

Undirected Graph Model: MRF

Part 2

Modeling

 On an undirected graph, the joint distribution of variables y

$$p(\mathbf{y}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{y}_{C}), \ Z = \sum_{\mathbf{y}} \prod_{C} \psi_{C}(\mathbf{y}_{C})$$

- Potential Functions: $\psi_C(\mathbf{y}_C) \ge 0$
- Partition Functions: Z
- Energy Functions: $\psi_C(\mathbf{y}_C) = \exp\{-E(\mathbf{y}_C)\}$
- In MRF, $\psi_c(\mathbf{y}_c) \ge 0$ defined on cliques
- Markov property (next slide)
- A generative model

Univ. of Pittsburgh

Independence in MRF

Part 2

Modeling

 Markov property: for any two variables (or sets of Variables) A, B in MRF, the variable A is independent of B conditioned on A's neighbors.

• $A \perp B \mid C$

Directed Graph: Bayesian Network

- **Local Conditional Distributions**

•
$$\pi(s)$$
 Indices the parent of \mathcal{Y}_s
$$p(\mathbf{y}) = \prod_{s=1}^S p(y_s|\mathbf{y}_{\pi(s)}).$$

Modeling

Part 2

Naïve Bayes: once the class label is known, all the features are independent

$$p(y,\mathbf{x}) = p(y) \prod_{k=1}^{K} p(x_k|y)$$

Again, a generative model

Sequence Prediction

- NER, POS problems
 - Set of observations: $X = \{x_t\}_{t=1}^{\mathrm{T}}$
 - Set of underlying sequence of states $Y = \{y_t\}_{t=1}^{\mathrm{T}}$

Part 2
Modeling

- HMM is generative:

 Transition probability $p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{\mathrm{T}} p(y_t | y_{t-1}) p(x_t | y_t)$ Observation probability
- Basic Independent Assumptions
 - Observation is only dependent of its corresponding state;
 - Current state is only dependent of its previous state.
 - Strong assumptions!

Univ. of Pittsburgh

Discriminative Vs. Generative

- Generative: describes how a label vector y can probabilistically "generate" a feature vector x. p(y,x)
- Part 2
- Discriminative: describes how to take a feature vector \mathbf{x} and assign it a label \mathbf{y} . $p(\mathbf{y}|\mathbf{x})$

Modeling

Naïve Bayes:

$$p(y, \mathbf{x}) = p(y) \prod_{k=1}^{K} p(x_k|y)$$

MaxEnt classifier:

CONDITIONAL

Logistic Regression

Convert HMM to Chain CRF:

Step 1: rewrite
$$p(\mathbf{y}, \mathbf{x}) = \prod_{t=1}^{\mathrm{T}} p(y_t|y_{t-1}) p(x_t|y_t)$$

Part |

• As:
$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{i,j \in S} \theta_{ij} \mathbf{1}_{\{y_t = i\}} \mathbf{1}_{\{y_{t-1} = j\}} \right\}$$

$$+ \sum_{i \in S} \sum_{o \in O} \mu_{oi} \mathbf{1}_{\{y_t = i\}} \mathbf{1}_{\{x_t = o\}} \right\},\,$$

$$\theta_{ij} = \log p(y' = i|y = j)$$

$$\mu_{oi} = \log p(x = o|y = i)$$

$$Z = 1$$

Univ. of **Pittsburgh**

Convert HMM to Chain CRF:

Step 2: introduce feature functions

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{i,j \in S} \theta_{ij} \mathbf{1}_{\{y_t = i\}} \mathbf{1}_{\{y_{t-1} = j\}} \right\}$$
$$+ \sum_{i \in S} \sum_{o \in O} \mu_{oi} \mathbf{1}_{\{y_t = i\}} \mathbf{1}_{\{x_t = o\}} \right\},$$

$$f_{io}(y,y',x)$$
 $f_{ij}(y,y',x)$

Modeling

• Then:

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}$$

Convert HMM to Chain CRF:

Step 3: More compactly as

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}$$

Part 2
Modeling

• Where we refer to a feature function generally as f_k , which ranges over both all the f_{ij} and all the f_{io}

Univ. of Pittsburgh

Part (

Modeling

Convert HMM to Chain CRF:

