A & T 1AL 14
l€A,JEA i€A,jJeA

12



Solving Simple Case

:1 z W-'( @_‘_ ﬂ)2+ Z W-'(— @_ ﬂ)z
N L T 1 T o N [ TN VT
i€A,jeA €A, jeA
If we define f; as:
1417141, ifv,€A
fi=
- [14l/4], ifv,€ A

We can rewrite the objective function as:

1 n
=2 Y wylfi— ) I

i,j=1
—1(21, 1wl,ff—22?,- Wifif; + X wi i)
= (Z L diff - Y= fifiwij + X 1df12)
Z_ lfl Zz,]:lflf]wlj

Wmnn) = (w;)ij=1..,n wij20 < =f'Df — f'Wf
=f’Lf L=D-W

M:

>

=t

WUfJ z dlfj

El

D= degree matrix (n*n)

Solving Simple Case
L

’II‘TI/IAI. ifv; €A
min f'Lf if f;=
min f'Lf if f; - )
— [141/14], ifv, €A

We can say that f is orthogonal to the constant vector 1

|A |A
fi= Shafi= i [0 Seer [l =141 [l 1A

f satisfies:

FI1? = Zia £ = 14] +|A| =n

11/15/2014
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New Objective
[

Tclg f'Lf subjectto f_11,f; as defined in W, |Ifl] = vn

f {,/|A‘|/|A|, ifv; €A
i = — . _
—V4l/14], ifv,e A

0 A discrete optimization problem in which f is only allowed to have
two particular values.

0 There are no efficient algorithms for solving optimization problems
with discrete values

NP hardt => RELXATION

Relaxed Objective
|

o Relaxation:

We remove constraints to create a relax version of the objective
function which can be solved in polynomial time

TCI‘T;L f’Lf,subjecttofL]] lIfl] = vn

0 The Relaxed version can be solved efficiency to get f that minimizes
the objective function

14
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Creating the Partition
[

0 Approximation RatioCut for k=2

fis the vector in R that
minimizes objective function

Use the sign as fi as points in R

re-convert and do K-means

indicator
function

weEA iFiz0 weA iffieC
T.'Z-EZ iffi<0. t‘iEz iffiEE.

Only works for k = 2 More General, works for any k

Eigenvectors and Eigenvalues
|

An eigenvector of a square matrix A is a non-zero vector v that, when the matrix
multiplies v, yields the same as when some scalar multiplies v, the scalar multiplier
often being denoted by A. That is:

Av=2av =>v 14v
A is also called the eigenvalue of A

We also know that eigenvectors are orthogonal to each other

min f'Lf ,subjecttof 1] |Ifl| = v

f is the second eigenvector of L with eigenvalue equal to
A = RatioCut(A,4)

I is the first one with eigenvalue O.

15
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Idea of Spectral Clustering

0 We found K=2 eigenvectors of matrix L

o Lis Laplacian Matrix of Laplacian Graph
o We took data to a new dimensional system where data has linear structure

0 We used K-Means to find best partition (clustering)

The fundamental idea of Spectral Clustering

PIERSITY
& IEV:E )
o]l
W\ mlw

Agenda
I

O Brief Clustering Review
Similarity Graph
Graph Laplacian

Graph Cut Point of View

i

|

O Spectral Clustering Algorithm
i

0 Random Walk Point of View
|

Practical Details
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Graph Laplacians
[

o Unnormalized Graph Laplacian D= degree matrix where d; = Z wj
=1

L: D_ W—> W=(wy)ij=1.,n w;=0

Properties of L
Proposition 1 The matrix L satisfies the following properties:

1. For every f € R™ we have

1 n
f'lLf =5 Z wi;(f; -

ij=1

Graph Laplacians
|

o Unnormalized Graph Laplacian
L=D-W
e
rif =5 wilhi=£)’
ij=1
1. L is symmetric and positive semi-definite.
¢ Lis symmetric since W and D are
* f'Lf == therfore positive semidefinite
2. The smallest eigenvalue of L is O, the corresponding eigenvector is the
constant one vector 1

3. L has n non-negative, real-valued eigenvalues 0 = 4; < 1, < - < 4.

17



Graph Laplacians
[

o Unnormalized Graph Laplacian

L=D-W
Proposition 2 (Number of connected components and the spectrum of L) Let
G be an undirected graph with non-negative weights. The multiplicity k of th
eigenvalue 0 of L equals the number of connected components A4, ..., Ay in the
graph. The eigenspace of eigenvalue 0O is spanned by the indicator vectors

1, -, 1y, of those components.

