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Problem Description

Given X (observations), find Y (predictions)
For example,
X ={temperature, moisture, pressure,...}
Y ={Sunny, Rainy, Stormy, ...}

Pittsburgh
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Introduction
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CRF Modeling

1. Introduction

2. CRF Modeling
Related Models
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Part 2 Discriminative vs. Generative
Modeling Chain CRF
General CRF

3. Inference using CRF
4. Training CRF
5. Applications of CRF
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Related Models

Markov Random Fields
Bayesian Network
Factor Graph

Part g Sequencing Model

Pittsburgh
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Undirected Graph Model: MRF

On an undirected graph, the joint
distribution of variables Y

1
Part 2 p(y)zzl:[’//c()/c)a Zz;l:['//c()/c)

Modeling Potential Functions: ¥¢(Yc)=0
Partition Functions: Z

Energy Functions: ¥ (Yc) =exp{-E(y.)}
In MRF, ¥c(Yc)20 defined on cliques

Markov property (next slide)
A generative model

Pittsburgh
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Independence in MRF

Markov property: for any two variables (or
sets of Variables) A, B in MRF, the
variable A is independent of B

Part 2 conditioned on A's neighbors.

Modeling ALB|C
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Directed Graph: Bayesian Network

Local Conditional Distributions

7(s) Indices the parent of Y igj
S
p(y) = | | p(usly s
Part 2 (v) 1;[1 (Ys|¥r(s)

Modeling Naive Bayes: once the class label is
known, all the features are independent

p(y, p(y}Hp zely) ﬁ&

Again, a generative model

Univ. of
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Factor Graph

An explicit way to represent the factors in
graphs

Undirected Graph .ﬁiﬁ. 1.
Part 2 5

Modeling AV %C}@

Directed Graph

Pittsburgh
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Sequence Prediction

NER, POS problems
Set of observations: X = {z;};_;
Set of underlying sequence of states Y = {y;}}

HMM is generative:

Pittsburgh

Part 2 Transition probabilit
T
Modeling ply.x) = H p(yelye—1)|p(ee|ye)
t=1

Observation probabilit

Basic Independent Assumptions

Observation is only dependent of its
corresponding state;

Current state is only dependent of its previous
state.

Strong assumptions!

Discriminative Vs. Generative
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Generative' describes how a Iabel vector y

vector X. p(y.X)
Discriminative: describes how to take a

Part 2 feature vector x and assign it a label y. | p(ylx)
Modeling Naive Bayes: Q
K
p(y.x) = p(y) | [ p(zkly) @)
k=1 Naive Bayes
MaxEnt classifier: cu@m

plylx) = (l)exp{a +Zﬂm g

Logistic Regression
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Discriminative Vs. Generative

Limitations of generative models
Modeling the joint distribution can lead to difficulties
features may have complex dependencies
Models often make strong independence assumptions
— =0

=~

Fully dependent

Discriminative models:
No independence assumption is made for X
We care about conditional independences among Y
And how the Y can depend on X.
Best suits rich, overlapping features.
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T

CREF is simply a conditional distribution gmm..

. . . Py [X)
with an associated graphical structure <855
X are constant with respectto Y

Convert HMM to Chain CRF:

§44

HMMs

co@m
Ty

Linear-chain CRFs
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Convert HMM to Chain CRF:

T

Step 1: rewrite  p(y,x) = [ [ p(welve—1)p(ze|w)
t=1

Pittsburgh

.
1
AsS: p(y,x) == | |exp i1 y—iy Liyom =i}
Part 2 Zg ,Xe:q e

Modelin
g +ZZ'['L0£1{HE:'£}1{I::U} 3
i€8 00
Where: 0:; = logp(y' = ily = 7)
Hoi = logp(_’]',' — Oly — ?J)
Z=1

Convert HMM to Chain CRF:

Step 2: introduce feature functions

T
1
p(y,x) = E HCXP{ Z Bijl{ytZi}l{yt—12j}
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t=1 i,JES
Part 2

+ D Hoilgy=iy L mi=o} |
Modeling 1€50c0 |’

fia(y7 ylax) ij (yay,sm)
Then:

T K
1
p(y,x) = 7z HCXP {Zekfk(ytyyt—]-mt)}
t=1 k=1
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Convert HMM to Chain CRF:

Step 3: More compactly as

T K
ply,x) = %HCXP{ZQkfk(ytayt—lrmt)}
t=1

k=1

Where we refer to a feature function
generally as f; , which ranges over both all
the f;; and all the f;,
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Modeling

Convert HMM to Chain CRF:

Step 4: Conditional Distribution

T P
Py, %)=~ [Texp {Z kak(ytaytl--rt)}

t=1 k=1

ply.x) HL&XP{Z;{»‘Q 9kfk(yf-yt—1-$:)}
y P X) ST exp {0 O o120 |

plylx) = 5
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T

We can change it so that each state depends
on more observations:

G
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General CRF

If G = (V.E) ,and Y = (Y.)vev;
w~ v <& wandv are neighbors;
(X,Y) is a CREF, if
p(Y, | XYy, w#v) =p(Yy | X, Yy,w ~ )
Example:

Suppose P(Y, | X , all other Y) = P(Y,, | X, neighbors(Y))
then X with Y is a conditional random field

(Y,) (Y,) (Ys) Y, ¥

* P(Y;|X,allother ) =P(Y,|X,Y,,Y,)
» Think of X as observations and Y as labels
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General CRFs: Visualization

According to the definition of CRF, the
random variables Y = (Y,).cv still obey the
Markov Property with respect to the graph.

