## Probabilistic PCA \& extensions

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

## Principal Component Analysis

- Used to transform observed data matrix $\mathbf{X}(N \mathrm{x} d)$ into $\mathbf{Y}(N \mathrm{x}$ $q$ ) (find the $q$ principal components)
- Fairly simple solution:

1. Centralize the $\mathbf{X}$
2. Calculate the covariance matrix $\mathbf{C}$ of $\mathbf{X}$
3. Calculate the eigenvectors of the $\mathbf{C}$
4. Select the dimensions that correspond to the $q$ highest eigenvalues

- Big win for linear algebra.


## Limitations of PCA

- PCA is a simple linear algebra transformation, it does not produce a probabilistic model for the observed data.
- A probabilistic model can be very useful
- The variance-covariance matrix needs to be calculated
- Can be very computation-intensive for large datasets with a high \# of dimensions
- Does not deal properly with missing data
- Incomplete data must either be discarded or imputed using ad-hoc methods
- Outlying data observations can unduly affect the analysis


## Probabilistic PCA model

- Enables comparison with other probabilistic techniques
- Facilitates statistical testing
- Maximum-likelihood estimates can be computed for elements associated with principal components
- Permits the application of Bayesian methods
- Extends the scope of PCA
- Multiple PCA models can be combined as a probabilistic mixture
- PCA projections can be obtained when some data values are missing
- Can be utilized as a constrained Gaussian density model
- Classification
- Novelty detection


## Latent variable models

- Offer a lower dimensional representation of the data and their dependencies
- Latent variable model:
$-\boldsymbol{y}$ : observed variables ( $d$-dimensions)
- $\boldsymbol{x}$ : latent variables ( $q$-dimensions)
- $q<d$

Latent variables ( $\mathbf{x}$ ) $\mathbf{q}=\mathbf{2}$
(hidden variables, underlying concepts)

Observed variables (y) d=7
 (data)

## Latent variable models

Latent variables ( $\mathbf{x}$ ) $\mathbf{q}=\mathbf{2}$
(hidden variables, underlying concepts)


Note: Observed variables become independent of each other given latent factors

Observed variables ( $\mathbf{y}$ ) $\mathbf{d}=7$
(data)

## Factor analysis

- Latent variable model with a linear relationship:

$$
y \sim W x+\mu+\varepsilon
$$

- $\mathbf{W}$ is a $d \times q$ matrix that relates observed variables $\boldsymbol{y}$ to the latent variables $\boldsymbol{x}$
- Latent variables: $\boldsymbol{x} \sim \boldsymbol{N}(\mathbf{0}, \boldsymbol{I})$
- Error (or noise): $\varepsilon \sim N(0, \psi)$ - Gaussian noise
- Location term (mean): $\boldsymbol{\mu}$

Then:

$$
y \sim N\left(\mu, C_{y}\right)
$$

- where $\boldsymbol{C}_{\boldsymbol{y}}=\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\boldsymbol{\psi}$ is the covariance matrix for observed variables $\boldsymbol{y}$
- the model's parameters $\boldsymbol{W}, \boldsymbol{\mu}$ and $\boldsymbol{\psi}$ can be found using maximum likelihood estimate


## Probabilistic PCA (PPCA)

- A special case of the factor analysis model
- Noise variances constrained to be equal ( $\psi_{i}=\sigma^{2}$ )

$$
y \sim W x+\mu+\varepsilon
$$

- Latent variables: $\boldsymbol{x} \sim N(\mathbf{0}, I)$
- Error (or noise): $\varepsilon \sim N\left(0, \sigma^{2} I\right.$ ) (isotropic noise model)
- Location term (mean): $\boldsymbol{\mu}$
$-y \mid x \sim N\left(W X+\mu, \sigma^{2} I\right)$
$-y \sim N\left(\mu, C_{y}\right)$
- where $\boldsymbol{C}_{\boldsymbol{y}}=\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\sigma^{2} \boldsymbol{I}$ is the covariance matrix of $\boldsymbol{y}$
- Normal PCA is a limiting case of probabilistic PCA, taken as the limit as the covariance of the noise becomes infinitesimally small $\left(\psi=\lim _{\sigma 2 \rightarrow 0} \sigma^{2} \boldsymbol{I}\right)$


