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Principal Component Analysis

+ Used to transform observed data matrix X (N x d) into Y (N x
q) (find the g principal components)

— Fairly simple solution:
1. Centralize the X
2. Calculate the covariance matrix C of X
3. Calculate the eigenvectors of the C

4. Select the dimensions that correspond to the g highest
eigenvalues

— Big win for linear algebra.




Limitations of PCA

PCA is a simple linear algebra transformation, it does not
produce a probabilistic model for the observed data.

* A probabilistic model can be very useful

The variance-covariance matrix needs to be calculated

— Can be very computation-intensive for large datasets with a
high # of dimensions

Does not deal properly with missing data

— Incomplete data must either be discarded or imputed using
ad-hoc methods

Outlying data observations can unduly affect the analysis

Probabilistic PCA model

Enables comparison with other probabilistic techniques
Facilitates statistical testing

Maximum-likelihood estimates can be computed for elements
associated with principal components

Permits the application of Bayesian methods
Extends the scope of PCA

— Multiple PCA models can be combined as a probabilistic
mixture

— PCA projections can be obtained when some data values
are missing

Can be utilized as a constrained Gaussian density model
— Classification

— Novelty detection




Latent variable models

+ Offer a lower dimensional representation of the data and their
dependencies

» Latent variable model:
— y: observed variables (d-dimensions)
— x: latent variables (g-dimensions)
_ q<d

Latent variables (x) q =2
(hidden variables, underlying concepts)

Observed variables (y) d =7
(data)

Latent variable models

Latent variables (x) q =2
(hidden variables, underlying concepts)

Note: Observed variables
become independent

of each other given latent
factors

Observed variables (y) d =7
(data)




Factor analysis

* Latent variable model with a linear relationship:
y~Wx+u+eg
- Wis a d x g matrix that relates observed variables y to the
latent variables x
— Latent variables: x ~ N(0, I)
— Error (or noise): € ~ N(0, w) — Gaussian noise
— Location term (mean): u

Then: y~Nu, C)
— where C,=WW?" +y is the covariance matrix for observed
variables y

— the model’s parameters W, u and w can be found using
maximum likelihood estimate

Probabilistic PCA (PPCA)

» A special case of the factor analysis model
— Noise variances constrained to be equal (y,=¢°)

y~Wx+u+eg
— Latent variables: x ~ N(0, I)
— Error (or noise): &€ ~ N(0, ¢°1) (isotropic noise model)
— Location term (mean): u

~ Y~ NOWX +p, 5°D)

-y~ N(ﬂ, Cy)
— where C,=WW?" + ¢°I is the covariance matrix of y

* Normal PCA is a limiting case of probabilistic PCA, taken as the
limit as the covariance of the noise becomes infinitesimally small

(lll :lim a2 —( 0-21)




Ilustration of probabilistic PCA

Latent variables (x) q =2
(hidden variables, underlying concepts) x~N(@, 1)

|
Remapping: Wx
(Weight matrix: W)
+

u (location parameter)

+
. . . ‘ . Y | Random error (noise): ¢
e~ N(0, o°I)

Observed variables (y) d=7

(data) y=Wx+u+eg
Y~ N(u, WW™ +5°I)

Parameters of interest: W (weight matrix), o (variance of noise)

PPCA (Maximum likelihood PCA)

* Log-likelihood for the Gaussian noise model:

L= —%{d In(2m) + In|C,| + tr(C,*S)}
C=WWT"+ ¢’

* Maximum likelihood estimates for the above:

— u: mean of the data
— S (sample covariance matrix of the observations Y):

N
1
s = ﬁ;m — WY — )"

* MLE’s for W and 6 can be solved in two ways:
— closed form (Tipping and Bishop)

- EM algorithm (ROWCiS) Tr(A) = sum of diagonal elements of A




Probabilistic PCA

The likelihood is maximized when:

Wy, = Uq(z/Aq — R

* For W = Wy, the maximum Uy, is a d x q matrix where the g
column vectors are the principal eigenvectors of S.

* Ay isaqx q diagonal matrix with corresponding eigenvalues along
the diagonal.

