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Outline
* Linear Dimensionality Reduction
— PCA
— MDS

Dimensionality Reduction

e Linear Dimensionality Reduction Methods
— PCA

* Finds a low-dimensional embedding of the data points
that maximizes the variance of the projected data

— Classical MDS

* Finds an embedding that preserves the inter-point
distances.

* Equivalent to PCA when those distances are Euclidean.
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Multi-Dimensional Scaling (MDS)

Multi-Dimensional Scaling [Cox and Cox, 1994] .

MDS give points in a low dimensional space such that the Euclidean
distances between them best approximate the original distance matrix.
Given distance matrix S b e 5
(I'is number of observations) L1 T2 LI

52,1 52,2 T 52,!

A=
01 dr2 -+ Opg

Map input point pairs (x;, x)) to (z, ) such that ||zl- - Zj|| = 6
Classical MDS: the norm || . || is the Euclidean distance.

) 2
Jin 3icj(llzi — 7 - 6:)

— From Wikipedia: A solution may then be found by numerical optimization
techniques. For some particularly chosen cost functions, minimizers can be
stated analytically in terms of matrix eigendecompositions.

¢ “Citation Needed” on Wikipedia
¢ This is the same approach of how Laplacian Eigenmap is solved

MDS example

e Given pairwise distances between different cities in
3D (A matrix), plot the cities on a 2D plane (recover
location)
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PCA and MDS relation

* Preserve Euclidean distances = retaining the
maximum variance.

» Classical MDS is equivalent to PCA when the
distances in the input space are the Euclidean
distance.

* If we have only a distance matrix (we don’t
know the points in the original space), we
cannot perform PCA

* Both PCA and MDS are invariant to space
rotation

Underestimation of distance

1.2
I -
0. BT o - B T Not a good
5 Etaaed = Ly . .
F T\ distance metric!
- _1‘1 - =
0.4 A e
o DT '-t. i
B aw .
"'r_ i Ly .IL.'- ﬂ__
o '.._.‘. - ‘ o
L e S
F e ’ R
':_ P .{'."‘_
-8
- 1 0.5 ] 0.8 i

e For local distances, Euclidean distance may be sufficient
e For global distances, Euclidean distance may underestimate
* In example above, desired distance between A and B is along the red line.
Euclidean distance is an underestimate, as can be seen by the green arrow.
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Outline

* Non-Linear Dimensionality Reduction

Non-Linear Dimensionality Reduction

* A special class of problem

— Low dimensional data lying on a manifold in a higher
dimensional space




Manifolds

* Three examples of manifolds

¢ All three are two-dimensional manifolds embedded
in 3 dimensions

— Linear, “S”-shape, “Swiss roll”
* For all three, we would like to recover:
— That the data is only two-dimensional
— “Consistent” locations for the data in 2D

Manifolds

(a) (b) (c)
e PCA : works for (a)
e Doesn’t do much good for (b) or (c)
— Linear subspace doesn’t explain it well
* What do we mean by “consistent locations”?
— Preserve local relationships and structure
— One possibility: preserve distances
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Preserving Local/Global Relationships

 MDS — produces a linear embedding
— Preserved all pairwise distances

(a) (b) (a) (b)

* Nonlinear manifold:
— local distances (a) make sense
— but, global distances (b) don’t respect the geometry

Dimensionality Reduction

* Methods that preserve local structure
— Laplacian Eigenmaps
— Locally Linear Embedding (LLE)
— Isomap
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Outline

* Non-Linear Dimensionality Reduction
— Laplacian Eigenmaps

Laplacian Matrix Components

Given Graph G
Let e; = edge weight from node i to node j
Weight Matrix W (e.g., Heat Kernel)

e, ifiisadjacentto]j
Wi . = 1
J 0 otherwise

Matrix D

— Diagonal Matrix with diagonal elements containing column sums
of W. Since W is symmetric, using row sums is equivalent.

— Often Referred to as a Degree Matrix when all edge weights are 1
(that is, when W is the adjacency matrix)

g = Zwij ifi =j (diagonal element)
i =5

0 otherwise
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Laplacian Matrix

e Laplacian MatrixL=D-W
e Lis positive semidefinite (PSD)
— We will show why later
— We will use this property for optimization

A symmetric square Matrix A € R™*" is positive
semidefinite if for all x € R", x| Ax > 0.

xTAx is called a quadratic form.