## Illustration of probabilistic PCA

Latent variables (x) $q=2$


Observed variables (y) d=7 (data)

$$
\begin{aligned}
& \begin{array}{l}
y=W x+\mu+\varepsilon \\
y \sim N\left(\mu, W W^{T}+\sigma^{2} I\right)
\end{array} \\
& \hline
\end{aligned}
$$

Parameters of interest: W (weight matrix), $\sigma^{2}$ (variance of noise)

## PPCA (Maximum likelihood PCA)

- Log-likelihood for the Gaussian noise model:
$-L=-\frac{N}{2}\left\{d \ln (2 \pi)+\ln \left|\boldsymbol{C}_{\boldsymbol{y}}\right|+\operatorname{tr}\left(\boldsymbol{C}_{\boldsymbol{y}}{ }^{-1} \mathbf{S}\right)\right\}$

$$
C_{y}=\boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2}
$$

- Maximum likelihood estimates for the above:
$-\mu$ : mean of the data
- $\boldsymbol{S}$ (sample covariance matrix of the observations $\boldsymbol{Y}$ ):

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{Y}_{n}-\boldsymbol{\mu}\right)\left(\mathbf{Y}_{n}-\boldsymbol{\mu}\right)^{\mathrm{T}}
$$

- MLE's for $\boldsymbol{W}$ and $\boldsymbol{\sigma}^{2}$ can be solved in two ways:
- closed form (Tipping and Bishop)
- EM algorithm (Roweis)


## Probabilistic PCA

The likelihood is maximized when:

$$
\mathbf{W}_{\mathrm{ML}}=\mathbf{U}_{q}\left(\sqrt[2]{\boldsymbol{\Lambda}_{q}-\sigma^{2} \mathbf{I}}\right) \mathbf{R}
$$

- For $\mathbf{W}=\mathbf{W}_{\mathrm{ML}}$ the maximum $\mathbf{U}_{q}$ is a $d \times q$ matrix where the $q$ column vectors are the principal eigenvectors of $\mathbf{S}$.
- $\boldsymbol{\Lambda}_{q}$ is a $q \times q$ diagonal matrix with corresponding eigenvalues along the diagonal.
- $\mathbf{R}$ is an arbitrary $q \times q$ orthogonal rotation matrix
- Max likelihood estimate for $\sigma^{2}$ is:

$$
\sigma_{\mathrm{ML}}^{2}=\frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_{j}
$$

- To find the most likely model given $\mathbf{S}$, estimate $\sigma^{2}{ }_{\text {ML }}$ and then $\mathbf{W}_{\mathrm{ML}}$ with $\mathbf{R}=\mathbf{I}$, or you can employ the EM algorithm


## Derivation of MLEs

- $\quad L=-N / 2\left\{d \ln (2 \pi)+\ln \left|\mathbf{C}_{\boldsymbol{y}}\right|+\operatorname{tr}\left(\boldsymbol{C}^{-1} \boldsymbol{V} \boldsymbol{S}\right)\right\}$

The $1^{\text {st }}$ derivative of $L L$ w/ respect to $\boldsymbol{W}$ :
$-\mathrm{dL} / \mathrm{dW}=\mathrm{N}\left(\boldsymbol{C}^{-1} \boldsymbol{S} \boldsymbol{C}^{-1} \boldsymbol{W}-\boldsymbol{C}^{-1} \boldsymbol{W}\right)$, where $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{L} \boldsymbol{V}^{\boldsymbol{T}}=\sigma^{2} \boldsymbol{I}+\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}$