Proof:

Whenk =1

Lf=0f A=0) => 0=f'Lf= %Z?jﬂ wy; (f; —fj)2

Only happens if f; = f;

Graph Laplacians
|

o Unnormalized Graph Laplacian

L=D-W

Proposition 2 (Number of connected components and the spectrum of L) Let
G be an undirected graph with non-negative_weights. The multiplicity k of the

nvalu of L als the number of connect mponents Ay, ..., Ay in the
graph. The eigenspace of eigenvalue O is spanned by the indicator vectors
Tageef, s, of those components.

When k > 1, L can be written in a IR
block form. the spectrum of L is I L,
given by the union of the spectra of

L;, and the corresponding

eigenvectors of L are the

eigenvectors of L;, filled with O at

the positions of the other blocks.

11/15/2014
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Graph Laplacians
[

o Normalized Graph Laplacian

R a1
Leym =DZLD™Z2=1~— D2ZWD2

Ly =D'L=1—-D'W

We denote the first matrix by Lgyp, as it is a symmetric matrix, and
the second one by L,,, as it is closely related to a random walk.

Graph Laplacians
|

Proposition 3 (Properties of Lg,, and L;.,,) The normalized Laplacians statisfy the following
properties:

1. Forevery f € R" we have

" 2 L D ILDZ=1- DIWDZ
. . = 2 2=]— 2 2
f'Lsymf = : w2 Ji i .
sym 2 ij Le, =D7L=1- DWW
£7=1

Yo

2. Ais an eigenvalve of Ly, with eigenvector u if and only if A is an eigenvalue of Lgyy with

eigenvector w = D2y,

3. s an eigenvalue of L,,, with eigenvector u if and only if A and u solve the generalized

eigen problem Lu = ADu. (BP—%Lu = ADu )

19



11/15/2014

Graph Laplacians
[

n 2 1 1 1 1
L f—12w2<fi _f]-) Loym =D72LD2 =1~ D2WD2
sym) — ij —p-1] =7 _ p-1
21_']_=1 [d; /dj Ly =D7L=1-D7'W
4. 0 is an eigenvalue of L,,, with the constant one vector 1 as eigenvector. O is an eigenvalue
of Lsym with eigenvector Dl/z]l. (former is obvious, latter derives from (2))
5. Lgym and L;, are positive semi-definite and have n non-negative real-valued eigenvalues

0=A <Ay <<y

Graph Laplacians
|

= Normalized Graph Laplacian

. 1 1
Lym =D2LD2=1- DAWD™2
Ly, =D"L=1—-D'W
Proposition 4 (Number of connected components and spectra of Lgy,, and L)

Let G be an undirected graph with non-negative weights. Then the multiplicity k of the
eigenvalue 0 of both Lsy, and Ly, equals the number of connected components

A, ..., Ay in the graph. For L., the eigenspace of 0 is spanned by the indicator
vectors 14, of those components. For Lgyy, the eigenspace of 0 is spanned by the

vectors D1/21, .
v

Proof. The proof is analogous to the one of Proposition 2, using Proposition 3.

20
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Algorithm
L

0 Main trick is to change the representation of the abstract data

points x; to points y; € R¥

o Unnormalized Spectral Clustering
o Normalized Spectral Clustering 1

o Normalized Spectral Clustering 2

21
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Algorithm
[

o Unnormalized Graph Laplacian

L=D-W

Unnormalized spectral clustering

Input: Similarity matrix § € R™™", number k of clusters to construct.

¢ Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k eigenvectors uy,...,u, of L.

Let [ € R™** be the matrix containing the vectors u,...., ur as columns.

For i=1...., n, let y; € R* be the vector corresponding to the i-th row of U.
Cluster the points (¥i)i=1,...n in R* with the k-means algorithm into clusters

C] ..... Ck.

Output: Clusters A....,: Ap with 4; = {j| y; € Ci}.