Example: Laplacian Matrix of a Graph

Note: Node A corresponds to row 1 and
column 1, Node B to row 2 and column
2, ..., Node G to row 7 and column 7

03 100 00

3 050000

1 500 6 0 4

W=l0 0 0 0 2 0 O

00 6 2 0 4 7

0 00 0 4 0 0

0 0 4 0 7 00
4 0 0 0 0 0 O 4 -3 -1 0 0 0 O
08 0 0 0 0 O -3 8 -5 0 0 0 O
0 016 0 0 0 O -1 -5 16 0 -6 0 -4
D=0 0 0 2 0 0 O L=D-W=|0 0 0o 2 -2 0 0
0 0 0 0 19 0 O 0o 0 -6 -2 19 -4 -7
00 0 0 0 4 O o o0 0O 0 -4 4 0
00 0 0 0 0 11 o 0 -4 0 -7 0 11
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Laplacian Eigenmaps Overview

We have n data points in d dimensions
We want to project the data onto a lower dimension k
In lower dimension, relative distances between points

should preserve relative distances (along the manifold)
from the higher dimensional space.

Algorithm Overview

— Form a graph G where nodes correspond to data points and
are connected to local nodes

— Weight the edges of graph G according to local distances
between nodes [data points]

— Compute matrices W, D, and Laplacian matrix L of graph G
— Compute Eigenvalues and Eigenvectors of (D1L)

— Use k eigenvectors corresponding to smallest non-zero
eigenvalues, to project data onto k dimensions.

Local Neighborhood Graph

In the locally connected graph, nodes
are connected to their neighbors. One
way to choose neighbors is k-nearest-
neighbors.

Notice that nodes are not connected

to distant nodes.

11/6/2014
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Laplacian Eigenmaps Algorithm

* Step 1: Construct the graph
— Construct the adjacency graph G by connecting neighboring
nodes (i)
¢ Neighbors selection 5
— €-neighborhoods ”xi - xj” <e€
— Advantages
— Geometrically motivated
— Relationships are symmetric
— Disadvantages
— Can lead to Disconnected graphs
— Difficult to choose €
— n nearest neighbors
— Advantages
— Easier to choose
— No disconnected graphs
— Disadvantages
— Less geometrically intuitive (asymmetric relationships)

Laplacian Eigenmaps Algorithm

* Step 2: Choose the weights
* Simple-minded
* 1if connected
* 0 otherwise
* Heat Kernel

2
ol ded] I
* Wji=e ¢ if connected
* 0 otherwise
— Heat kernel with t = o is equivalent to the simple-minded
approach
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Laplacian Eigenmaps Algorithm

* Step 3: Eigenmaps
— Construct Laplacian matrix
— Construct diagonal weight matrix D from weight matrix. D;; =
ZjWij
— Construct Laplacian matrix L=D - W

— W, and thus L, will be sparse. Nodes [data points] are only
connected to nearby [similar] nodes.

— Laplacian is a symmetric, positive semi-definite matrix

— Compute eigenvalues and eigenvectors of the generalized
eigenvector problem:

Lf = ADf

— Alternative (but equivalent) formulation:
Find eigenvalues and eigenvectors of matrix (D-1L)

(DIL)f = M

Laplacian Eigenmaps Algorithm
* Step 3: Eigenmaps

Lf = ADf
— Let, f,, f, ..., f,_, be the solutions ordered according
to increasing eigenvalues

Lf, = A,Df,
Lf, = \,Df,

Lf 1 = A.Dfy s
0=A<SA<..=A\,
— We leave out eigenvector f,,. Take the next m

eigenvectors to construct m-dimensional
embedding (f,(i), ..., f..(i))

11/6/2014
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Laplacian Eigenmaps Motivation

Consider the problem of mapping weighted graph G into a line so that the
connected nodes stay as close as possible

Let y=(y, ¥y -, ¥,)" be such a map
A “reasonable criterion” for a good map is to minimize
Zij(yi'yj)zwij
) T PP Next Slide Shows Derivation
Zij(yi-yj) Wij =2y'Ly

argminy'Ly subjectto y'Dy=1
y

¢ The constraint removes arbitrary scaling factor
From equation * above, L is positive semidefinite
since (y;-y;)? = 0and W; >0
Since L is positive semidefininte, the solution to our minimization problem
is the generalized eigenvalue solution

e Ly=ADy

1is an eigenvector corresponding to eigenvalue O.
To eliminate this trivial solution, add constraint y'D1 = 0

