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Probabilistic PCA & extensions

Principal Component Analysis

• Used to transform observed data matrix ܆ (ܰ x ݀) into	܇	(ܰ x 
ݍ find the) (ݍ principal components)

– Fairly simple solution:

1. Centralize the ܆
2. Calculate the covariance matrix ۱ of ܆
3. Calculate the eigenvectors of the ۱
4. Select the dimensions that correspond to the ݍ highest 

eigenvalues 

– Big win for linear algebra.
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Limitations of PCA

• PCA is a simple linear algebra transformation, it does not 
produce  a probabilistic model for the observed data.

• A probabilistic model can be very useful

• The variance-covariance matrix needs to be calculated
– Can be very computation-intensive for large datasets with a 

high # of dimensions
• Does not deal properly with missing data

– Incomplete data must either be discarded or imputed using 
ad-hoc methods

• Outlying data observations can unduly affect the analysis

Probabilistic PCA model

• Enables comparison with other probabilistic techniques

• Facilitates statistical testing

• Maximum-likelihood estimates can be computed for elements 
associated with principal components

• Permits the application of Bayesian methods

• Extends the scope of PCA

– Multiple PCA models can be combined as a probabilistic 
mixture

– PCA projections can be obtained when some data values 
are missing

• Can be utilized as a constrained Gaussian density model

– Classification

– Novelty detection
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Latent variable models

• Offer a lower dimensional representation of the data and their 
dependencies 

• Latent variable model: 

– y: observed variables (d-dimensions)

– x: latent variables (q-dimensions)

– q<d

Observed variables (y) d = 7
(data)

Latent variables (x) q = 2
(hidden variables, underlying concepts)

Latent variable models

Observed variables (y) d = 7
(data)

Latent variables (x) q = 2
(hidden variables, underlying concepts)

Note: Observed variables 
become independent
of each other given latent 
factors
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Factor analysis

• Latent variable model with a linear relationship:
y ~ Wx + μ + ε

– ܅ is a ݀ x ݍ matrix that relates observed variables y to the 
latent variables x

– Latent variables: x ~ N(0, I)
– Error (or noise): ε ~ N(0, ψ) – Gaussian noise
– Location term (mean): μ

Then: y ~ N(μ, Cy)
– where Cy=WWT + ψ is the covariance matrix for  observed 

variables y
– the model’s parameters W, μ and ψ can be found using 

maximum likelihood estimate

Probabilistic PCA (PPCA)

• A special case of the factor analysis model
– Noise variances constrained to be equal (ψi=σ2)

y ~ Wx + μ + ε
– Latent variables: x ~ N(0, I)
– Error (or noise): ε ~ N(0, σ2I) (isotropic noise model)
– Location term (mean): μ

– y|x ~ N(WX + μ, σ2I)
– y ~ N(μ, Cy)
– where Cy=WWT + σ2I is the covariance matrix of y

• Normal PCA is a limiting case of probabilistic PCA, taken as the 
limit as the covariance of the noise becomes infinitesimally small 
(ψ =lim σ2 →0 σ2 I)
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Illustration of probabilistic PCA

Observed variables (y) d = 7
(data)

Latent variables (x) q = 2
(hidden variables, underlying concepts) x ~ N(0, I)

Remapping: Wx
(Weight matrix: W)

y = Wx + μ + ε
y ~ N(μ, WWT + σ2I)

+
μ (location parameter)

+
Random error (noise): ε
ε ~ N(0, σ2I)

Parameters of interest: W (weight matrix), σ2 (variance of noise)

PPCA (Maximum likelihood PCA)

• Log-likelihood for the Gaussian noise model:

– ܮ ൌ െே

ଶ
݀	ln 2π ൅ ln Cy ൅ tr Cy

ିଵ܁

Cy=WWT + σ2

• Maximum likelihood estimates for the above:

– μ: mean of the data

– S (sample covariance matrix of the observations Y):

܁ ൌ 	
1
ܰ
෍ ௡܇ െ 	μ ሺ܇௡ െ 	μሻ୘
ே

௡ୀଵ

• MLE’s for W and σ2 can be solved in two ways:

– closed form (Tipping and Bishop)

– EM algorithm (Roweis) Tr(A) = sum of diagonal elements of A
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Probabilistic PCA

The likelihood is maximized when:

୑୐܅ ൌ ௤ሺ܃ Λ௤ െ σଶ۷ሻ
૛

܀	

• For ܅ ൌ ୑୐܅ the maximum ܃௤ is a ݀ x ݍ matrix where the ݍ
column vectors are the principal eigenvectors of ܁.