Algorithm
[

o Normalized Graph Laplacian

Ly, =D7L=1-D7'W

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S5 € R™™™, number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

e Compute the first k generalized eigenvectors u;,...,u, of the generalized eigenprob-
lem Lu = ADu.
e Let Ul€ R™** be the matrix containing the vectors u;..... ur as columns.
e For ifE1l..... n, let y; € R* be the vector corresponding to the i-th row of U.
¢ Clust¢r the points (Zh)l:l...‘.n in R* with the k-means algorithm into clusters
C[. N Ck .
Output: |Clusters A, ..., Ar with A; = {j| y; € G}
v
Proposition 3 (Properties of Leym and Lyw) The normalized Laplacians satisfy the following prop-
erties:

3. A is an eigenvalue of L, with eigenvector u if and only if A and v solve the generalized eigen-
problem Lu = ADu.

22
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Algorithm 1
I I ——

o Normalized Graph Laplacian

N 11
Leym =D2LD"2 =1~ DZWD2

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix S € R™ ™, number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the normalized Laplacian L.

Compute the first k eigenvectors uy,..., ug of Leym.

Let [/ € R™** be the matrix containing the vectors uj,....ur as columns.

Form the matrix T € R*** from U by normalizing the rows to norm 1,

that is set ty; = u;/(3, uk)Y2.

e For i=1,....n, let y; € R* be the vector corresponding to the i-th row of T.

e Cluster the points (y:)i=1,..n with the k-means algorithm into clusters C).....Cj.
Output: Clusters Aj.....Ap with A; = {j| y; € Ci}.

Algorithm
|

Histogram of the sample
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Graph Cut

o Approximation RatioCut for k=2

min RatioCut(A, A),
ATV

JAl/1Al,  ifvieA

-
‘ ~Jlaiid,  itved

TC”‘} f'Lf subject to f_1 1, f; as defined in (1), ||f|| =n

‘ Relaxation !!! L

Tclg f’Lf,subject tof 11 ||f|| = +n
‘ Rayleigh-Ritz Theorem

f is the eigenvector corresponding to the second
smallest eigenvalue of L (the smallest eigenvalue of L is
0 with eigenvector 1)

11/15/2014
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Graph Cut Point of View

0 It can be shown that:

Unnormalized Spectral Clustering algorithm is
approximation of Ratio Cut Graph Partitioning

Normalized Spectral Clustering algorithms are
approximations of Ncut Graph Partition

Abstract

01 Spectral Clustering gives an approximate solution to the solution of graph
cut problem

01 There is no guarantee on getting on the quality of the solution

o In general, efficient algorithms to approximate balanced graphs cut to a
constant factor is also a NP-hard problem

25
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Random Walk Point of View

o o o o o o o o

Random Walk

o A random walk on a graph is a stochastic
process which randomly jumps from vertex
to vertex.

Path of walker

Here

11/15/2014
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Random Walk in Similarity Graph

o Random walk stays long within the same
cluster and seldom jumps between
clusters.

o A balanced partition with a low cut will
also have the property that the random
walk does not have many opportunities to
jump between clusters.

Random walk [

o Transition probability p;; of jumping from v; to v;

Py = wi/d;

o The transition matrix P = (p;;) ij = 1,...,n of random walk is defined by

P=D7'w

0 If the graph is connected and non-bipartite, the random walk always processes a

unique stationary distribution T = (74, ..., T,,)’, where
m; =d;/vol(V)

n
d; = Z wij vol(V) = Z d;
Jj=1

iev

11/15/2014
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Random walk

Relationship between L,,, and P.

Lyw=1—-P Ly =D71L=1-DwW
A is an eigenvalue of L, with eigenvector u if and only if 1 — 1 is an eigenvalue
of P with eigenvector vu.

The largest eigenvectors of P and the smallest eigenvectors of L,,, can be used to

describe cluster properties of the graph.

Random walk

Random walks and Ncut

Proposition 5 (Ncut via transition probabilities) Let G be connected and non
bi-partite. Assume that we run the random walk (X;)¢en starting with X in the
stationary distribution 7. For disjoint subsets A, B  V, denote by P(B|A) :=
P(X, € B |Xy € A). Then:

Ncut(4, A) = P(4|A) + P(A|A).
It tells us that when minimizing Ncut, we actually look for a cut through the

graph such that A random walk seldom transitions from A to A and vice
versa.