Step 4: Conditional Distribution

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}$$

$$p(\mathbf{y}|\mathbf{x}) = \frac{p(\mathbf{y}, \mathbf{x})}{\sum_{\mathbf{y}'} p(\mathbf{y}', \mathbf{x})} = \frac{\prod_{t=1}^{T} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t)\right\}}{\sum_{\mathbf{y}'} \prod_{t=1}^{T} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y_t', y_{t-1}', x_t)\right\}}$$

General CRF

- If G = (V, E), and $\mathbf{Y} = (\mathbf{Y}_v)_{v \in V}$;
- $w \sim v \Leftrightarrow w$ and v are neighbors;
- (X, Y) is a CRF, if $p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \neq v) = p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \sim v)$
- Part | **Modeling**

Example:

Suppose $P(Y_v | X, all other Y) = P(Y_v | X, neighbors(Y_v))$ then X with Y is a conditional random field

- $P(Y_3 | X, all other Y) = P(Y_3 | X, Y_2, Y_4)$
- · Think of X as observations and Y as labels

General CRFs: Visualization

• Φ_c is typically decomposed into a weighted sum of feature sensors f_i , producing:

Part 2
Modeling

$$\left. \begin{array}{l}
 p(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z} e^{Q(\mathbf{y}, \mathbf{x})} \\
 Q(\mathbf{y}, \mathbf{x}) = \sum_{c \in C} \Phi_c(\mathbf{y}_c, \mathbf{x}) \\
 \Phi_c(\mathbf{y}_c, \mathbf{x}) = \sum_{i \in F} \lambda_i f_i(y_c, \mathbf{x})
 \end{array} \right\} P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z} e^{\sum_{c \in C} \sum_{i \in F} \lambda_i f_i(y_c, \mathbf{x})}$$

- Back to the chain-CRF!
- Cliques can be identified as pairs of adjacent Ys:

Univ. of Pittsburgh

Part (

Inference

Inference using CRF

- 1. Introduction
- 2. CRF Modeling
- 3. Inference using CRF
 - General CRF
 - Chain CRF
- 4. Training CRF
- 5. Applications of CRF

General CRF

Part 3

Inference

 Given the observations, and parameters, we target to find the best state sequence:

$$\mathbf{y}^* = \arg\max_{\mathbf{v}} p(\mathbf{y}|\mathbf{x}).$$

- For the general CRF:
- $\mathbf{y}^* = \arg\max_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) =$

$$\arg\max_{\mathbf{y}} \frac{1}{Z} e^{\sum_{c \in C} \Phi_{c}(\mathbf{y}_{c}, \mathbf{x})} = \arg\max_{\mathbf{y}} \sum_{c \in C} \Phi_{c}(\mathbf{y}_{c}, \mathbf{x})$$

- But, exact inference in CRFs is intractable...
- Approximate methods!
 - MCMC, Belief Propagation

Univ. of Pittsburgh

Inference in HMM

- Dynamic Programming:
 - Forward
 - Backward
 - Viterbi

Inference

Part (

Chain CRFs

Chain CRF could be done using dynamic programming

$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{Z(\boldsymbol{x})} \exp{(\sum_{j} \lambda_{j} F_{j}(\boldsymbol{y}, \boldsymbol{x}))}$$

$$F_j({m y},{m x}) = \sum_{i=1}^n f_j(y_{i-1},y_i,{m x},i),$$

Part 3

Define a matrix $\{M_i(\boldsymbol{x})|i=1,\ldots,n+1\}$ with size $|\mathcal{Y}\times\mathcal{Y}|$ \cdot \mathcal{Y} is a finite label alphabet

Inference

$$M_i(y', y|\boldsymbol{x}) = \exp\left(\sum_j \lambda_j f_j(y', y, \boldsymbol{x}, i)\right)$$

$$p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\lambda}) = \frac{1}{Z(\boldsymbol{x})} \prod_{i=1}^{n+1} M_i(y_{i-1}, y_i|\boldsymbol{x})$$

$$Z(oldsymbol{x}) = \left[\prod_{i=1}^{n+1} M_i(oldsymbol{x})
ight]_{ extst{start.end}}$$

Univ. of Pittsburgh

Chain CRFs

 By defining the following forward and backward parameters,

$$\alpha_i(\boldsymbol{x})^T = \alpha_{i-1}(\boldsymbol{x})^T M_i(\boldsymbol{x})$$