• Λ௤ is a ݍ x ݍ diagonal matrix with corresponding eigenvalues along 
the diagonal.

• ܀ is an arbitrary ݍ x ݍ orthogonal rotation matrix

• Max likelihood estimate for σଶ is:

σଶ
୑୐

	ൌ 	
1

݀ െ ݍ
	 ෍ λ௝

ௗ

௝ୀ௤ାଵ

• To find the most likely model given ܁, estimate σଶ
୑୐

and then 

୑୐܅ with ܀ ൌ ۷, or you can employ the EM algorithm

Derivation of MLEs
– L = -N/2 {d ln(2π)+ln|Cy|+tr(C-1

yS)}
The 1st derivative of LL w/ respect to W:
– dL/dW =N(C-1SC-1W-C-1W), where W = ULVT =σ2I+WWT

– The stationary points are SC-1W = W.
– Non-trivial case: W ≠ 0, C ≠ S
– SVD: W = ULVT, U: d x q orthonormal vectors, L: q x q matrix of singular values, 

V: q x q orthogonal matrix,
• C-1W = W(σ2I+WTW)-1 = UL(σ2I + L2)-1VT

– At the stationary points:
• SUL(σ2I + L2)VT = ULVT

• SUL = U(σ2I + L2)L
– Column vectors of U, uj, are eigenvectors of S, with eigenvalue λj, such that σ2 + lj

2

= λj

• lj
2 = (λj - σ2) 1/2

– (substitute into SVD) W = Uq (Λ q - σ2I) R
• Uq : d x q with q column eigenvectors uj of S
• Λ j : λ1…λq, (q eigenvalues of uj), or σ2 (corresponding d-q “discarded” rows of 

W)
• R: arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or 

a re-parametrization)
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Derivation of MLEs (cont)

• Substitute above results into the original likelihood  expression

• -L = -N/2{d ln(2π) +∑ln(λj) + ∑λj + (d - q)ln σ2 + q}

• λ1…λq, are q non-zero eigenvalues of uj and λq+1…λd, are zero

• Taking derivative of above with respect to σ2 and solving for zero gives:

σଶ
୑୐

	ൌ 	
1

݀ െ ݍ
	 ෍ λ௝

ௗ

௝ୀ௤ାଵ

Dimensionality Reduction in pPCA

• So, how do we use this to reduce the dimensionality of data?
• Consider the dimensionality reduction process in terms of the 

distribution of latent variables, conditioned on the observation:
ܰ	~	ܡ|ܠ ୘܅ଵିۻ 	ܡ െ μ , σଶିۻଵ , where
ۻ ൌ	܅୘܅൅ σଶ۷, M is a q x q matrix

• This can be summarized by its mean:
௡ܡ|௡ܠ ൌ ୑୐܅ଵିۻ

୘ሺܡ௡ െ μ)
• Intuitively, the optimal reconstruction of ܡ௡ should 

be	܅୑୐ ௡ܡ|௡ܠ ൅ μ.  However, it is not.  For σଶ ൐ 0 it is not an 
orthogonal projection of ܡ௡.

• If we consider the limit as σଶ → 0, the projection ܅୑୐ ௡ܡ|௡ܠ does 
become orthogonal and is equivalent to conventional PCA, but then 
the density model is singular and thus undefined.

• Optimal reconstruction of the observed data may still be obtained 
from conditional latent mean:

• yn = WML(WML
TWML)-1WML

T <xn|yn> + μ



8

Motivation behind using E-M for 
PCA

• Naive PCA and MLE PCA computation-heavy for high 
dimensional data or large data sets

• PCA does not deal properly with missing data

– E-M algorithm estimates ML values of missing data at each 
iteration

• Naïve PCA uses simplistic way (distance2 from observed data) 
to access covariance

– Sensible PCA (SPCA) defines a proper covariance 
structure whose parameters can be estimated through the E-
M algorithm

E-M algorithm (review)

• Iterative process to estimate parameters consisting of two steps 
for each iteration
– Expectation (data step): complete all hidden and missing 

variables Θ (or latent variables) from current set of 
parameters 

– Maximization (likelihood step): Update set of parameters 
Θ`, using MLE, from complete set of data from previous 
step