¢ Ris an arbitrary g x q orthogonal rotation matrix

» Max likelihood estimate for 02 is:

2
o A
ML d q Z

« To find the most likely model given S, estimate ¢* v, and then

Wy, with R = I, or you can employ the EM algorithm

Derivation of MLEs

— L =-N2 {d nQz)+n|C,|+tr(C! )}
The 15t derivative of LL w/ respect to W:
dL/dW =N(C'SC'W-C-'W), where W = ULVT =’ I+ WWT
— The stationary points are SC-ITW = W.
— Non-trivial case: W#0, C#S
— SVD: W=ULVT, U: d x q orthonormal vectors, L: g x g matrix of singular values,
V: g x q orthogonal matrix,
o CW=W@I+WTW)! = UL(*I + L) VT
— At the stationary points:
s SUL(GI+L)VT=ULVT
e SUL=U@PI+L)L
—  Column vectors of U, u;, are eigenvectors of S, with eigenvalue lj, such that o2 + ljz
. ’ljzz (- )12
— (substitute into SVD) W=U, (4 ,- 6’D R
* U, :dx qwith g column eigenvectors u; of §
o A4, (q eigenvalues of u;), or a? (corresponding d-g “discarded” rows of

* R: arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or
a re-parametrization)




Derivation of MLEs (cont)

Substitute above results into the original likelihood expression

-L =-N/2{d In(2x) +XIn(%) + X /;+ (d - Q)ln 6 + q}

*  A4...4, are g non-zero eigenvalues of u; and 4,,;...4,, are zero
Taking derivative of above with respect to 62 and solving for zero gives:

Dimensionality Reduction in pPCA

* So, how do we use this to reduce the dimensionality of data?

» Consider the dimensionality reduction process in terms of the
distribution of latent variables, conditioned on the observation:

x|y ~ N(M™*WT(y —pu),c?M™1), where
M = WTW + ¢%I, M is a g x ¢ matrix
* This can be summarized by its mean:

(Xnlyn) =M 1WMLT(Yn —H)
* Intuitively, the optimal reconstruction of y,, should
be Wy (X, |¥n) + #. However, it is not. For ¢ > 0 it is not an
orthogonal projection of y,,.

+ If we consider the limit as 62 — 0, the projection Wy (X,,|y,,) does
become orthogonal and is equivalent to conventional PCA, but then
the density model is singular and thus undefined.

* Optimal reconstruction of the observed data may still be obtained
from conditional latent mean:

* Yo = War Wy "Wy "Wy, T <x,ly,> + 4




Motivation behind using E-M for
PCA

Naive PCA and MLE PCA computation-heavy for high
dimensional data or large data sets

PCA does not deal properly with missing data

— E-M algorithm estimates ML values of missing data at each
iteration

Naive PCA uses simplistic way (distance? from observed data)
to access covariance

— Sensible PCA (SPCA) defines a proper covariance
structure whose parameters can be estimated through the E-
M algorithm

E-M algorithm (review)

Iterative process to estimate parameters consisting of two steps
for each iteration

— Expectation (data step): complete all hidden and missing
variables @ (or latent variables) from current set of
parameters ©

— Maximization (likelihood step): Update set of parameters
0, using MLE, from complete set of data from previous
step @

Likelihood obtained from MLEs guaranteed to improve in
successive iterations

Continue iterations until negligible improvement is found in
likelihood




EM algorithm for normal PCA

* Amounts to an iterative procedure for finding subspace

spanned by the q leading eigenvectors without computing
covariance

« E-step: X=(WTW)'WTY

— Fix subspace and project data, y, into it to give values of
hidden states x

— Known: ¥: d-dimensional observed data
— Unknown (latent): X: g-dimensional unknown states
* M-step: W,..,, = YXT(XX7)!

— Fix values of hidden states and choose subspace orientation
that minimizes squared reconstruction errors

EM algorithm and missing data

Data with missing obs filled out: x, Complete data (with blanks
not filled out): y

E-step (fill in missing variables):
« [f data point y is complete, then y*=y and x* is found as usual

+ If the data point y is not complete, x* and y* are the solution to
the least squares problem. Compute x by projecting the
observed data y into the current subspace.

