CS 3750 Machine Learning

Probabilistic PCA & extensions

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 3750 Advanced Machine Learning

Principal Component Analysis

- Used to transform observed data matrix \mathbf{X} ($N \times d$) into \mathbf{Y} ($N \times q$) (find the q principal components)
 - Fairly simple solution:
 - 1. Centralize the **X**
 - 2. Calculate the covariance matrix **C** of **X**
 - 3. Calculate the eigenvectors of the **C**
 - 4. Select the dimensions that correspond to the *q* highest eigenvalues
 - Big win for linear algebra.

Limitations of PCA

- PCA is a simple linear algebra transformation, it does not produce a probabilistic model for the observed data.
 - A probabilistic model can be very useful
- The variance-covariance matrix needs to be calculated
 - Can be very computation-intensive for large datasets with a high # of dimensions
- Does not deal properly with missing data
 - Incomplete data must either be discarded or imputed using ad-hoc methods
- Outlying data observations can unduly affect the analysis

Probabilistic PCA model

- Enables comparison with other probabilistic techniques
- Facilitates statistical testing
- Maximum-likelihood estimates can be computed for elements associated with principal components
- Permits the application of Bayesian methods
- Extends the scope of PCA
 - Multiple PCA models can be combined as a probabilistic mixture
 - PCA projections can be obtained when some data values are missing
- Can be utilized as a constrained Gaussian density model
 - Classification
 - Novelty detection

Latent variable models

- Offer a lower dimensional representation of the data and their dependencies
- Latent variable model:
 - y: observed variables (d-dimensions)
 - -x: latent variables (q-dimensions)
 - − q<d

Latent variable models

Latent variables (x) q = 2 (hidden variables, underlying concepts)

Note: Observed variables become independent of each other given latent factors

Observed variables (y) d = 7 (data)

Factor analysis

• Latent variable model with a linear relationship:

$$y \sim Wx + \mu + \varepsilon$$

- \mathbf{W} is a $d \times q$ matrix that relates observed variables \mathbf{y} to the latent variables \mathbf{x}
- Latent variables: $x \sim N(0, I)$
- Error (or noise): $\varepsilon \sim N(0, \psi)$ Gaussian noise
- Location term (mean): μ

Then: $y \sim N(\mu, C_{\nu})$

- where $C_y = WW^T + \psi$ is the covariance matrix for observed variables v
- the model's parameters W, μ and ψ can be found using maximum likelihood estimate

Probabilistic PCA (PPCA)

- A special case of the factor analysis model
 - Noise variances constrained to be equal $(\psi_i = \sigma^2)$

$$v \sim Wx + \mu + \varepsilon$$

- Latent variables: $x \sim N(0, I)$
- Error (or noise): $\varepsilon \sim N(0, \sigma^2 I)$ (isotropic noise model)
- Location term (mean): *μ*
- $-y|x \sim N(WX + \mu, \sigma^2 I)$
- $-y \sim N(\mu, C_y)$
- where $C_v = WW^T + \sigma^2 I$ is the covariance matrix of y
- Normal PCA is a limiting case of probabilistic PCA, taken as the limit as the covariance of the noise becomes infinitesimally small $(\psi = \lim_{\sigma^2 \to \theta} \sigma^2 I)$

Illustration of probabilistic PCA

Latent variables (x) q = 2 (hidden variables, underlying concepts)

Observed variables (y) d = 7 (data)

Remapping: Wx (Weight matrix: W)

μ (location parameter)

Random error (noise): $\varepsilon \sim N(0, \sigma^2 I)$

$$y = Wx + \mu + \varepsilon$$
$$y \sim N(\mu, WW^T + \sigma^2 I)$$

Parameters of interest: W (weight matrix), σ^2 (variance of noise)

PPCA (Maximum likelihood PCA)

- Log-likelihood for the Gaussian noise model:
 - $-L = -\frac{N}{2} \left\{ d \ln(2\pi) + \ln|C_y| + \operatorname{tr}(C_y^{-1}\mathbf{S}) \right\}$ $C_y = WW^T + \sigma^2$
- Maximum likelihood estimates for the above:
 - $-\mu$: mean of the data
 - -S (sample covariance matrix of the observations Y):

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{Y}_n - \boldsymbol{\mu}) (\mathbf{Y}_n - \boldsymbol{\mu})^{\mathrm{T}}$$

- MLE's for W and σ^2 can be solved in two ways:
 - closed form (Tipping and Bishop)
 - EM algorithm (Roweis)