- The stationary points are $\boldsymbol{S C ^ { - 1 }} \boldsymbol{W}=\boldsymbol{W}$.
- Non-trivial case: $\boldsymbol{W} \neq \mathbf{0}, \boldsymbol{C} \neq \boldsymbol{S}$
- SVD: $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{L} \boldsymbol{V}^{\boldsymbol{T}}, \boldsymbol{U}: d x q$ orthonormal vectors, $\boldsymbol{L}: q x q$ matrix of singular values, $V: q x q$ orthogonal matrix,
- $\boldsymbol{C}^{-1} \boldsymbol{W}=\boldsymbol{W}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1}=\boldsymbol{U} \boldsymbol{L}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{L}^{2}\right)^{-1} \boldsymbol{V}^{\boldsymbol{T}}$
- At the stationary points:
- $\boldsymbol{S U L}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{L}^{2}\right) \boldsymbol{V}^{T}=\boldsymbol{U L} \boldsymbol{V}^{\boldsymbol{T}}$
- $\boldsymbol{S U L}=\boldsymbol{U}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{L}^{2}\right) \boldsymbol{L}$
- Column vectors of $\boldsymbol{U}, \boldsymbol{u}_{j}$, are eigenvectors of $\boldsymbol{S}$, with eigenvalue $\lambda_{j}$, such that $\sigma^{2}+l_{j}{ }^{2}$
$=\lambda_{j}$
- $l_{j}^{2}=\left(\lambda_{j}-\sigma^{2}\right)^{1 / 2}$
- (substitute into SVD) $\boldsymbol{W}=\boldsymbol{U}_{q}\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} \boldsymbol{I}\right) \boldsymbol{R}$
- $\boldsymbol{U}_{\boldsymbol{q}}: d x q$ with $q$ column eigenvectors $\boldsymbol{u}_{\boldsymbol{j}}$ of $\boldsymbol{S}$
- $\boldsymbol{\Lambda}_{j}: \lambda_{1} \ldots \lambda_{q}$, $\left(q\right.$ eigenvalues of $\boldsymbol{u}_{j}$ ), or $\boldsymbol{\sigma}^{2}$ (corresponding $d$ - $q$ "discarded" rows of W)
- $\boldsymbol{R}$ : arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a re-parametrization)


## Derivation of MLEs (cont)

- Substitute above results into the original likelihood expression
- $-L=-N / 2\left\{d \ln (2 \pi)+\sum \ln \left(\lambda_{j}\right)+\sum \lambda_{j}+(\mathrm{d}-\mathrm{q}) \ln \sigma^{2}+\mathrm{q}\right\}$
- $\lambda_{1} \ldots \lambda_{q}$, are $q$ non-zero eigenvalues of $\boldsymbol{u}_{j}$ and $\lambda_{q+1} \ldots \lambda_{d}$, are zero
- Taking derivative of above with respect to $\sigma^{2}$ and solving for zero gives:

$$
\sigma_{\mathrm{ML}}^{2}=\frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_{j}
$$

## Dimensionality Reduction in pPCA

- So, how do we use this to reduce the dimensionality of data?
- Consider the dimensionality reduction process in terms of the distribution of latent variables, conditioned on the observation:

$$
\begin{gathered}
\mathbf{x} \mid \mathbf{y} \sim N\left(\mathbf{M}^{-1} \mathbf{W}^{\mathrm{T}}(\mathbf{y}-\boldsymbol{\mu}), \sigma^{2} \mathbf{M}^{-1}\right), \text { where } \\
\mathbf{M}=\mathbf{W}^{\mathrm{T}} \mathbf{W}+\sigma^{2} \mathbf{I}, \mathbf{M} \text { is a } q \mathbf{x} q \text { matrix }
\end{gathered}
$$

- This can be summarized by its mean:

$$
\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}\right\rangle=\mathbf{M}^{-1} \mathbf{W}_{\mathrm{ML}}{ }^{\mathrm{T}}\left(\mathbf{y}_{n}-\boldsymbol{\mu}\right)
$$

- Intuitively, the optimal reconstruction of $\mathbf{y}_{n}$ should be $\mathbf{W}_{\mathrm{ML}}\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}\right\rangle+\mu$. However, it is not. For $\sigma^{2}>0$ it is not an orthogonal projection of $\mathbf{y}_{n}$.
- If we consider the limit as $\sigma^{2} \rightarrow 0$, the projection $\mathbf{W}_{\mathrm{ML}}\left\langle\mathbf{x}_{n} \mid \mathbf{y}_{n}\right\rangle$ does become orthogonal and is equivalent to conventional PCA, but then the density model is singular and thus undefined.
- Optimal reconstruction of the observed data may still be obtained from conditional latent mean:
$\cdot \mathbf{y}_{\mathrm{n}}=\mathbf{W}_{\mathrm{ML}}\left(\mathbf{W}_{\mathbf{M L}}{ }^{\mathrm{T}} \mathbf{W}_{\mathbf{M L}}\right)^{-1} \mathbf{W}_{\mathbf{M L}}{ }^{\mathbf{T}}<\mathbf{x}_{\mathrm{n}} \mid \mathbf{y}_{\mathrm{n}}>+\boldsymbol{\mu}$