• Likelihood obtained from MLEs guaranteed to improve in 
successive iterations

• Continue iterations until negligible improvement is found in 
likelihood
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EM algorithm for normal PCA

• Amounts to an iterative procedure for finding subspace 
spanned by the q leading eigenvectors without computing 
covariance

• E-step: X = (WTW)-1WTY
– Fix subspace and project data, y, into it to give values of 

hidden states x
– Known: Y: d-dimensional observed data
– Unknown (latent): X: q-dimensional unknown states

• M-step: Wnew = YXT(XXT)-1

– Fix values of hidden states and choose subspace orientation 
that minimizes squared reconstruction errors

EM algorithm and missing data

Data with missing obs filled out: x, Complete data (with blanks 
not filled out): y
E-step (fill in missing variables):
• If data point y is complete, then y*=y and x* is found as usual
• If the data point y is not complete, x* and y* are the solution to 

the least squares problem. Compute x by projecting the 
observed data y into the current subspace.
– For each (possibly incomplete) point y, find the unique pair 

of points (x*,y*) that minimize the norm ||Wx*-y*||. 
– Constrain x* to be in the current principal subspace and y*

in the subspace defined by known info about y
• If y can be completely solved in system of equations, set 

corresponding column of X to x* and the corresponding 
column of Y to y*

• Otherwise, QR factorization can be used on a particular 
constraint matrix to find least squares solution
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E-M algorithm and missing data
(E-step)

1 1

1 0.5

2 1

W = Y = 3

1

?

Wx = y 
x1  +       x2  = 3
x1 + 0.5 x2 = 1

2x1 +       x2 = y

X = x1

x2

solve
Y* = 3

1

2

X* = -1

4

Set x = (-1, 4), y = (3, 1, 2), proceed to M-step

If two elements are missing in Y, then we use QR factorization to find 
the pair (x*, y*) with the least squares of the norm ||Wx*-y*||, 
according to the constraints specified in the set of equations Wx = y.

EM for probabilistic PCA
(Sensible PCA - SPCA)

• Probabilistic PCA model:
– Y ~ N(μ, WWT + σ2I)

• Similar to normal PCA model, the differences are:
– We do not take the limit as σ2 approaches 0
– During EM iterations, data can be directly generated from the SPCA 

model, and the likelihood estimated from the test data set
– Likelihood much lower for data far away from the training set, even if 

they are near the principal subspace
• EM algorithm steps implemented as follows:

– E: β = WT(WWT + σ2I)-1, <xn|yn> = β(Y - μ), Σx = nI - nβW + 
<xn|yn><xn|yn>T

• Log-likelihood in terms of weight matrix W, and a centered observed 
data matrix Y- μ, noise covariance σ2I, and conditional latent mean 
<xn|yn>

– M: Wnew = (Y - μ) <xn|yn>T Σx
-1, σ2 new = trace[XXT - W<xn|yn>(Y- μ)T]/n2

• Differentiate LL in terms of W and σ2 and set to zero.
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Advantages of using EM algorithm in 
probabilistic PCA models

• Convergence:
– Tipping and Bishop showed (1997) that the only stable 

local extremum is the global maximum at which the 
true principal subspace is found

• Complexity:
– Methods that explicitly compute the sample covariance 

matrix have complexities O(nd2)
– EM algorithm does not require computation of sample 

covariance matrix, O(dnq)
• Huge advantage when q << d (# of principal 

components is much smaller than original # of variabes)

EM algorithm for PPCA (illustration)

Standard PCA 
(on complete 
data)

Probabilistic PCA 
(using EM 

algorithm) with 20% 
(136) missing 

values

Example: 38 observations (with 18 data points each) 
from Tobamovirus data set (Ripley, 1996)

3 clusters
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Other methods for PCA

• Power iteration methods
– Iteratively update eigenvector estimates through repeated 

multiplication by matrix to be diagonalized
– Extremely inefficient to calculate explicitly (O(nq2))
– E-M algorithm provides efficient way to obtain sample 

covariance matrix, without explicitly calculating it
– Iterative methods to compute SVD are closely related to the 