Derive Zij(yi'yj)zwij =2y'Lly
(from previous slide)

Notes:
) Given a symmetric square
Y =) Wi =X (i —v) i — v,) Wi Matrix A € R™" and
v " , 5 x € R", xTAx s called a
= i%(yi = 2yiyj +yj )Wi.j quadratic form.
’ T —
x'Ax = Yx;(Ax);
= Y yi*Wi; — Y2y yiWij + Yy, * W i
ij i,j i,j = in (ZAi.jxj )
= .2 A v W 2 L t J
= §yl ?WW ZEyLy,WL,, + ?y, EiIWl,, =Sy AT
ij

= §:Yi2§:wi,j + g:szzi:Wi,j - ZiZ}YinWi,j If A is a diagonal matrix,

T
x'Ax = Yx;(AXx);
= zi:}’izDi,i + %:yszj,j - Zg}’i}’jwi,j 7 !

Yo ) =¥x;(Ayx; )
= 2D, — v:W; ; !
zi:YL ii 53/13/] i,j — inzAi,i
15
= ZyTDy - 2yTWy
_ ZyT(D — W)y i—\lso, ;;call_froDm earlier:
T YW =Dy;
=2yly L=D-w
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Laplacian Eigenmaps Beyond the Line

How to find the embedding into m-dimensional space?
The embeddingis Y=y, Y, ... Y]
Minimize Objective function:

i 1y =yO  [2W; = tr(YLY) i.e.
argmin tr(Y'LY) subjectto YTLY=I
y

Solution is provided by the matrix of eigenvectors
corresponding to the lowest eigenvalues of the generalized
eigenvalue problem

Ly = ADy

Ignore Zero Eigenvalue

* In one-dimensional motivation, we imposed this as an
additional constraint

Laplacian Eigenmaps

So each eigenvector is a function from nodes toR in a
way that "close by" points are assigned "close by"
values.

The eigenvalue of each eigenfunction gives a
measure of how "close by" are the values of close by
points

By using the first m eigenfunctions for determining
our m-dimensions we have our solution.

11/6/2014
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Laplacian Eigenmap Example

e Swiss roll

2000 random data points on the manifold

Laplacian Eigenmap Example

2D embedding of the swiss roll

N=5 t==

N=10 t==

- oy ,}'ﬁ?
ko7 s S K> Sqjge
MN=5 t=5.0 N=10 t=50 M=15 t=5.0
N=5 t=250 N=10 t=250 N=15 t=250
Pz 'Y
. er-:t
!. y ¥ * r"
N=15 t=aa

Free parameters, N and t. N = Number of neighbors, t = Heat kernel

parameter

11/6/2014
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Laplacian Eigenmap Example

* 300 most frequent words from Brown corpus

* Each word is represented by a 600 dimensional vector
* Laplacian Eigenmap with N =14, t = inf ] '

W Ly
i
o.0za = «in an't
—o.011 4
0.012s afalt  _could b
o.o=7s| b 4 on - tala
e fin 0.0131 s
e w o
0.027 | quee P saw
Foot1sl sleng 4 @ot
0.026s | Aoke - ki o.01=
i €A would
o.0z6 | o.ot1s might
. S
i | J 0.011
e halp, Bacama —o.01=|
14 maw
- shoula
o.easl - know gioi0a i
o muszt
o.0z4s i
0.008s Wk
Fo.otast
0.0z4 | - put, B g
& = G07= 6.076 6017 6oin ¥ = g 75
10 10

Fragments labelled by arrows, from left to right. The first is exclusively infinites of verbs, the
second contains prepositions and the third mostly modal and auxiliary verbs

Laplacian Eigenmap Example: Speech

Speech signal is high dimensional but distinctive
phonetic dimensions are few

30 ms window at 5 ms interval

256 Fourier coefficients for each 30 ms chunk

685 such vectors

ooesi- .
n ‘::_
o Pty - o
- ‘:?
- P4
ool .