## Motivation behind using E-M for PCA

- Naive PCA and MLE PCA computation-heavy for high dimensional data or large data sets
- PCA does not deal properly with missing data
- E-M algorithm estimates ML values of missing data at each iteration
- Naïve PCA uses simplistic way (distance ${ }^{2}$ from observed data) to access covariance
- Sensible PCA (SPCA) defines a proper covariance structure whose parameters can be estimated through the EM algorithm


## E-M algorithm (review)

- Iterative process to estimate parameters consisting of two steps for each iteration
- Expectation (data step): complete all hidden and missing variables $\boldsymbol{\Theta}$ (or latent variables) from current set of parameters $\boldsymbol{\Theta}$
- Maximization (likelihood step): Update set of parameters $\boldsymbol{\Theta}^{\text {', using MLE, from complete set of data from previous }}$ step $\boldsymbol{\Theta}$
- Likelihood obtained from MLEs guaranteed to improve in successive iterations
- Continue iterations until negligible improvement is found in likelihood


## EM algorithm for normal PCA

- Amounts to an iterative procedure for finding subspace spanned by the $q$ leading eigenvectors without computing covariance
- E-step: $\boldsymbol{X}=\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{Y}$
- Fix subspace and project data, $\boldsymbol{y}$, into it to give values of hidden states $\boldsymbol{x}$
- Known: $\boldsymbol{Y}$ : $d$-dimensional observed data
- Unknown (latent): $\boldsymbol{X}: q$-dimensional unknown states
- M-step: $\mathrm{W}_{\text {new }}=\boldsymbol{Y} \boldsymbol{X}^{\boldsymbol{T}}\left(\boldsymbol{X} \boldsymbol{X}^{T}\right)^{-1}$
- Fix values of hidden states and choose subspace orientation that minimizes squared reconstruction errors


## EM algorithm and missing data

Data with missing obs filled out: $\boldsymbol{x}$, Complete data (with blanks not filled out): $\boldsymbol{y}$
E-step (fill in missing variables):

- If data point $\boldsymbol{y}$ is complete, then $\boldsymbol{y}^{*}=\boldsymbol{y}$ and $\boldsymbol{x} *$ is found as usual
- If the data point $\boldsymbol{y}$ is not complete, $\boldsymbol{x}^{*}$ and $\boldsymbol{y}^{*}$ are the solution to the least squares problem. Compute $\boldsymbol{x}$ by projecting the observed data $y$ into the current subspace.
- For each (possibly incomplete) point $\boldsymbol{y}$, find the unique pair of points ( $\mathbf{x}^{*}, \mathbf{y}^{*}$ ) that minimize the norm $\left\|\boldsymbol{W} \boldsymbol{x} *-\boldsymbol{y}^{*}\right\|$.
- Constrain $x^{*}$ to be in the current principal subspace and $y^{*}$ in the subspace defined by known info about $\boldsymbol{y}$
- If $\boldsymbol{y}$ can be completely solved in system of equations, set corresponding column of $\boldsymbol{X}$ to $\boldsymbol{x}$ * and the corresponding column of $\boldsymbol{Y}$ to $\boldsymbol{y}^{*}$
- Otherwise, QR factorization can be used on a particular constraint matrix to find least squares solution


## E-M algorithm and missing data (E-step) <br> $$
\boldsymbol{W}=\left(\begin{array}{cc} 1 & 1 \\ 1 & 0.5 \\ 2 & 1 \end{array}\right) \quad \boldsymbol{X}=\left[\begin{array}{l} \mathrm{x}_{1} \\ \mathrm{x}_{2} \end{array}\right] \quad \boldsymbol{Y}=\left(\begin{array}{l} 3 \\ 1 \\ ? \end{array}\right)
$$ <br> \[ \xrightarrow[\substack{\boldsymbol{x} \boldsymbol{x}=\boldsymbol{y} <br> \mathrm{x}_{1}+0.5 \mathrm{x}_{2}=1 <br> 2 \mathrm{x}_{1}+<br> \mathrm{x}_{2}=\mathrm{y}

]{\mathrm{x}_{2}} \quad \xrightarrow{solve} \boldsymbol{X}^{*}=\left[\begin{array}{r}-1 <br>
4
\end{array}\right) \quad \boldsymbol{Y}^{*}=\left($$
\begin{array}{l}
3 \\
1 \\
2
\end{array}
$$\right)
\]}