11/15/2014
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Random walk
[ ]

o What is commute distance

The commute distance (resistance distance) ¢;; between two vertices v; and v;
is the expected time it takes the random walk to travel from vertex v; to
vertex V; and back.

The commute distance between two vertices decrease if there are many
different short ways to get from vertex v; fo vertex v;.

* instead of only shortest path

Random walk
[

The commute distance between two vertices decrease if there are many
different short ways to get from vertex v; fo vertex v;.
* instead of only shortest path

Points which are connected by a short path in the graph and lie in the same
high-density region of the graph are considered closer to each other than
points which are connected by a short path but lie in different high-density
regions of the graph.

Well-suited for Clustering

11/15/2014
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Similarity function

O
O
O
O Spectral Clustering Algorithm
O
m
O

o Constructing the similarity graph

Similarity Function Itself

Make sure that points which are considered to be “very similar” by the
similarity function are also closely related in the application the data
comes from.

Global-range behavior of similarity function is not important

Domain specific

11/15/2014
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Similarity function

the parttion according to the solution vector

o
B
002 e

'
sanpremnonan s
POTy

LLz1————_

affinity matrix reordered according 1o solution vector

10 20 30 0 50 60 70

Similarity graph type
|

11/15/2014

offinity matrix reordered accordng 1o sokution vector

\ Data paoints epsilon—-graph, epsilon=0.3
1? ?@h‘ . 1 )
&i * " . a.ff -
-1 . -1 :
o LA
Gaussian —zlp . %", ot -,
ol 4 %"'&?a ap 4 ‘.""&c
1 0 1 2 -1 1} 1 2
kMM graph, k=5 Mutual kNN graph, k=5
1 w yPuy
Y %
T Wb
1o
-
T h {‘%
-1 0 1 2
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Similarity graph type
[

o Difficult to choose €

epsilon-graph, apsilon=0.3 £ Points on the moon are strongly

i connected

,ff \i o Points on Gaussian are barely

0y connected
_'I -

5 * b ey 0 Problem of “data on different

1 i ! * scales”
_3 - P
-1 o 1 2

Similarity graph type
|

KNM graph, k = §

Mutual kNN graph, k=5

w *"‘h,.
?Wt

Cneln

-1 1] 1 2

0 K-nearest neighbor graph
o Can handle “data on different scales”

o Can break into disconnected components if there are densely connected
regions

0 Mutual k-nearest neighbor

o Can act in presence of data at different densities but doesn’t mix them
together

o Well suited

11/15/2014
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Parameters of similarity graphs
[

o Significance of having connected similarity graph
In general, if the similarity graph contains more connected components
than the number of clusters we ask the algorithm to detect, then spectral
clustering will trivially return connected components as clusters

Unless one is perfectly sure that those connected components are the correct
clusters, one should make sure that the similarity graph is connected, or only
consists of “few” connected components and very few or no isolated
vertices.

To prevent outliers to affect result

Set parameters small enough to address local structure of data while
insuring connectivity

Parameters of similarity graphs
[

1. Parameters of Similarity Graph(k or &)
KNN:
1. kin order of log(n);
Mutual KNN:
1. Has much fewer edges than knn
k significantly larger than standard KNN;

2. Maintain the aforementioned advantage of not connected regions

of different density
Keep it small enough

3. Unfortunately, no general heuristics

33



Parameters of similarity graphs

1. Parameters of Similarity Graph(k or €)

&-neighborhood graph:

1. longest edge of MST;

2. Order of (log(n)/n) a

3. A significantly large € will be selected when (too large):

Data contains outlies

Several tight components very far from each other

fully connected graph:

1. Select g in a way that similarity is “not too small not too large”

2. Select g in order of the mean distance of a point to its k-th nearest

neighbor. Or choose k = ¢.

Computing eigenvectors

o Computing Eigenvectors

1. How to compute the first eigenvectors efficiently for large L

2. For sparse graphs from knn or &

1.