“ieE ot ot

685 speech data points plotted in the two dimensional Laplacian
spectral representation

11/6/2014
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Laplacian Eigenmap Example: Speech

= 107 = 1077 = 10~
A = —
ac
=08 =h i -6 A S0 4 e
- ac =2l _ha N
)
o4 - = N
= Fh —-s.7 | Ao " m =
Fhn E k]
0= o i el e -
=n —e.m 4
=n == =k = _
= Zh = - Ao
=R “dcl
- s} A0 - = T
A4 D - A aicl
22, amf i, N
=h L &= A%ac i =
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a5 -
ER- AN =n - -7k 2o A =
—a.= -o —-7.0 —7.6 —7.8 :] 10 =0 7.5 o o.-. 9 9.5
x 107" * 107" = 107"

A blowup of the three selected regions. The data points corresponding to
the same region have similar phonetic identity

Outline

* Non-Linear Dimensionality Reduction

— Locally Linear Embedding

11/6/2014
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Locally Linear Embedding (LLE)

Sam T. Roweis, L. K. Saul 2000

e Manifold Characteristics/Key Assumption

— Provided there is sufficient data, we expect each
data point and its neighbors to lie on or close to a
locally linear patch

LLE Algorithm
e Step 1:
— Assign neighbors to each data point X;
e Step 2

— Characterize the local geometry of linear patches
by linear coefficients that reconstruct each point
from its neighbors

(o]
[#]

@ Select neighbors R'?CDHStTUFt with
linear weights

11/6/2014
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LLE Algorithm

* Step 2: How to assign weights?
— Minimize cost function measuring
reconstruction error

W)= ) 1% ) Wikl Foeonse i
* Weight W;; summarizes the contribution of the j* data
point to the it" reconstruction
— Assign weights under two constraints
— W;; = 0if X; does not belong to set of neighbors of X
— The rows of the weight matrix sum to onei.e. 2, =1

— Closed-form solution, Constrained Least Squares
Problem (appendix A in paper)

LLE Algorithm

» Step 3: Map to embedded
coordinates

— Each high-dimensional observation X;
is mapped to a low-dimensional

vector Y,
— Choose Y; to minimize the embedding @)
cost function Map to embedded coordinates

®(Y) =D | V.- Sw,Y,

* The cost function can be minimized (subject to
constraints) by solving a sparse NxN eigenvalue problem
(appendix B in paper).

*Bottom d non-zero eigenvectors

19



LLE Algorithm

* The constrained weights obey an important symmetry

— For a particular data point, the weights are invariant to
rotation, rescaling and translation of the data point and its
neighbors.

* The same weights that reconstruct the data points in D
dimensions should reconstruct it in the manifold
coordinate in d dimensions.

— The weights characterize the intrinsic geometric properties of
each neighborhood.

LLE Example

ol oy ool vsloe] el 2ol sl vul 2ul 2ol 2el 2 2 2dd o

22 AE A S S S S SRR

Big.

Images of faces mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points. The
bottom images correspond to points along the top-right path (linked by solid line)
illustrating one particular mode of variability in pose and expression.

11/6/2014
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Effect of K

e Require dense data points on the manifold for
good estimation

()=
llh hl

0 2
Fic. 5. S-curve {top left) and computed 2D coordinates by LLE with v ighborhood size

anMA

LLE and Laplacian Eigenmap

* LLE is connected with Laplacian Eigenmap

e LLE minimizes y'(I-W)"(I-W)y which reduces to
finding eigenvectors of (I-W)T(I-W)

* They show that finding eigenvectors of (I-W)T(I-W)
can be re-interpreted as finding eigenvectors of
iterated Laplacian L2. Eigenvectors of L? coincide with

those of L.

11/6/2014
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Outline

* Non-Linear Dimensionality Reduction

— Isomap

Isomap

Josh. Tenenbaum, Vin de Silva, John langford 2000

c

e Classical MDS — uses Euclidean distance

* What we really want:
— Distance measurements along manifold (geodesics)

— Find low dimensional reconstruction which also has these
geodesic distances

* |somap: Classical MDS with geodesic distances.