Set $\boldsymbol{x}=(-1,4), \boldsymbol{y}=(3,1,2)$, proceed to M-step
If two elements are missing in $\boldsymbol{Y}$, then we use QR factorization to find the pair $\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$ with the least squares of the norm $\left\|\boldsymbol{W} \boldsymbol{x}^{*}-\boldsymbol{y}^{*}\right\|$,


## EM for probabilistic PCA (Sensible PCA - SPCA)

- Probabilistic PCA model:
$-\boldsymbol{Y} \sim \boldsymbol{N}\left(\mu, \boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\sigma^{2} \boldsymbol{I}\right)$
- Similar to normal PCA model, the differences are:
- We do not take the limit as $\sigma^{2}$ approaches 0
- During EM iterations, data can be directly generated from the SPCA model, and the likelihood estimated from the test data set
- Likelihood much lower for data far away from the training set, even if they are near the principal subspace
- EM algorithm steps implemented as follows:
$-\mathrm{E}: \boldsymbol{\beta}=\boldsymbol{W}^{\boldsymbol{T}}\left(\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\sigma^{2} \boldsymbol{I}\right)^{-1},<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>=\boldsymbol{\beta}(\boldsymbol{Y}-\mu), \boldsymbol{\Sigma}_{\boldsymbol{x}}=n \boldsymbol{I}-n \boldsymbol{\beta} \boldsymbol{W}+$ $<\mathrm{x}_{\mathrm{n}}\left|\mathrm{y}_{\mathrm{n}}><\mathrm{x}_{\mathrm{n}}\right| \mathrm{y}_{\mathrm{n}}>T$
- Log-likelihood in terms of weight matrix $\boldsymbol{W}$, and a centered observed data matrix $\boldsymbol{Y}-\mu$, noise covariance $\sigma^{2} \boldsymbol{I}$, and conditional latent mean $<x_{n} \mid y_{n}>$
$-\mathrm{M}: \boldsymbol{W}^{\text {new }}=(\boldsymbol{Y}-\mu)<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>{ }^{\boldsymbol{T}} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}, \sigma^{2 \text { new }}=\operatorname{trace}\left[\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}-\boldsymbol{W}<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>(\boldsymbol{Y}-\mu)^{T}\right] / n^{2}$
- Differentiate LL in terms of $\boldsymbol{W}$ and $\sigma^{2}$ and set to zero.


## Advantages of using EM algorithm in probabilistic PCA models

- Convergence:
- Tipping and Bishop showed (1997) that the only stable local extremum is the global maximum at which the true principal subspace is found
- Complexity:
- Methods that explicitly compute the sample covariance matrix have complexities $O\left(n d^{2}\right)$
- EM algorithm does not require computation of sample covariance matrix, $O(d n q)$
- Huge advantage when $q \ll d$ (\# of principal components is much smaller than original \# of variabes)


## EM algorithm for PPCA (illustration)

Example: 38 observations (with 18 data points each) from Tobamovirus data set (Ripley, 1996)


3 clusters

## Other methods for PCA

- Power iteration methods
- Iteratively update eigenvector estimates through repeated multiplication by matrix to be diagonalized
- Extremely inefficient to calculate explicitly ( $O\left(n q^{2}\right)$ )
- E-M algorithm provides efficient way to obtain sample covariance matrix, without explicitly calculating it
- Iterative methods to compute SVD are closely related to the EM algorithm
- Learning methods for the principal subspace
- Sanger's and Oja's rule
- Typically require more iterations and the learning parameter to be set by hand


## Mixtures of probabilistic PCAs

- A combination of local probabilistic PCA models
- Multiple plots may reveal more complex data structures than a PCA projection alone
- Applications:
- Image compression (Dony and Haykin 1995)
- Visualization (Bishop and Tipping, 1998)
- Clustering mechanisms of mixture PPCA:
- Local linear dimensionality reduction
- Semi-parametric density estimation


## Mixtures of probabilistic PCAs

$-\mathrm{LL}=\sum_{\mathrm{n}=1}^{\mathrm{N}} \ln \left\{p\left(\boldsymbol{y}_{n}\right)\right\}=\sum_{\mathrm{n}=1}^{\mathrm{N}} \ln \left\{\sum_{\mathrm{i}=1}^{\mathrm{M}} \boldsymbol{\pi}_{i} p\left(\boldsymbol{y}_{n} \mid i\right)\right\}$