} } the MRF

o) ," fixed, observable,
o variables X (not in
the MRF)

Pittsburgh
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Modeling

the CRF

General CRFs: Visualization
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cliques (include only

the unobservables, Y)
X ." o '\I © observables, X (not
@) included in the cliques)

Modeling Divide MRF into cliques. The parameters inside each template are
tied @ (y,,x) --potential functions; functions for the template

1 oon 1 oow
X)=——-¢€ = 0 e ’ ] 9X = (l)(_‘ L’X
PYIN =705 S O(y.x) ZC (¥.X)
.

The cliques contain only unobservables (y); x is an argument to @,
The probability P,,(y|x) is a joint distribution over the unobservables Y

Part 2
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General CRFs: Visualization

@, is typically decomposed into a weighted sum of feature
sensors f;, producing:

Pittsburgh

p(y|x) = leQ(y.x)
‘ 1 Zzﬁ'l fi (¥e. %)
Part 2 oy,x) = Z(DC(YC,X) P(y | X) = z @e=CicF
Modelin cec
g q)c(ywx):z% fi(Ych)

ieF
Back to the chain-CRF!
Cliques can be identified as pairs of adjacent Ys:
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Inference using CRF

1. Introduction
2. CRF Modeling
3. Inference using CRF
General CRF
Inference Chain CRF
4. Training CRF
5. Applications of CRF
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General CRF

Given the observations, and parameters,
we target to find the best state sequence:

y* = argmaxy p(y|x).
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Part = 3 For the general CRF:
Inference y* = argmaxy p(y|x) =
1 20G.®
arg max — e~ =argmax > O_(y..x)
y y ceC

But, exact inference in CRFs is
intractable...
Approximate methods!

MCMC, Belief Propagation

Inference in HMM

Dynamic Programming:
Forward
Backward
Part 3 Viterbi

Univ. of
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Inference
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Chain CRF could be done using dynamic programming
plylz. A) = exp (Y A Fi(y. @)
i

Pittsburgh

Z(z)
Fi(y.2) =Y fi(yi-1,vi,2,0),
i1

Part 3 Define a matrix{ M;(x)|i = 1,...,n + 1} with size|y x Y|
Inference V is a finite label alphabet

M;(y',ylx) = exp (Z Nifily y,@,0)
J
n+1

plyle, ) = T H Mi(yi—1,yilz)

() 15

n+1

Z(x) = [H M;(z)

i=1 :| start,end

Univ. of

T

By defining the following forward and backward
parameters,

ai(a:)T = i_1 (:C)Tﬂ’fi(it:)

Pittsburgh

(vle) 1 ify =start
8] e

Part 3 o 0 otherwise
Inference Z(x) = cqar(i)

Bi(x) = Miy1(x)Bi1(x)

1 if y=stop
0 otherwise

B?H—l (Ulm) - {

Z(x) = Bo(yo)
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The inference of linear-chain CRF is very similar to that
of HMM
We can write the marginal distribution:

Pittsburgh

ai1 (Y |2) Mi(y', ylz)Bi(y|=)
Z(z)

p(Yie1 =9, Y; = yla™ X)) =
Part 3

Solve Chain-CRF using Dynamic Programming
(Similar to Viterbi)!
1. First computing a for all t (forward), then compute (3 for all t
(backward).
2. Return the marginal distributions computed.
3. Run viterbi to find the optimal sequence

Inference
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Training CRF

1. Introduction

2. CRF Modeling

3. Inference using CRF
4. Training CRF

Learning General CRF
Intro to approximate algorithms

5. Applications of CRF
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Parameter learning

Given the training data, {x®,y®@}¥,

we wish to learn parameters of the

model.
Part 4 For chain or tree structured CRFs, they
can be trained by maximum likelihood
The objective function for chain-CRF is
convex(see Lafferty et al(2001) ).
General CRFs are intractable hence
approximation solutions are necessary

Pittsburgh

Learning
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Parameter learning

Conditional log-likelihood for a general CRF:

1 : :
L(A) = Z [l(;gm + Z)\Jﬂ(y“’.m‘“)}
k j

Pittsburgh

AL(A ‘
Part 4 ra;., ) _ Esy x) (Y. X)] =Y Eyyia a) {F.?(Y_mm)}
; :