Tr(A) = sum of diagonal elements of A

Probabilistic PCA

The likelihood is maximized when:

$$\mathbf{W}_{\mathrm{ML}} = \mathbf{U}_{q} (\sqrt[2]{\Lambda_{q} - \sigma^{2} \mathbf{I}}) \mathbf{R}$$

- For $\mathbf{W} = \mathbf{W}_{ML}$ the maximum \mathbf{U}_q is a $d \times q$ matrix where the qcolumn vectors are the principal eigenvectors of S.
- Λ_q is a $q \times q$ diagonal matrix with corresponding eigenvalues along the diagonal.
- **R** is an arbitrary $q \times q$ orthogonal rotation matrix
- Max likelihood estimate for σ^2 is:

$$\sigma^2_{\rm ML} = \frac{1}{d-q} \sum_{j=q+1}^d \lambda_j$$

To find the most likely model given **S**, estimate σ^2 _{ML} and then \mathbf{W}_{ML} with $\mathbf{R} = \mathbf{I}$, or you can employ the EM algorithm

Derivation of MLEs

 $- L = -N/2 \{ d \ln(2\pi) + \ln|\mathbf{C}_{v}| + \text{tr}(\mathbf{C}^{-1}_{v}\mathbf{S}) \}$

The 1st derivative of LL w/ respect to W:

- $dL/dW = N(C^{-1}SC^{-1}W C^{-1}W)$, where $W = ULV^{T} = \sigma^{2}I + WW^{T}$
- The stationary points are $SC^{-1}W = W$.
- Non-trivial case: $W \neq 0$, $C \neq S$
- SVD: $W = ULV^T$, $U: d \times q$ orthonormal vectors, $L: q \times q$ matrix of singular values, $V: q \times q$ orthogonal matrix,
 - $C^{-1}W = W(\sigma^2 I + W^T W)^{-1} = UL(\sigma^2 I + L^2)^{-1}V^T$
- At the stationary points:
 - $SUL(\sigma^2I + L^2)V^T = ULV^T$
 - $SUL = U(\sigma^2 I + L^2)L$
- Column vectors of U, u_i , are eigenvectors of S, with eigenvalue λ_i , such that $\sigma^2 + l_i^2$ $= \lambda_j$ • $l_i^2 = (\lambda_j - \sigma^2)^{1/2}$
- (substitute into SVD) $W = U_a (\Lambda_a \sigma^2 I) R$
 - U_q : $d \times q$ with q column eigenvectors u_j of S
 - A_j : $\lambda_1...\lambda_q$, (q eigenvalues of u_j), or σ^2 (corresponding d-q "discarded" rows of W)
 - **R**: arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a re-parametrization)

Derivation of MLEs (cont)

- Substitute above results into the original likelihood expression
- $-L = -N/2 \left\{ d \ln(2\pi) + \sum \ln(\lambda_i) + \sum \lambda_i + (d q) \ln \sigma^2 + q \right\}$
 - $\lambda_1...\lambda_q$, are q non-zero eigenvalues of u_i and $\lambda_{q+1}...\lambda_d$, are zero
- Taking derivative of above with respect to σ^2 and solving for zero gives:

$$\sigma^2_{\text{ML}} = \frac{1}{d-q} \sum_{j=q+1}^d \lambda_j$$

Dimensionality Reduction in pPCA

- So, how do we use this to reduce the dimensionality of data?
- Consider the dimensionality reduction process in terms of the distribution of latent variables, conditioned on the observation:

$$\mathbf{x}|\mathbf{y} \sim N(\mathbf{M}^{-1}\mathbf{W}^{\mathrm{T}}(\mathbf{y} - \boldsymbol{\mu}), \sigma^2 \mathbf{M}^{-1})$$
, where $\mathbf{M} = \mathbf{W}^{\mathrm{T}}\mathbf{W} + \sigma^2 \mathbf{I}$, \mathbf{M} is a $q \times q$ matrix

This can be summarized by its mean:

$$\langle \mathbf{x}_n | \mathbf{y}_n \rangle = \mathbf{M}^{-1} \mathbf{W}_{\mathrm{ML}}^{\mathrm{T}} (\mathbf{y}_n - \boldsymbol{\mu})$$