— For each (possibly incomplete) point y, find the unique pair
of points (x*,y*) that minimize the norm ||Wx*-y*||.

— Constrain x* to be in the current principal subspace and y*
in the subspace defined by known info about y

* If y can be completely solved in system of equations, set
corresponding column of X to x* and the corresponding
column of Yto y*

 Otherwise, QR factorization can be used on a particular
constraint matrix to find least squares solution




E-M algorithm and missing data
(E-step)

.
W= 1 1 X= X, Y= 3
0.5 X, 1
1 ?
\
Wx=y solve 7
x+ x,=3 X*=| -1 Y*= 1|3
x;+05x,=1 ? 4
2x, + X, =y J

Setx=(-1,4),y=(3, 1, 2), proceed to M-step

If two elements are missing in ¥, then we use QR factorization to find
the pair (x*, y*) with the least squares of the norm ||Wx*-p*||,
according to the constraints specified in the set of equations Wx =y.

EM for probabilistic PCA
(Sensible PCA - SPCA)

* Probabilistic PCA model:
— Y~ N(u, WWT +6°I)

e Similar to normal PCA model, the differences are:
— We do not take the limit as o approaches 0

— During EM iterations, data can be directly generated from the SPCA
model, and the likelihood estimated from the test data set

— Likelihood much lower for data far away from the training set, even if
they are near the principal subspace

* EM algorithm steps implemented as follows:
— E:g=WIWWT+ 5D, <x,ly,>=B(Y-w), X .=nl - nfW +
XY <Xy ly,>T

* Log-likelihood in terms of weight matrix W, and a centered observed
data matrix ¥- 4, noise covariance ¢°I, and conditional latent mean
XYy

— M: Wrew = (Y - 1) <x,|y,>TZ 1 07" = trace[XXT - W<x,|y,>(Y-w)']/n’

« Differentiate LL in terms of W and o2 and set to zero.
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Advantages of using EM algorithm in
probabilistic PCA models

* Convergence:

— Tipping and Bishop showed (1997) that the only stable
local extremum is the global maximum at which the
true principal subspace is found

» Complexity:
— Methods that explicitly compute the sample covariance
matrix have complexities O(nd?)

— EM algorithm does not require computation of sample
covariance matrix, O(dng)

» Huge advantage when g << d (# of principal
components is much smaller than original # of variabes)

EM algorithm for PPCA (illustration)

Example: 38 observations (with 18 data points each)
from Tobamovirus data set (Ri'gleg, 1996)
roba

Standard PCA bilistic PCA

(using EM
(on complete algorithm) with 20%
aia)

w
—
—
W
(o)
Q). ~—

3 clusters
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Other methods for PCA

» Power iteration methods

— Iteratively update eigenvector estimates through repeated
multiplication by matrix to be diagonalized

— Extremely inefficient to calculate explicitly (O(ng?))

— E-M algorithm provides efficient way to obtain sample
covariance matrix, without explicitly calculating it

— Iterative methods to compute SVD are closely related to the
EM algorithm

» Learning methods for the principal subspace
— Sanger’s and Oja’s rule

— Typically require more iterations and the learning
parameter to be set by hand

Mixtures of probabilistic PCAs

* A combination of local probabilistic PCA models

* Multiple plots may reveal more complex data structures than a
PCA projection alone

» Applications:
— Image compression (Dony and Haykin 1995)
— Visualization (Bishop and Tipping, 1998)
* Clustering mechanisms of mixture PPCA:
— Local linear dimensionality reduction
— Semi-parametric density estimation

12



Mixtures of probabilistic PCAs
- LL= S nfp ) = 3. In {37 P10

* p(y|i) is a single PPCA model and z; is the
corresponding mixing proportion

+ Different mean vectors z,, weighting matrices W;, and
noise error parameters o2 for each of M probabilistic
PCA models

— An iterative EM algorithm can be used to solve for
parameters

— Guaranteed to find a local maximum of the log-likelihood

Information Recovery

* PCA minimizes the sum of squared distances from x to its
back-projection from the lower dimensional space.