- $p(\boldsymbol{y} \mid i)$ is a single PPCA model and $\boldsymbol{\pi}_{i}$ is the corresponding mixing proportion
- Different mean vectors $\mu_{i}$, weighting matrices $\boldsymbol{W}_{i}$, and noise error parameters $\sigma_{i}{ }^{2}$ for each of M probabilistic PCA models
- An iterative EM algorithm can be used to solve for parameters
- Guaranteed to find a local maximum of the log-likelihood


## Information Recovery

- PCA minimizes the sum of squared distances from $x$ to its back-projection from the lower dimensional space.
- However,
- This loss function is not a good fit when the data are not real-valued
- Using standard PCA will do a bad job reconstructing these types of data


## PCA's weakness

- PCA assumes a Gaussian distribution for the random variable X



## PCA's weakness

- Gaussian noise is added to the samples from the Gaussian distribution.



## PCA's weakness

- For real-valued data this is not a problem in general.



## PCA's weakness

- The loss function is appropriately measured in both directions



## PCA's weakness

- What if the noise is known to be all positive?



## Which loss function to use?

- Maybe a different loss function is better, but which?




## Exponential PCA

- General idea:
- Extend PCA to include the entire family of exponential family distributions.
- The unique properties of the modelling distribution for features determines the loss function for that data component automatically.
- There's a trick which allows easy optimization of the loss function.


## Exponential Family Distributions

- Exponential Family distributions can be rewritten as:

$$
P(x \mid \Theta)=P_{0}(x) e^{x \Theta-G(\Theta)}
$$

- X is your data in the high-dimensional space
- $\Theta$ is the natural (or canonical) parameterization of the distribution
- $P_{0}(x)$ is a constant (not dependent on $\Theta$ )
- $G(\Theta)$ is the partition function (assures a valid distribution)


## Exponential Family Distributions

- Gaussian (unit variance)

$$
P(x \mid \mu)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2}}=\frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}} e^{x \mu-\frac{\mu^{2}}{2}}
$$

- General form:

$$
\begin{array}{r}
P(x \mid \Theta)=P_{0}(x) e^{x \Theta-G \Theta} \\
\Theta=\mu \\
G(\Theta)=\mu^{2} / 2
\end{array}
$$

## Exponential Family Distributions

- Bernoulli

$$
P(x \mid \Theta)=\pi^{x}(1-\pi)^{(1-x)}=1 e^{x \log \left(\frac{\pi}{1-\pi}\right)-\log \left(1+e^{\log \left(\frac{\pi}{1-\pi}\right)}\right)}
$$

- General Form:

$$
\begin{gathered}
P(x \mid \Theta)=P_{0}(x) e^{x \Theta-G \Theta} \\
\Theta=\log \left(\frac{\pi}{1-\pi}\right) \quad G(\Theta)=\log \left(1+e^{\log \left(\frac{\pi}{1-\pi}\right)}\right)
\end{gathered}
$$

## Exponential Family Distributions

- Basic idea: With manipulation, you only need $\mathrm{P}_{0}(\mathrm{x}), \Theta$ and $G(\Theta)$ to define an exponential distribution.
- Now take the $\log$ of $\mathrm{P}(\mathrm{x} \mid \Theta)$ :

$$
\begin{gathered}
P(x \mid \Theta)=P_{0}(x) e^{x \Theta-G \Theta} \\
\log P(x \mid \Theta)=\log \left(P_{0}(x)\right)+x \Theta-G(\Theta)
\end{gathered}
$$

- $\mathrm{G}(\Theta)$ is the cummulant function of $\mathrm{P}(\mathrm{x} \mid \Theta)$
- This means that $\nabla \mathrm{G}(\Theta)$ is the expected value of x .


## So what?

- For any model $\Theta$, we can find the expectation of the data x given $\Theta$.
- We compare the expectation to the observed data to measure how much our model is losing in the representation.
- In this way, $\mathrm{G}(\Theta)$ can be seen as a sort of information loss function.


## Optimization

- If we want a better model, we need the information loss from that model to be lower.
- It would be cool if we could maximize $\log (\mathrm{p}(\mathrm{x} \mid \Theta))$, since it gets penalized for loss.
- Turns out that a dual problem exists for optimizing the loglikelihood.