11/6/2014
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Isomap Algorithm

Josh. Tenenbaum, Vin de Silva, John langford 2000

c

e Step 1: Construct Neighborhood graph (G)

— Define the graph G over all data points by connecting points
iandjif they are
¢ Closer than € — (e-lsomap)
e If iis one of the k nearest neighbors of j (k-isomap)

— Set edge lengths equal to d,(i,j)

Isomap Algorithm
Josh. Tenenbaum, Vin de Silva, John langford 2000

c

e Step 2: Compute Shortest Paths in G
— Floyd’s algorithm (O(n3)) or Dijkstra's algorithm to find D¢

» Step 3: Construct d-dimensional embedding
— Apply classical MDS on D to find d-dimensional embedding

11/6/2014
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Isomap

* Advantages
— Non-linear. Preserves intrinsic geometry of the data.
— Non-iterative polynomial time algorithm

— Guarantee of global optimality

* For intrinsically Euclidean manifolds, a guarantee of
asymptotic convergence to the true structure

* the ability to discover manifolds of arbitrary dimensionality

* Disadvantages
— From Wikipedia
 "short-circuit errors” from noise or if k is too large.

¢ “Even a single short-circuit error can alter many entries in
the geodesic distance matrix, which in turn can lead to a
drastically different (and incorrect) low-dimensional
embedding”

Isomap: Examples

-

* Dimensionality
reduction for visual
perception
— 64x64 image

— 698 raw images
— Isomap (k=6)

[T Lighting direction

Lefright pose

11/6/2014
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Isomap: Examples

Bottom loop articulation -
e Handwritten 2’ '
— 1000 handwritten 2s .
— Isomap (e=4.2) _ E

Isomap: Examples

A

Hand images g
— 64x64 image g
— 2000 images
— Isomap (k=6)

Wrist rafatian

25



Residual Variance

Residual Vari 0.7 025
esidua arlar;ce i A . B
=1 —r?(Dm, Dy) ) | o5 "
* where pis the correlation 04 _ 0.15
coefficient operator 03 o -
e D, contains estimated 02
distances between data in § 01 e
o E | o Na oo LWy
theorlglnals.pace. = 52345678010 O 12345678810
* and D, contains distances E
between data points in é 05 08
projected space 2 o Cc
Residual Variance is zero if _ 08
estimated distances between 82
points in high dimensional 02 04
space is perfectly correlated ot
with distances between fe
Corresponding points in g 123 45678910 123 45678910
projected space. Dimension
* |somap

1. MDS on the geodesic distance matrix
2. Global approach

e LLE
1. Model local neighborhoods as linear patches and
then embed in a lower dimensional manifold.
2. Local approach
3. Computationally efficient. Eigenvectors from
sparse matrices

11/6/2014
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Graph Kernels

*We Considered Two Variations for Weighting Edges for the Laplacian

Eigenmap Algorithm
— Heat Kernel
s
Wj=e ¢ if i and j connected, O otherwise
— Simple-Minded
W;; = 1lifiandjconnected, 0 otherwise
*Overview of Additional Graph Kernels
— Diffusion Kernel
K = [Zki—TAk]” = [min(1A)];; if i and j connected, O otherwise
i
A is the adjacency matrix. Discounts a k-length walk by ’}{—If for0<A<1
— Resistance Kernel
(also called the commute-time kernel)
K=(D-A)
A is the adjacency matrix, and D is the degree matrix,
and + is the Moore-Penrose pseudoinverse operator.
Interprets a graph as a network of resistance, where edge weights
are interpreted relative to resistance values in an electrical network.

Summary

* Isomap, LLE and Laplacian Eigenmap: Non-linear
dimensionality reduction technique

e Useful for learning manifolds, understanding low
dimensional data embedded in high dimensional
space.

* PCA and MDS fails for this type of data.

e All three use some technique to preserve local
geometry i.e. inter-point relationships

11/6/2014
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Additional Laplacian Eigenmaps Details
Continuous Manifold

* Laplacian of a graph is analogous to the Laplace
Beltrami operator on manifolds.

* Mapping to 1-D. Find a map f such that points close
together on the manifold get mapped close together
on the line.

e Two points z and x mapped to f(z) and f(x). It is shown
that

[J(z) = ()| < IV lz =] + o ][z —x]])

11/6/2014
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Additional Laplacian Eigenmaps Details
Continuous Manifold

e Gradient of f provides us with an estimate of how far
apart f maps nearby points.

* Minimizing the gradient minimizes the values assigned
to close by points.

argmin / IV [ ()|

M2 4y =1 M

e Minimizing the objective function reduces to finding
eigenfunctions of the Laplace Beltrami Operator

11/6/2014
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