EM algorithm
• Learning methods for the principal subspace

– Sanger’s and Oja’s rule
– Typically require more iterations and the learning 

parameter to be set by hand

Mixtures of probabilistic PCAs

• A combination of local probabilistic PCA models
• Multiple plots may reveal more complex data structures than a 

PCA projection alone
• Applications:

– Image compression (Dony and Haykin 1995)
– Visualization (Bishop and Tipping, 1998)

• Clustering mechanisms of mixture PPCA:
– Local linear dimensionality reduction
– Semi-parametric density estimation
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Mixtures of probabilistic PCAs

– LL = ∑ ln{p(yn)} = ∑ ln {∑πi p(yn|i)}

• p(y|i) is a single PPCA model and πi is the 
corresponding mixing proportion

• Different mean vectors μi, weighting matrices Wi , and 
noise error parameters σi

2 for each of M probabilistic 
PCA models

– An iterative EM algorithm can be used to solve for 
parameters

– Guaranteed to find a local maximum of the log-likelihood

n=1

N

i=1

M

n=1

N

Information Recovery

• PCA minimizes the sum of squared distances from x to its 
back-projection from the lower dimensional space.

• However,
– This loss function is not a good fit when the data are not 

real-valued
– Using standard PCA will do a bad job reconstructing 

these types of data
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PCA’s weakness

• PCA assumes a Gaussian distribution for the random variable 
x

PCA’s weakness

• Gaussian noise is added to the samples from the Gaussian 
distribution.
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PCA’s weakness

• For real-valued data this is not a problem in general.

PCA’s weakness

• The loss function is appropriately measured in both directions
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PCA’s weakness

• What if the noise is known to be all positive?

The 
standard 
PCA model 
is wrong!

Which loss function to use?

• Maybe a different loss function is better, but which?
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Exponential PCA

• General idea:

– Extend PCA to include the entire family of exponential 
family distributions. 

– The unique properties of the modelling distribution for 
features determines the loss function for that data 
component automatically.

– There’s a trick which allows easy optimization of the loss 
function.

Exponential Family Distributions

• Exponential Family distributions can be rewritten as:

• X is your data in the high-dimensional space

• Θ is the natural (or canonical) parameterization of the 
distribution

• P0(x) is a constant (not dependent on Θ)

• G(Θ) is the partition function (assures a valid distribution)

)(
0 )()|(  GxexPxP
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Exponential Family Distributions

• Gaussian (unit variance)

• General form:

2
2

2

2

2
2)(

22

1
)|(
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





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

x

x

e
e

exP

x

 GxexPxP )()|( 0

Θ = μ

G(Θ) = μ2/2

Exponential Family Distributions

• Bernoulli

• General Form:
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Exponential Family Distributions

• Basic idea: With manipulation, you only need P0(x), Θ and 
G(Θ) to define an exponential distribution.

• Now take the log of P(x| Θ):

• G(Θ) is the cummulant function of P(x| Θ)

• This means that    G(Θ) is the expected value of x.

)())(log()|(log 0  GxxPxP

 GxexPxP )()|( 0

∆

So what?

• For any model Θ, we can find the expectation of the data x 
given Θ.

• We compare the expectation to the observed data to measure 
how much our model is losing in the representation.

• In this way, G(Θ) can be seen as a sort of information loss 
function.
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Optimization

• If we want a better model, we need the information loss from 
that model to be lower.

• It would be cool if we could maximize  log(p(x| Θ)), since it 
gets penalized for loss.

• Turns out that a dual problem exists for optimizing the 
loglikelihood.

Bregman Divergence
• Your model: p (a set of parameters)

• You want to know: is q (a set of parameters for a similar 
model) a better fitting model?

• Assume a convex differentiable projection function F defined 
on a convex space  projects to a convex space

• Bregman divergence:

• the difference between the value of F at point p and the value 
of the first-order Taylor expansion of F around point q
evaluated at point p

Strategy: the distance in the new convex space represents the 
loss. Optimizing the distance results in better estimates of 
expectation parameters for the model.
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Bregman Divergence

• The function F is derived from G(Θ) as a dual problem (Azoury & 
Warmuth, 2001):

• The dual creates a “link” function g which maps between natural 
and expectation parameter space

Derivatives: 

)()(

)()())((




Gg

gGgF

)(')(

)()( 1

xFxf

xgxf


 

Bregman Divergence

F(Θ)

Θ

F is guaranteed 
to be convex 
due to its 
construction 
from a G 
function in the 
exponential 
family.
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Bregman Divergence

F(Θ)

Θq p

F(p)
p is our current 
set of natural 
parameters.