- Intuitively, the optimal reconstruction of \mathbf{y}_n should be $\mathbf{W}_{\mathrm{ML}}\langle \mathbf{x}_n | \mathbf{y}_n \rangle + \boldsymbol{\mu}$. However, it is not. For $\sigma^2 > 0$ it is not an orthogonal projection of \mathbf{y}_n . If we consider the limit as $\sigma^2 \to 0$, the projection $\mathbf{W}_{\mathrm{ML}}\langle \mathbf{x}_n | \mathbf{y}_n \rangle$ does become orthogonal and is equivalent to conventional PCA, but then
- the density model is singular and thus undefined.
- Optimal reconstruction of the observed data may still be obtained from conditional latent mean:

 $\mathbf{y_n} = \mathbf{W_{ML}}(\mathbf{W_{ML}}^T\mathbf{W_{ML}})^{-1}\mathbf{W_{ML}}^T < \mathbf{x_n}|\mathbf{y_n} > + \boldsymbol{\mu}$

•
$$\mathbf{y}_{n} = \mathbf{W}_{ML}(\mathbf{W}_{ML}^{T}\mathbf{W}_{ML})^{-1}\mathbf{W}_{ML}^{T} < \mathbf{x}_{n}|\mathbf{y}_{n}> + \mu$$

Motivation behind using E-M for PCA

- Naive PCA and MLE PCA computation-heavy for high dimensional data or large data sets
- PCA does not deal properly with missing data
 - E-M algorithm estimates ML values of missing data at each iteration
- Naïve PCA uses simplistic way (distance² from observed data) to access covariance
 - Sensible PCA (SPCA) defines a proper covariance structure whose parameters can be estimated through the E-M algorithm

E-M algorithm (review)

- Iterative process to estimate parameters consisting of two steps for each iteration
 - Expectation (data step): complete all hidden and missing variables Θ (or latent variables) from current set of parameters Θ
 - Maximization (likelihood step): Update set of parameters
 Θ`, using MLE, from complete set of data from previous step
- Likelihood obtained from MLEs guaranteed to improve in successive iterations
- Continue iterations until negligible improvement is found in likelihood

EM algorithm for normal PCA

- Amounts to an iterative procedure for finding subspace spanned by the q leading eigenvectors without computing covariance
- E-step: $X = (W^T W)^{-1} W^T Y$
 - Fix subspace and project data, y, into it to give values of hidden states x
 - Known: Y: d-dimensional observed data
 - Unknown (latent): X: q-dimensional unknown states
- M-step: $W_{new} = YX^T(XX^T)^{-1}$
 - Fix values of hidden states and choose subspace orientation that minimizes squared reconstruction errors

EM algorithm and missing data

Data with missing obs filled out: x, Complete data (with blanks not filled out): y

E-step (fill in missing variables):

- If data point v is complete, then $v^*=v$ and x^* is found as usual
- If the data point y is not complete, x* and y* are the solution to the least squares problem. Compute x by projecting the observed data y into the current subspace.
 - For each (possibly incomplete) point y, find the unique pair of points (x^*,y^*) that minimize the norm $||Wx^*-y^*||$.
 - Constrain x* to be in the current principal subspace and y* in the subspace defined by known info about y
 - If y can be completely solved in system of equations, set corresponding column of X to x^* and the corresponding column of Y to y^*
 - Otherwise, QR factorization can be used on a particular constraint matrix to find least squares solution

E-M algorithm and missing data (E-step)

$$\boldsymbol{W} = \begin{pmatrix} 1 & 1 \\ 1 & 0.5 \\ 2 & 1 \end{pmatrix} \quad \boldsymbol{X} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad \boldsymbol{Y} = \begin{pmatrix} 3 \\ 1 \\ ? \end{pmatrix}$$

Set
$$x = (-1, 4)$$
, $y = (3, 1, 2)$, proceed to M-step

If two elements are missing in Y, then we use QR factorization to find the pair (x^*, y^*) with the least squares of the norm $||Wx^*-y^*||$, according to the constraints specified in the set of equations Wx = y.