Efficient methods exist to compute the first eigenvectors of sparse
matrices. The speed of convergence of those algorithms depends
on the size of the eigengap (also called spectral gap)

Eigengap: Y = | A — Akl

The large the Eigengap the faster the algorithms

11/15/2014
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Determining k
[

0 Well-justified criteria in model-based clustering settings

Based on log-likelihood of the data

0 Methods specific to Spectral Clustering
Eigengap Heuristic
m Used for all 3 graph laplacian
m Choose K that A; ... Ay are very small, but, A, ;1 is relatively large

m based on perturbation theory, where we observe that in the ideal
case of k completely disconnected clusters, the eigenvalue O has
multiplicity k, and then there is a gap to the (k + 1)th eigenvalue Ak+1
>0

DETERMINING K

Histogram of the sample Histogram of the sample Histogram of the sample
10 10 6
4
5 5
2
0 0 0
1] 2 4 ] 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues Eigenvalues
* * *
* 0.08 * 0.08
0.06 %
0.06 0.08
0.04 0.04 0.04 -
* *
0.02 x % * * 0.02 * % ¥ 0.02 s ¥
o S P
12 3 4 5 6 7 8 910 12 3 4 56 7 8 910 12 3 4 56 7 8 910
Well Separated More Blurry Overlap So Much

Eigengap Heuristic usually works well if the data contains very well pronounced
clusters, but in ambiguous cases it also returns ambiguous results.
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WHICH GRAPH LAPLACIAN
[

The k-means step

It is not necessary. People also use other techniques

*  Which graph Laplacian should be used?

When does it become important?

If the distribution of degrees in graph is very regular and most vertices
have approximately the same degree, then all the Laplacians are very
similar to each other, and will work equally well for clustering. However, if
the degrees in the graph are very broadly distributed, then the

Laplacians differ considerably.

WHICH GRAPH LAPLACIAN

*  Which graph Laplacian should be used?

Why normalized is better than unnormalized spectral clustering?

Objectivel:

1. We want to find a partition such that points in different clusters are dissimilar to
each other, that is we want to minimize the between-cluster similarity. In the graph
setting, this means to minimize cut(4, A).

Both RatioCut and Ncut directly implement

Objective2:

2. We want to find a partition such that points in the same cluster are similar to
each other, that is we want to maximize the within-cluster similarities W (4, A), and
W(A,A).

Only Ncut implements

Normalized spectral clustering implements both clustering objectives mentioned above,
while unnormalized spectral clustering only implements the first obejctive.
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WHICH GRAPH LAPLACIAN
[

o Ncut:
W(4,4) = W(A, V) —W(4,A) = vol(A) — cut(4, )
the within-cluster similarity is maximized if cut(4, A)is small and if vol(A) is large.
As this is exactly what we achieve by minimizing Ncut
Ncut criterion implements the second objective
o RatioCut:

Objective is to maximize |A| and |A| instead of vol(A) and vol(A)

|A| and Iz‘ﬂ are not necessary related to the within-cluster similarity since within-cluster
similarity depends on the edges and not the number of nodes

A graph with a lot of vertices with low weight edges to each other

WHICH GRAPH LAPLACIAN
[

o Second perspective: Consistency Issue

Xq ... X have been sampled i.i.d according to some probability
distribution P on some underlying data space X

The most fundamental question is then the question of consistency:
if we draw more and more data points, do the clustering results of
spectral clustering converge to a useful partition of the underlying space
X2

11/15/2014
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WHICH GRAPH LAPLACIAN

0 Normalized Spectral clustering:

o Unnromalized:

WHICH GRAPH LAPLACIAN

All consistency statements about normalized spectral clustering hold, for
both Lsym and Lrw, under very mild conditions which are usually satisfied
in real world applications

All consistency statements about normalized spectral clustering hold, for
both Lsym and Lrw, under very mild conditions which are usually satisfied
in real world applications
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1. Eigenvectors of L, are cluster indicator vectors 4, while
the eigenvectors of Ly, are additionally multiplied with D2,
which might lead to undesired artifacts.

2. Using Lgyp, also does not have any computational

advantages.

Which graph Laplacian should be used?

Why the eigenvectors of L, are better than those of Lgy,;,?

11/15/2014
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