* However,

— This loss function is not a good fit when the data are not
real-valued

— Using standard PCA will do a bad job reconstructing
these types of data

13



PCA’ s weakness

* PCA assumes a Gaussian distribution for the random variable

X

PCA’ s weakness

* Gaussian noise is added to the samples from the Gaussian

distribution.

14



PCA’ s weakness

 For real-valued data this is not a problem in general.

PCA’ s weakness

 The loss function is appropriately measured in both directions

15



PCA’ s weakness

» What if the noise is known to be all positive?

Which loss function to use?

» Maybe a different loss function is better, but which?
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Exponential PCA

* General idea:
— Extend PCA to include the entire family of exponential
family distributions.
— The unique properties of the modelling distribution for
features determines the loss function for that data
component automatically.

— There’ s a trick which allows easy optimization of the loss
function.

Exponential Family Distributions

Exponential Family distributions can be rewritten as:

P(x|©) = B (x)e™

X is your data in the high-dimensional space

O i1s the natural (or canonical) parameterization of the
distribution

P,(x) 1s a constant (not dependent on ®)
G(0) 1s the partition function (assures a valid distribution)

17



Exponential Family Distributions

* Gaussian (unit variance)

1 - 2 M
Px|pyu)=——=e 2 =&

Ver o Nor

* General form:
P(x|®) = P,(x)e™°
=y

G(0) = p2/2

Exponential Family Distributions

* Bernoulli

T

P(x|®)=r"(1-7)"" =1e

* General Form:

P(x]©) = B (x)e™*

. log(ﬁ
©= Jog — G(©) =log| l+e

1-7

log(i
xlog(lﬂj—log l+e \'7

)
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Exponential Family Distributions

Basic idea: With manipulation, you only need P(x), ® and
G(0®) to define an exponential distribution.

Now take the log of P(x| ®):
P(x|©) = B (x)e**®
log P(x|®) = log( P,(x)1+x® — G(©)

G(0®) 1s the cummulant function of P(x| ©)
This means that VG(0) is the expected value of x.

So what?

» For any model ®, we can find the expectation of the data x
given ©.

» We compare the expectation to the observed data to measure
how much our model is losing in the representation.

* In this way, G(®) can be seen as a sort of information loss
function.

19



Optimization

» If we want a better model, we need the information loss from
that model to be lower.

It would be cool if we could maximize log(p(x| ®)), since it
gets penalized for loss.

* Turns out that a dual problem exists for optimizing the
loglikelihood.

Bregman Divergence

* Your model: p (a set of parameters)

* You want to know: is ¢ (a set of parameters for a similar
model) a better fitting model?

» Assume a convex differentiable projection function £ defined
on a convex space = projects to a convex space

* Bregman divergence:

Di{p.q) = F{p) - Flg) = (VF{gh,p— .
« the difference between the value of F at point p and the value

of the first-order Taylor expansion of F around point ¢
evaluated at point p

Strategy: the distance in the new convex space represents the
loss. Optimizing the distance results in better estimates of
expectation parameters for the model.

20



Bregman Divergence

» The function F is derived from G(®) as a dual problem (Azoury &
Warmuth, 2001):

F(g(0))+G(0)=2(0)0
g(0)=V,G(0)

* The dual creates a “link” function g which maps between natural
and expectation parameter space

Derivatives:
f(x)=g"'(x)
S (x)=F'(x)

Bregman Divergence

D{p.q} = F{p) — F{g) — {VF{g),p - ¢}.

F is guaranteed
to be convex
due to its
construction
froma G
function in the

exponential o
family

21



Bregman Divergence

Ep, ) = Fip} = Fig) = (VF{gl,p—g}.

F(O)

p is our current
set of natural
parameters.

la] lp| (@]

Bregman Divergence

Di{p,g) = F(p) — Fi{g) — (VF{g),p - gt

F(O)

We determine a
new set of
natural
parameters q.
and project it
onto the convex
hull.

22



Bregman Divergence

Ep, ) = Fip} = Fig) = (VF{gl,p—g}.
F(©)

The slope of F
at F(q) is
measured.

Bregman Divergence

Dp.g) = Fip) — Flg) — {VF{gl,p—gh.