## Bregman Divergence

- Your model: $p$ (a set of parameters)
- You want to know: is $q$ (a set of parameters for a similar model) a better fitting model?
- Assume a convex differentiable projection function $F$ defined on a convex space $\rightarrow$ projects to a convex space
- Bregman divergence:

$$
D_{F}(p, q)=F(p)-F(q)-(\nabla F(q), p-q)
$$

- the difference between the value of $F$ at point $p$ and the value of the first-order Taylor expansion of $F$ around point $q$ evaluated at point $p$
Strategy: the distance in the new convex space represents the loss. Optimizing the distance results in better estimates of expectation parameters for the model.


## Bregman Divergence

- The function $F$ is derived from $\mathrm{G}(\Theta)$ as a dual problem (Azoury \& Warmuth, 2001):

$$
\begin{aligned}
& F(g(\Theta))+G(\Theta)=g(\Theta) \Theta \\
& g(\Theta)=\nabla_{\Theta} G(\Theta)
\end{aligned}
$$

- The dual creates a "link" function $g$ which maps between natural and expectation parameter space
Derivatives:

$$
\begin{aligned}
& f(x)=g^{-1}(x) \\
& f(x)=F^{\prime}(x)
\end{aligned}
$$

## Bregman Divergence

$$
D_{[ }^{\prime}(p, q)=F(p)-F(q)-\{\nabla F(q), p-q\} .
$$



## Bregman Divergence

$$
D_{F}(p, q)=F(p)-F(q)-(\nabla F(q), p-q) .
$$

$p$ is our current set of natural parameters.


## Bregman Divergence

$$
D_{F}(p, q)=F(p)-F(q)-(\nabla F(q), p-q) .
$$

We determine a new set of natural parameters $q$. and project it onto the convex hull.


## Bregman Divergence

$$
D_{F}^{\prime}(p, q)=F(p)-F(q)-(\nabla F(q), p-q) .
$$

The slope of $F$ at $F(q)$ is measured.


## Bregman Divergence

$$
D_{F}(p, q)=F(p)-F(q)-(\nabla F(q), p-q) .
$$

F(0)

The Bregman distance $B_{F}$ is higher if q is at a more convex point than $p$.

The bigger the distance, the better $q$ is at providing an expectation closer to the data x .


## Bregman Divergence

- For exponential family the function $F$ is derived from $\mathrm{G}(\Theta)$ as a dual problem (Azoury \& Warmuth, 2001):

$$
\begin{aligned}
& F(g(\Theta))+G(\Theta)=g(\Theta) \Theta \\
& g(\Theta)=\nabla_{\Theta} G(\Theta)
\end{aligned}
$$

- The dual creates a "link" function $g$ which maps between natural and expectation parameter space
Derivatives:

$$
\begin{aligned}
& f(x)=g^{-1}(x) \\
& f(x)=F^{\prime}(x)
\end{aligned}
$$

## Bregman Divergence \& Loglikelihood

- For the exponential family of distributions, the loglikelihood of data given model is related to a Bregman Divergence.
- The divergence depends on which type of exponential family distribution you pick
- Different well-known divergences are obtainable with popular choices for $G(\Theta)$


## How can it be?!

- The loglikelihood of the data given model can be rewritten as follows:

$$
\begin{aligned}
& -\log P(x \mid \Theta)=-\log \left(P_{0}(x)\right)-x \Theta+G(\Theta) \\
& =-\log \left(P_{0}(x)\right)-x \Theta+[g(\Theta) \Theta-F(g(\Theta))] \\
& =-\log \left(P_{0}(x)\right)-F(g(\Theta))-x \Theta+g(\Theta) \Theta \\
& =-\log \left(P_{0}(x)\right)-F(g(\Theta))-\Theta \cdot(x-g(\Theta)) \\
& =-\log \left(P_{0}(x)\right)-F(g(\Theta))-\left[g^{-1}(g(\Theta))\right] \cdot(x-g(\Theta)) \\
& =-\log \left(P_{0}(x)\right)+[F(x)-F(x)]-F(g(\Theta))-\left[g^{-1}(g(\Theta))\right] \cdot(x-g(\Theta)) \\
& =-\log \left(P_{0}(x)\right)-F(x)+F(x)-F(g(\Theta))-f(g(\Theta)) \cdot(x-g(\Theta)) \\
& =-\log \left(P_{0}(x)\right)-F(x)+B_{F}(x \| g(\Theta))
\end{aligned}
$$

## Optimization

- Good news: Loglikelihood can be rewritten in terms of a Bregman divergence
$-\log \left(P(x \mid \Theta)=-\log \left(P_{0}(x)\right)-F(x)+B_{F}(x \| g(\Theta))\right.$
- Optimizing negative loglikelihood is commonly done in EM
- Only the Bregman divergence term depends on $\Theta$, the rest can be ignored.