4

Learning

It is not possible to analytically determine the
parameter values that maximize the log-likelihood
— setting the gradient to zero and solving for A
does not always yield a closed form solution.
(Almost always)
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Parameter learning

This could be done using gradient descent

Pittsburgh

N
Aocmax, L(4;y|x)ecmax, log> p(y|x;4)

i=1
Ay < A+aV,L(AY]X)
Part 4

Learning

Until we reach convergence

|IL(A4, Y [)-L(4;y[¥) <o

Parameter learning

Univ. of
Pittsburgh
2 algorithms based on improved iterative scaling
are used:
Algorithm S
Algorithm T
Improved iterative scaling algorithm updates
Part 4 weights as:

. Ay < A + 84, for appropriately chosen &
Learning
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Parameter learning

For algorithm T, Update &4, for an edge feature f;
is solution of:

Elfi] & Zry POPGIX) + T gic(vi, ¥l %)
D feler ey x)esHer e
i,k
Part 4 Where T(x.y) is the total feature count
T(x,y) = Tix fi(€i ¥lepX) + Tig G (Vi ¥1vp x)
For algorithm S, there is a slack feature s
s(y) =S —X; Xy filewyle, x)
-Xi Xk 9k (Ui,)’hv,u x)

Where S is a constant.

Pittsburgh

Learning

Univ. of

Training ( and Inference): General Case

Pittsburgh

Approximate solution, to get faster inference.

Treat inference as shortest path problem in the network
consisting of paths(with costs)
Max Flow-Min Cut (Ford-Fulkerson, 1956 )

Pseudo-likelihood approximation:

Part 4 Convert a CRF into separate patches; each consists of a hidden
. node and true values of neighbors; Run ML on separate
Learning patches

Efficient but may over-estimate inter-dependencies
Belief propagation
variational inference algorithm

it is a direct generalization of the exact inference algorithms for
linear-chain CRFs

Sampling based method(MCMC)
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Applications of CRF

1. Introduction

2. CRF Modeling

3. Inference using CRF
4. Training CRF
Application 5. Applications of CRF
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Part-of-Speech-Tagging

POS(part of speech) tagging; the
identification of words as nouns, verbs,
adjectives, adverbs, etc.

Pittsburgh

Part 5
Application

UPenn tagging task: 45 tags (syntactic), 1M words training

DT NN NN NN VBZ RB JJ
The asbestos fiber : crocidolite : is unusually resilient

iy PRP  VBZ DT  NNS IN RB JJ NNS
once it enters the lungs ; with even brief exposures

TO PRP VBG NNS WDT VBP gp NNS JJ
to it causing symptoms that show up decades later ;

NNS VED
researchers said
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Part-of-Speech-Tagging

Each word to be labeled with one of 45
syntactic tags.
50%-50% train-test split
Part S Compared HMMs, MEMMs, and CRFs on
Application Penn treebank POS tagging

oov = out-of-vocabulary (not observed in the
training set)

Pittsburgh

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 6.37%  54.61%
CRF | 5.55%  48.05%

Univ. of

Part-of-Speech-Tagging

But...

Add a small set of orthographic features: whether
a spelling begins with a number or upper case
letter, whether it contains a hyphen, and if it

Pittsburgh

Part S contains one of the following suffixes: -ing, -ogy, -
Application ed, -s, -ly, -ion, -tion, -ity, -ies
Transition vkK y; = k and y;,,=k’
Word vk,wy, = kand x;=w

vkwy; = kand x;,=w

wk,wy; =kand x;, ,=w

Vkw,w'y; = k and x;=w and x; ,=w’

wk,w,w'y; = k and x;=w and x;,,=w’
Orthography: Suffix Vs in

{“ing”"ed”"ogy”,"s","ly" "ion”, "tion”,

“ity”, ...} and ¥k y;=k and x; ends with s
Orthography: Punctuation vk y; = k and x; is capitalized

Wk y; = k and x; is hyphenated
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Part-of-Speech-Tagging

Pittsburgh

Part 5
Application 'I’H-O(l(“l error ooV error
HMM | 5.69% 45.99%
MEMM | 637%  54.61%
CRF | 5.55% 48.05%

MEMM®* | 481%  26.99%
CRFT | 427%  23.76%

T Using spelling features

Univ. of

Is HMM(Gen.) better or CRF(Disc.)

If your application gives you good structural
information such that could be easily modeled by
dependent distributions, and could be learnt
tractably, go the generative way!

Ex. Higher-order emissions from individual states

Pittsburgh

Part 5
Appl icati on “unobservables”

“observables”
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Application

Other Applications

Application in computational biology
DNA and protein sequence alignment
Sequence homolog searching in databases
Protein secondary structure prediction
RNA secondary structure analysis

Application in computational linguistics &
computer science

Text and speech processing, including topic
segmentation, part-of-speech (POS) tagging
Information extraction

Syntactic disambiguation

Univ. of
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