EM for probabilistic PCA (Sensible PCA - SPCA)

- Probabilistic PCA model:
 - $Y \sim N(\mu, WW^T + \sigma^2 I)$
 - Similar to normal PCA model, the differences are:
 - We do not take the limit as σ^2 approaches 0
 - During EM iterations, data can be directly generated from the SPCA model, and the likelihood estimated from the test data set
 - Likelihood much lower for data far away from the training set, even if they are near the principal subspace
- EM algorithm steps implemented as follows:
 - E: $\boldsymbol{\beta} = \boldsymbol{W}^T (\boldsymbol{W} \boldsymbol{W}^T + \sigma^2 \boldsymbol{I})^{-1}, \langle \mathbf{x}_n | \mathbf{y}_n \rangle = \boldsymbol{\beta} (\boldsymbol{Y} \mu), \ \boldsymbol{\Sigma}_x = n \boldsymbol{I} n \boldsymbol{\beta} \boldsymbol{W} + \langle \mathbf{x}_n | \mathbf{y}_n \rangle \langle \mathbf{x}_n | \mathbf{y}_n \rangle^T$
 - Log-likelihood in terms of weight matrix W, and a *centered* observed data matrix Y- μ , noise covariance $\sigma^2 I$, and conditional latent mean $\langle x_n | y_n \rangle$
 - M: $\mathbf{W}^{new} = (\mathbf{Y} \mu) < \mathbf{x}_n | \mathbf{y}_n >^T \Sigma_x^{-1}, \sigma^{2new} = trace[\mathbf{X}\mathbf{X}^T \mathbf{W} < \mathbf{x}_n | \mathbf{y}_n > (\mathbf{Y} \mu)^T]/n^2$
 - Differentiate LL in terms of W and σ^2 and set to zero.

Advantages of using EM algorithm in probabilistic PCA models

- Convergence:
 - Tipping and Bishop showed (1997) that the only stable local extremum is the *global maximum* at which the true principal subspace is found
- Complexity:
 - Methods that explicitly compute the sample covariance matrix have complexities $O(nd^2)$
 - EM algorithm does not require computation of sample covariance matrix, O(dnq)
 - Huge advantage when q << d (# of principal components is much smaller than original # of variabes)

Other methods for PCA

- Power iteration methods
 - Iteratively update eigenvector estimates through repeated multiplication by matrix to be diagonalized
 - Extremely inefficient to calculate explicitly $(O(nq^2))$
 - E-M algorithm provides efficient way to obtain sample covariance matrix, without explicitly calculating it
 - Iterative methods to compute SVD are closely related to the EM algorithm
- Learning methods for the principal subspace
 - Sanger's and Oja's rule
 - Typically require more iterations and the learning parameter to be set by hand

Mixtures of probabilistic PCAs

- A combination of local probabilistic PCA models
- Multiple plots may reveal more complex data structures than a PCA projection alone
- Applications:
 - Image compression (Dony and Haykin 1995)
 - Visualization (Bishop and Tipping, 1998)
- Clustering mechanisms of mixture PPCA:
 - Local linear dimensionality reduction
 - Semi-parametric density estimation

Mixtures of probabilistic PCAs

- LL =
$$\sum_{n=1}^{N} ln\{p(y_n)\} = \sum_{n=1}^{N} ln\{\sum_{i=1}^{M} \pi_i p(y_n|i)\}$$

- p(y|i) is a single PPCA model and π_i is the corresponding mixing proportion
- Different mean vectors μ_i , weighting matrices W_i , and noise error parameters σ_i^2 for each of M probabilistic PCA models
- An iterative EM algorithm can be used to solve for parameters
- Guaranteed to find a *local* maximum of the log-likelihood

Information Recovery

- PCA minimizes the sum of squared distances from x to its back-projection from the lower dimensional space.
- However,
 - This loss function is not a good fit when the data are not real-valued
 - Using standard PCA will do a bad job reconstructing these types of data

PCA's weakness

• PCA assumes a Gaussian distribution for the random variable x

PCA's weakness

• Gaussian noise is added to the samples from the Gaussian distribution.

PCA's weakness

• For real-valued data this is not a problem in general.

PCA's weakness

• The loss function is appropriately measured in both directions

PCA's weakness

• What if the noise is known to be all positive?

Which loss function to use?

• Maybe a different loss function is better, but which?

Exponential PCA

General idea:

- Extend PCA to include the entire family of exponential family distributions.
- The unique properties of the modelling distribution for features determines the loss function for that data component automatically.
- There's a trick which allows easy optimization of the loss function.