## Exponential PCA

- Problem: Find $\Theta$ 's which come close to the observed data points x. (Minimize loss)
- Express the $\Theta^{\prime} \mathrm{s}$ in a lower dimensionality
- Solution: Find a basis with $L$ principal axes, represent the $\Theta$ ' s as a linear combination of these axes which most closely approximate x .


## Generalized Exponential PCA

- Natural parameters:

$$
\Theta=A V
$$

- Finally, some dimensions
-A is $\mathrm{n}^{*} \mathrm{~L}$
- (rows of A represent the lower dimensionality representation of a data point)
-V is $L^{*} \mathrm{~d}$
- (rows of V represent the principal axes of the model's projection basis)
- Your data X is $\mathrm{n} * \mathrm{~d}$


## Generalized Exponential PCA

- Optimize the negative loglikelihood of a model given the data $-\log \left(P(x \mid \Theta)=-\log \left(P_{0}(x)\right)-F(x)+B_{F}(x \| g(\Theta))\right.$

$$
\Theta=A V
$$

- This is equivalent to maximizing a series of Bregman divergences over the individual components of data.
- Changing the distribution which models the loglikelihood....
- Changes the function $\mathrm{G}(\Theta)$, which
- Changes the expectation parameters of the model, which
- Changes the Bregman divergence which was derived from $G(\Theta)$, which means
- The loss function for the data is different (the Bregman distance between $x$ and the expectation parameters $g(\Theta)$ )


## Example

- Lets choose the Normal distribution
- For a normal distribution, $\mathrm{G}(\Theta)=\Theta^{2} / 2$
- Therefore,
- $\mathrm{g}(\Theta)=\mathrm{G}^{\prime}(\Theta)=\Theta ; \quad \mathrm{g}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})=\mathrm{x} ; \quad \mathrm{F}(\mathrm{x})=\mathrm{x}^{2} / 2$
- Compute the Bregman divergence between x and $\mathrm{g}(\Theta)$ :

$$
\begin{aligned}
& B_{F}(p \| q)=F(p)-F(q)-f(q) \cdot(p-q) \\
& =F(x)-F(g(\Theta))-f(g(\Theta)) \cdot(x-g(\Theta)) \\
& =\frac{x^{2}}{2}-\frac{\Theta^{2}}{2}-\Theta \cdot(x-\Theta) \\
& =\frac{1}{2} x^{2}-\frac{2}{2} \Theta x+\frac{1}{2} \Theta^{2} \\
& =\frac{1}{2}(x-\Theta)^{2} \quad \quad B_{F}(x \| g(\Theta)) \text { ends up being Euclidean distance! }
\end{aligned}
$$

## Example

- We want to optimize $\Theta=A V$ to fit the loss function.
- Algorithm:
- Initialize A, V = 0
- For data $=1: n$
- For $\mathrm{c}=1: \mathrm{L}$
- Initialize $\mathrm{V}_{\mathrm{c}}$ randomly
- Until convergence,

For $i=1: \mathrm{n}$,

$$
\hat{a}_{i c}=\arg \min { }_{a \in \Re} \sum_{j} B_{F}\left(x_{i j} \| g\left(a v_{c j}\right)\right)
$$

For $\mathrm{j}=1: \mathrm{d}$,

$$
\hat{v}_{c j}=\arg \min { }_{v \in \Re} \sum_{i} B_{F}\left(x_{i j} \| g\left(\hat{a}_{i c} v\right)\right)
$$

## Summary:

- Use the generative model of PCA
- Extend PCA to use any partition function $G(\Theta)$
- Convert the negative loglikelihood into a Bregman divergence
- Optimize the negative loglikelihood using an alternating update procedure over the natural parameters.