Part 3

$$lpha_0(y|m{x}) = egin{cases} 1 & ext{if } y = ext{start} \ 0 & ext{otherwise} \end{cases}$$

$$Z(\mathbf{x}) = \sum_{i \in S} \alpha_{\mathrm{T}}(i)$$

$$\beta_i(\boldsymbol{x}) = M_{i+1}(\boldsymbol{x})\beta_{i+1}(\boldsymbol{x})$$

$$eta_{n+1}(y|m{x}) = egin{cases} 1 & ext{if } y = \mathsf{stop} \ 0 & ext{otherwise} \end{cases}$$

$$Z(\mathbf{x}) = \beta_0(y_0)$$

Chain CRFs

- The inference of linear-chain CRF is very similar to that of HMM
- We can write the marginal distribution:

Part 3

 $p(Y_{i-1} = y', Y_i = y | \boldsymbol{x}^{(k)}, \boldsymbol{\lambda}) = \frac{\alpha_{i-1}(y'|\boldsymbol{x})M_i(y', y|\boldsymbol{x})\beta_i(y|\boldsymbol{x})}{Z(\boldsymbol{x})}$

Inference

- Solve Chain-CRF using Dynamic Programming (Similar to Viterbi)!
 - 1. First computing α for all t (forward), then compute β for all t (backward).
 - 2. Return the marginal distributions computed.
 - 3. Run viterbi to find the optimal sequence

Univ. of Pittsburgh

Part

Learning

Training CRF

- 1. Introduction
- 2. CRF Modeling
- 3. Inference using CRF
- 4. Training CRF
 - General CRF
 - Intro to approximate algorithms
- 5. Applications of CRF

Parameter learning

Part 4
Learning

- Given the training data, $\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^{N}$ we wish to learn parameters of the model.
- For chain or tree structured CRFs, they can be trained by maximum likelihood
- The objective function for chain-CRF is convex(see Lafferty et al(2001)).
- General CRFs are intractable hence approximation solutions are necessary

Univ. of Pittsburgh

Parameter learning

Conditional log-likelihood for a general CRF:

$$\begin{split} \mathcal{L}(\boldsymbol{\lambda}) &= \sum_{k} \left[\log \frac{1}{Z(\boldsymbol{x}^{(k)})} + \sum_{j} \lambda_{j} F_{j}(\boldsymbol{y}^{(k)}, \boldsymbol{x}^{(k)}) \right] \\ \frac{\partial \mathcal{L}(\boldsymbol{\lambda})}{\partial \lambda_{j}} &= E_{\bar{p}(\boldsymbol{Y}, \boldsymbol{X})} \left[F_{j}(\boldsymbol{Y}, \boldsymbol{X}) \right] - \sum_{k} E_{p(\boldsymbol{Y} \mid \boldsymbol{x}^{(k)}, \boldsymbol{\lambda})} \left[F_{j}(\boldsymbol{Y}, \boldsymbol{x}^{(k)}) \right] \end{split}$$

Learning

Empirical Distribution

It is not possible to analytically determine the parameter values that maximize the log-likelihood – setting the gradient to zero and solving for λ does not always yield a closed form solution. (Almost always)

Parameter learning

• This could be done using gradient descent

$$\lambda \propto \max_{\lambda} \mathsf{L}(\lambda; y \,|\, x) \propto \max_{\lambda} \log \sum_{i=1}^{N} p(\mathbf{y} \,|\, \mathbf{x}; \lambda)$$

$$\lambda_{i+1} \leftarrow \lambda_i + \alpha \cdot \nabla_{\lambda} L(\lambda; y \mid x)$$

- Part 4
 Learning
- Until we reach convergence

$$|L(\lambda_{i+1}; y | x) - L(\lambda_i; y | x)| < \delta$$

Parameter learning

- 2 algorithms based on improved iterative scaling are used:
 - Algorithm S
 - Algorithm T
- Part 4
 Learning
- Improved iterative scaling algorithm updates weights as:
 - $\lambda_k \leftarrow \lambda_k + \delta \lambda_k$ for appropriately chosen δ