Exponential Family Distributions

• Exponential Family distributions can be rewritten as:

$$P(x \mid \Theta) = P_0(x)e^{x\Theta - G(\Theta)}$$

- X is your data in the high-dimensional space
- Θ is the natural (or canonical) parameterization of the distribution
- $P_0(x)$ is a constant (not dependent on Θ)
- $G(\Theta)$ is the partition function (assures a valid distribution)

Exponential Family Distributions

• Gaussian (unit variance)

$$P(x \mid \mu) = \frac{1}{\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2}} = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}} e^{x\mu - \frac{\mu^2}{2}}$$

General form:

$$P(x \mid \Theta) = P_0(x)e^{x\Theta - G\Theta}$$

 $G(\Theta) = \mu^2/2$

Exponential Family Distributions

Bernoulli

$$P(x \mid \Theta) = \pi^{x} (1 - \pi)^{(1-x)} = 1e^{x \log\left(\frac{\pi}{1-\pi}\right) - \log\left(1 + e^{\log\left(\frac{\pi}{1-\pi}\right)}\right)}$$
• General Form:
$$P(x \mid \Theta) = P_{0}(x)e^{x\Theta - G\Theta}$$

$$P(x \mid \Theta) = P_0(x)e^{x\Theta - G\Theta}$$

$$\Theta = \log \left(\frac{\pi}{1 - \pi} \right)$$

$$G(\Theta) = \log \left(1 + e^{\log \left(\frac{\pi}{1 - \pi} \right)} \right)$$

Exponential Family Distributions

- Basic idea: With manipulation, you only need $P_0(x)$, Θ and $G(\Theta)$ to define an exponential distribution.
- Now take the log of $P(x|\Theta)$:

$$P(x \mid \Theta) = P_0(x)e^{x\Theta - G\Theta}$$

$$\log P(x \mid \Theta) = \log(P_0(x)) + x\Theta - G(\Theta)$$

- $G(\Theta)$ is the cumulant function of $P(x|\Theta)$
- This means that $\nabla G(\Theta)$ is the expected value of x.

So what?

- For any model Θ , we can find the expectation of the data x given Θ .
- We compare the expectation to the observed data to measure how much our model is losing in the representation.
- In this way, $G(\Theta)$ can be seen as a sort of information loss function.

Optimization

- If we want a better model, we need the information loss from that model to be lower.
- It would be cool if we could maximize $log(p(x|\Theta))$, since it gets penalized for loss.
- Turns out that a dual problem exists for optimizing the loglikelihood.

Bregman Divergence

- Your model: *p* (a set of parameters)
- You want to know: is *q* (a set of parameters for a similar model) a better fitting model?
- Assume a convex differentiable projection function F defined on a convex space → projects to a convex space
- Bregman divergence:

$$D_F^q(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle.$$

• the difference between the value of F at point p and the value of the first-order Taylor expansion of F around point q evaluated at point p

Strategy: the distance in the new convex space represents the loss. Optimizing the distance results in better estimates of expectation parameters for the model.

Bregman Divergence

• The function F is derived from $G(\Theta)$ as a dual problem (Azoury & Warmuth, 2001):

$$F(g(\Theta)) + G(\Theta) = g(\Theta)\Theta$$
$$g(\Theta) = \nabla_{\Theta}G(\Theta)$$

• The dual creates a "link" function *g* which maps between natural and expectation parameter space

Derivatives:

$$f(x) = g^{-1}(x)$$

$$f(x) = F'(x)$$

Bregman Divergence $D_F^a(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle.$ F(0) F(p) arameters.

Bregman Divergence

$$D_F^q(p,q) = F(p) - F(q) - \langle \nabla F(q), p - q \rangle.$$

F(Θ)

The slope of F at F(q) is measured.

Bregman Divergence

$$D^q_F(p,q) = F(p) - F(q) - \langle \nabla F(q), p-q \rangle.$$

F(Θ)

The Bregman distance B_F is higher if q is at a more convex point than p.

The bigger the distance, the better q is at providing an expectation closer to the data x.

Bregman Divergence

• For exponential family the function F is derived from $G(\Theta)$ as a dual problem (Azoury & Warmuth, 2001):

$$F(g(\Theta)) + G(\Theta) = g(\Theta)\Theta$$
$$g(\Theta) = \nabla_{\Theta}G(\Theta)$$

• The dual creates a "link" function *g* which maps between natural and expectation parameter space

Derivatives:

$$f(x) = g^{-1}(x)$$

$$f(x) = F'(x)$$

Bregman Divergence & Loglikelihood

- For the exponential family of distributions, the loglikelihood of data given model is related to a Bregman Divergence.
 - The divergence depends on which type of exponential family distribution you pick
 - Different well-known divergences are obtainable with popular choices for $G(\Theta)$

How can it be?!