F(©)
The Bregman
distance By is
higherif g is at a
more convex point
than p.

B, =F(p)-F(q)-F'(q)-(p—q)

The bigger the

distance, the better
g is at providing an
expectation closer ; |
to the data x. o
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Bregman Divergence

For exponential family the function F is derived from G(®) as a dual
problem (Azoury & Warmuth, 2001):

F(g(0))+G(0)=2(0)0
g(0)=V,G(0)

The dual creates a “link” function g which maps between natural
and expectation parameter space

Derivatives:

f)=¢g"(x)
f(x)=F'(x)

Bregman Divergence & Loglikelihood

* For the exponential family of distributions, the loglikelihood
of data given model is related to a Bregman Divergence.

— The divergence depends on which type of exponential
family distribution you pick

— Different well-known divergences are obtainable with
popular choices for G(®)

24



How can it be?!

 The loglikelihood of the data given model can be rewritten as
follows:

—log P(x|©) = —log( P,(x))-xO + G(O)
=—log( £, (x)) —xO +[g(®)0 - F(g(©))]

=—log( F,(x)) - F(g(®))—xO+g(©®)O

—log( £, (x)) - F(g(©)-0-(x—g(0))

~log( B (x)) - F(g(®)-[g " (g(©®))]-(x—g(®))

—log( B (x)) +[F(x)—F(x)]- F(g(©)-[g " (g(®)]- (x - g(©))
—log( R (x)) - F(x)+ F(x)- F(g(@®)) - f(g(®))-(x—g(0))
=—log( £ (x)) — F(x)+ B (x| g(®))

Optimization

* Good news: Loglikelihood can be rewritten in terms of a
Bregman divergence

—log( P(x|®) = —log( £, (x)) — F(x) + B (x| g(©))

» Optimizing negative loglikelihood is commonly done in EM

* Only the Bregman divergence term depends on 0, the rest can
be ignored.
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Exponential PCA

« Problem: Find ® s which come close to the observed data
points X. (Minimize loss)

« Express the ®’ s in a lower dimensionality

« Solution: Find a basis with L principal axes, represent the ®” s
as a linear combination of these axes which most closely
approximate X.

Generalized Exponential PCA

 Natural parameters:
O=4V

* Finally, some dimensions
—Aisn*L
* (rows of A represent the lower dimensionality representation
of a data point)
— VisL*d
« (rows of V represent the principal axes of the model’ s
projection basis)
— Your data X is n*d

26



Generalized Exponential PCA

* Optimize the negative loglikelihood of a model given the data
—log( P(x|0) =—log( F,(x)) - F(x)+ B (x| g(©))
O=4V
— This is equivalent to maximizing a series of Bregman divergences
over the individual components of data.

— Changing the distribution which models the loglikelihood....
 Changes the function G(®), which
» Changes the expectation parameters of the model, which

» Changes the Bregman divergence which was derived from
G(®), which means

* The loss function for the data is different (the Bregman
distance between x and the expectation parameters g(®) )

Example

* Lets choose the Normal distribution
— For a normal distribution, G(®) = ©%/2
— Therefore,
cg@®) =G (©)=0; g'=fx)=x; Fx)=x*2
— Compute the Bregman divergence between x and g(®):
B.(plla)y=F(p)—F(@)—f(q@)-(p—q)
=F(x)-F(g(®) - f(g(®) (x—g(0))

x> @
=———-0-(x—0
> 5 ( )
= lx2 —z®x+l®2
2 2 2
1
= E(X - 0)’ Br(x]|g(©)) ends up being Euclidean distance!
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Example

« We want to optimize & = A J/to fit the loss function.
* Algorithm:
— Initialize A, V =0
— For data= 1:n
* Forc=1:L
— Initialize V_ randomly
— Until convergence,
d,, =argmin ,_y Z B, (xl;,' | g(avqj )
Fori=1:n, j
by =argmin .y 3" By (x; || £(d,.v)
Forj=1:d, !

Summary:

» Use the generative model of PCA
» Extend PCA to use any partition function G(®)
» Convert the negative loglikelihood into a Bregman divergence

» Optimize the negative loglikelihood using an alternating
update procedure over the natural parameters.
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