Part

Learning

Parameter learning

• For algorithm T, Update $\delta \lambda_k$ for an edge feature f_k is solution of:

$$\begin{split} \widehat{E}\left[f_{k}\right] & \stackrel{\text{def}}{=} \sum_{x,y} \widehat{p}(x) p(y|x) + \sum_{i,k} g_{k}\left(v_{i}, y|_{v_{i}}, x\right) \\ & \sum_{i,k} f_{k}\left(e_{i}, y|_{e_{i}}, x\right) e^{\delta \lambda_{k} T(x,y)} \end{split}$$

• Where T(x,y) is the total feature count

$$T(x,y) = \sum_{i,k} f_k(e_i, y|_{e_i}, x) + \sum_{i,k} g_k(v_i, y|_{v_i}, x)$$

For algorithm S, there is a slack feature s

$$s(x,y) = S - \sum_{i} \sum_{k} f_{k}(e_{i}, y|_{e_{i}}, x)$$
$$-\sum_{i} \sum_{k} g_{k}(v_{i}, y|_{v_{i}}, x)$$

Where S is a constant.

Part

Learning

Training (and Inference): General Case

- Approximate solution, to get faster inference.
- Treat inference as shortest path problem in the network consisting of paths(with costs)
 - Max Flow-Min Cut (Ford-Fulkerson, 1956)
- Pseudo-likelihood approximation:
 - Convert a CRF into separate patches; each consists of a hidden node and true values of neighbors; Run ML on separate patches
 - Efficient but may over-estimate inter-dependencies
- Belief propagation
 - variational inference algorithm
 - it is a direct generalization of the exact inference algorithms for linear-chain CRFs
- Sampling based method(MCMC)

Part-of-Speech-Tagging

- Part 5
 Application
- Each word to be labeled with one of 45 syntactic tags.
- 50%-50% train-test split
- Compared HMMs, MEMMs, and CRFs on Penn treebank POS tagging
- oov = out-of-vocabulary (not observed in the training set)

model	error	$oov\ error$
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%

Part-of-Speech-Tagging

Part 5
Application

• But...

Add a small set of orthographic features: whether a spelling begins with a number or upper case letter, whether it contains a hyphen, and if it contains one of the following suffixes: -ing, -ogy, -ed, -s, -ly, -ion, -tion, -ity, -ies

Feature Type	Description
Transition	$\forall k,k' \ y_i = k \ and \ y_{i+1} = k'$
Word	$\begin{split} \forall k_i w \ y_i &= k \ and \ x_i \text{=} w \\ \forall k_i w \ y_i &= k \ and \ x_{i-1} \text{=} w \\ \forall k_i w \ y_i &= k \ and \ x_{i+1} \text{=} w \\ \forall k_i w, w' \ y_i &= k \ and \ x_i \text{=} w \ and \ x_{i+1} \text{=} w' \\ \forall k_i w, w' \ y_i &= k \ and \ x_i \text{=} w \ and \ x_{i+1} \text{=} w' \end{split}$
Orthography: Suffix	$ \forall s \text{ in } \\ \{\text{``ing'',"ed'',"ogy'',"s'',"iy'',"ion'',"tion'',} \\ \text{``ity'',} \} \text{ and } \forall k y_i \!\!=\!\! k \text{ and } x_i \text{ ends with } s $
Orthography: Punctuation	$\begin{array}{l} \forall k \; y_i = k \; and \; x_i \; is \; capitalized \\ \forall k \; y_i = k \; and \; x_i \; is \; hyphenated \\ \end{array}$

Other Applications

- Application in computational biology
 - DNA and protein sequence alignment
 - Sequence homolog searching in databases
 - Protein secondary structure prediction
 - RNA secondary structure analysis

Part 5 Application

- Application in computational linguistics & computer science
 - Text and speech processing, including topic segmentation, part-of-speech (POS) tagging
 - Information extraction
 - Syntactic disambiguation

Univ. of Pittsburgh

References

- J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML01, 2001.
- Charles Sutton and Andrew McCallum, "An Introduction to Conditional Random Fields for Relational Learning," MIT Press, 2006
- Daniel Khashabi, "Conditional Random Fields and beyond", UIUC CS 546, 2013
- Zitao Liu, "Probabilistic Models of Time Series and Sequences", 2014
- Bishop, Christopher M., "Pattern recognition and machine learning". Vol. 1. New York: springer, 2006
- Peter, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", 2012