• The loglikelihood of the data given model can be rewritten as follows:

$$\begin{split} &-\log P(x \mid \Theta) = -\log(P_0(x)) - x\Theta + G(\Theta) \\ &= -\log(P_0(x)) - x\Theta + [g(\Theta)\Theta - F(g(\Theta))] \\ &= -\log(P_0(x)) - F(g(\Theta)) - x\Theta + g(\Theta)\Theta \\ &= -\log(P_0(x)) - F(g(\Theta)) - \Theta \cdot (x - g(\Theta)) \\ &= -\log(P_0(x)) - F(g(\Theta)) - [g^{-1}(g(\Theta))] \cdot (x - g(\Theta)) \\ &= -\log(P_0(x)) + [F(x) - F(x)] - F(g(\Theta)) - [g^{-1}(g(\Theta))] \cdot (x - g(\Theta)) \\ &= -\log(P_0(x)) - F(x) + F(x) - F(g(\Theta)) - f(g(\Theta)) \cdot (x - g(\Theta)) \\ &= -\log(P_0(x)) - F(x) + B_F(x \parallel g(\Theta)) \end{split}$$

Optimization

- Good news: Loglikelihood can be rewritten in terms of a Bregman divergence
- $-\log(P(x \mid \Theta) = -\log(P_0(x)) F(x) + B_F(x \mid g(\Theta))$
- Optimizing negative loglikelihood is commonly done in EM
- Only the Bregman divergence term depends on Θ , the rest can be ignored.

Exponential PCA

- **Problem:** Find Θ 's which come close to the observed data points x. (Minimize loss)
- Express the Θ 's in a lower dimensionality
- **Solution:** Find a basis with L principal axes, represent the Θ 's as a linear combination of these axes which most closely approximate x.

Generalized Exponential PCA

• Natural parameters:

$$\Theta = AV$$

- Finally, some dimensions
 - A is n * L
 - (rows of A represent the lower dimensionality representation of a data point)
 - V is L*d
 - (rows of V represent the principal axes of the model's projection basis)
 - Your data X is n*d

Generalized Exponential PCA

• Optimize the negative loglikelihood of a model given the data

$$-\log(P(x \mid \Theta) = -\log(P_0(x)) - F(x) + B_F(x \parallel g(\Theta))$$

$$\Theta = AV$$

- This is equivalent to maximizing a series of Bregman divergences over the individual components of data.
- Changing the distribution which models the loglikelihood....
 - Changes the function $G(\Theta)$, which
 - Changes the expectation parameters of the model, which
 - Changes the Bregman divergence which was derived from $G(\Theta)$, which means
 - The loss function for the data is different (the Bregman distance between x and the expectation parameters $g(\Theta)$)

Example

- Lets choose the Normal distribution
 - For a normal distribution, $G(\Theta) = \Theta^2/2$
 - Therefore,

•
$$g(\Theta) = G'(\Theta) = \Theta$$
; $g^{-1}(x) = f(x) = x$; $F(x) = x^2/2$

– Compute the Bregman divergence between x and $g(\Theta)$:

$$\begin{split} &B_F(p \parallel q) = F(p) - F(q) - f(q) \cdot (p - q) \\ &= F(x) - F(g(\Theta)) - f(g(\Theta)) \cdot (x - g(\Theta)) \\ &= \frac{x^2}{2} - \frac{\Theta^2}{2} - \Theta \cdot (x - \Theta) \\ &= \frac{1}{2} x^2 - \frac{2}{2} \Theta x + \frac{1}{2} \Theta^2 \\ &= \frac{1}{2} (x - \Theta)^2 \qquad \qquad \mathsf{B}_{\mathsf{F}}(\mathsf{X} || \mathsf{g}(\Theta)) \text{ ends up being Euclidean distance!} \end{split}$$

Example

- We want to optimize $\Theta = AV$ to fit the loss function.
- Algorithm:
 - Initialize A, V = 0
 - For data = 1:n
 - For c = 1:L
 - Initialize V_c randomly
 - Until convergence,

$$\hat{a}_{ic} = \arg\min_{a \in \Re} \sum_{j} B_F(x_{ij} \parallel g(av_{cj}))$$
 For $j = 1:d$,
$$\hat{v}_{cj} = \arg\min_{v \in \Re} \sum_{i} B_F(x_{ij} \parallel g(\hat{a}_{ic}v))$$

Summary:

- Use the generative model of PCA
- Extend PCA to use any partition function $G(\Theta)$
- Convert the negative loglikelihood into a Bregman divergence
- Optimize the negative loglikelihood using an alternating update procedure over the natural parameters.