Bregman Divergence

F(Θ)

Θq p

F(p)

F(q)

We determine a 
new set of 
natural 
parameters q. 
and project it 
onto the convex 
hull.
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Bregman Divergence

F(Θ)

Θq p

F(p)

F(q)

The slope of F 
at F(q) is 
measured.

Bregman Divergence

)()(')()( qpqFqFpFBF 

F(Θ)

Θq p

F(p)

F(q) )()(' qpqF 

The Bregman
distance BF is 
higher if q is at a 
more convex point 
than p. 

The bigger the 
distance, the better 
q is at providing an 
expectation closer 
to the data x.
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Bregman Divergence

• For exponential family the function F is derived from G(Θ) as a dual 
problem (Azoury & Warmuth, 2001):

• The dual creates a “link” function g which maps between natural 
and expectation parameter space

Derivatives: 

)()(

)()())((




Gg

gGgF

)(')(

)()( 1

xFxf

xgxf


 

Bregman Divergence & Loglikelihood

• For the exponential family of distributions, the loglikelihood
of data given model is related to a Bregman Divergence.

– The divergence depends on which type of exponential 
family distribution you pick

– Different well-known divergences are obtainable with 
popular choices for G(Θ)



25

How can it be?!

• The loglikelihood of the data given model can be rewritten as 
follows:

))(||()())(log(

))(())(())(()()())(log(

))(())](([))(()]()([))(log(

))(())](([))(())(log(

))(())(())(log(

)())(())(log(

))](()([))(log(

)())(log()|(log

0

0

1
0

1
0

0

0

0

0

















gxBxFxP

gxgfgFxFxFxP

gxgggFxFxFxP

gxgggFxP

gxgFxP

gxgFxP

gFgxxP

GxxPxP

F

Optimization

• Good news: Loglikelihood can be rewritten in terms of a 
Bregman divergence

• Optimizing negative loglikelihood is commonly done in EM

• Only the Bregman divergence term depends on Θ, the rest can 
be ignored.

))(||()())(log()|(log( 0  gxBxFxPxP F
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Exponential PCA

• Problem: Find Θ’s which come close to the observed data 
points x. (Minimize loss)

• Express the Θ’s in a lower dimensionality

• Solution: Find a basis with L principal axes, represent the Θ’s 
as a linear combination of these axes which most closely 
approximate x.

Generalized Exponential PCA

• Natural parameters:

• Finally, some dimensions

– A is n * L

• (rows of A represent the lower dimensionality representation 
of a data point)

– V is L*d

• (rows of V represent the principal axes of the model’s 
projection basis)

– Your data X is n*d

AV
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Generalized Exponential PCA

• Optimize the negative loglikelihood of a model given the data

– This is equivalent to maximizing a series of Bregman divergences 
over the individual components of data.

– Changing the distribution which models the loglikelihood….
• Changes the function G(Θ), which
• Changes the expectation parameters of the model, which
• Changes the Bregman divergence which was derived from 

G(Θ), which means
• The loss function for the data is different (the Bregman

distance between x and the expectation parameters g(Θ) )

AV
))(||()())(log()|(log( 0  gxBxFxPxP F

Example
• Lets choose the Normal distribution

– For a normal distribution, G(Θ) = Θ2/2

– Therefore, 

• g(Θ) = G’(Θ) = Θ ;    g-1(x)=f(x)= x;    F(x) = x2/2

– Compute the Bregman divergence between x and g(Θ):

2
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22
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BF(x||g(Θ)) ends up being Euclidean distance!
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Example

• We want to optimize                to fit the loss function.

• Algorithm:

– Initialize A, V =0

– For data = 1:n

• For c = 1:L

– Initialize Vc randomly

– Until convergence,

For i = 1:n, 

For j = 1:d,

AV


j

cjijFaic avgxBa ))(||(minargˆ


i

icijFvcj vagxBv ))ˆ(||(minargˆ

Summary:

• Use the generative model of PCA

• Extend PCA to use any partition function G(Θ)

• Convert the negative loglikelihood into a Bregman divergence

• Optimize the negative loglikelihood using an alternating 
update procedure over the natural parameters.


