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CS 2750
Applications of PCA and SVD

Presentation by Daniel Steinberg

Some Slides are New but Most are From or Have been Adapted From:
Fall 2011 Slides by Sherry Sahebi,
Fall 2007 Slides by Cem Akkaya,
And Slides by lyad Batal.
Also Based on Bishop PRML, Assigned Readings, Assorted Websites, and Wikipedia.
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e PCATips, Tricks, Other

* PCA for Dimensionality Reduction

» PCA for Standardizing/Whitening/Sphering
e SVD for PCA

* Latent Semantic Indexing (LSI)

e PCA for Image Compression

* PCA for Facial Recognition

* Kleinberg’s Algorithm (HITS)

* PageRank Algorithm

* Additional Applications




PCA Tips, Tricks, Other

e Center each variable in the data around zero
(required for some of the formulas)

e Other Unsupervised Methods of Dimensionality
Reduction
— Independent Component Analysis (ICA)
— Canonical Correlation Analysis (CCA)

e Last class formulated the PCA solution as that
which maximized the variance of the projected
data.

— An alternative formulation is to find a solution which
minimizes the sum of the squared projection errors.

¢ Under the assumptions we’ve been making, both
formulations return the same solution.

Minimize The Sum-of-Squared Projection Errors
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PCA for Dimensionality Reduction

° X € IRTle

* Get eigenvalues and eigenvectors of X’s
covariance matrix X

e Create a change-of-basis matrix M, where the
columns are the eigenvectors of X, sorted in
descending order by their corresponding
eigenvalues.

Multivariate Normal V' (u, X)
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Projected Data Restored to 2 Dimensions
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PCA for Standardizing/Whitening/Sphering

* Whitening (aka Sphering) is a way of standardizing data
after it has been transformed with PCA.

* Suppose a d-dimensional dataset is projected onto d
principal components.

— Even if the original data before PCA was standardized (unit
variance), the variance of the projected data will be the
eigenvalues of the original covariance matrix.

* Whitening standardizes the projected data by dividing
feature i by \/A;

* Now the projected data are uncorrelated and have unit
variance (standardized)

* Beware of numerical instability from possibly very
small eigenvalues (will result in dividing by a number
very close to zero).

Singular Value Decomposition (SVD)

e SVD decomposes A into the product of three matrices

e U and V have orthonormal columns. (they are unit vectors
and orthogonal to each other)

e XY is a diagonal matrix containing singular values of A in
descending order. The number of non-zero singular values
gives the rank of A.

* Columns of U are the orthogonal eigenvectors of AAT

* Columns of V are the orthogonal eigenvectors of ATA

A€ Rnxd = ]Rrxr

A=Uzvl e Sl
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SVD

 Any N X d matrix A can be uniquely
expressed as:

Nxd Nxr rYr rxd

A=Uzv! :

<]~ ]

r is the rank of the matrix A (# of linearly independent
columns/rows)

U is a column-orthonormal N X r matrix.

Y is a diagonal r X r matrix where the singular values
o; are sorted in descending order.

V is a column-orthonormal d X r matrix.

SVD Example

¢ Covered in Detail Soon

e Don’t get too used to matrix orientation, since we
transpose later

. doc-to-concept
retrieval similarity matrix

inf. . lung
- brain
data 1 brai / [ concepts strengths }

T 111 0 0] [o1s0 7]

cg |22200 0.36 0

’ 11 1 00 018 0 064 0 term-to-concept
4 55 50007 0000 X 0 529 X similarity matrix
T 00022 0 053

MD gg g ;‘ ;‘ 0 080 0,58 058 058 0 0

oL 4 Lo 027 0 0 0 07107

* The rank of this matrix is 2, because we have two types
of documents (CS and Medical documents), i.e., two
concepts.
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SVD Example (cont.)
e
o

int. . lune
data + brain =
concepts strengths

T 11100 0.18 0

cg |22 200 0.36 0

) 11 1 00 018 0 9.64 0 term-to-concept
v 555 0 0|7 oono x|j0 529
T no o022 0 053

MD |20 033 0 080 0,58 058 0580 0

Lopre e 0 o0z [0 D 0 D.?IO.}'I|

U : document-to-concept similarity matrix

V: term-to-concept similarity matrix.

Example: Uy ; is the weight of CS concept in document d4, oy is the
strength of the CS concept, V; ; is the weight of ‘data’ in the CS
concept.

V; » = 0 means data has zero similarity with the 2nd concept
(Medical).

SVD for PCA

e X € R™% mean centered
e ¥ is the covariance matrix of X

* PCA eigenvectors can be obtained using SVD
of either X or X.

_ T T
Z — UzSzVE X = UXSXVX
Uy and Vx both have the eigenvectors for applying PCA

Computing principal components with SVD is nice because it sorts eigenvectors, and
could avoid some numerical precision issues that may arise when calculating covariance
matrix directly.
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SVD for PCA

 Theorem 1: if square d X d matrix S is a real
and symmetric matrix (S = ST) then

S = VAV
where V= [V1 ** Vq] are the eigenvectors of S and
A =diag(A4, ..., A4) are the eigenvalues.

e Theorem 2: Let A = UZIVT be the SVD of an
N X d matrix A and C = ﬁATA bethed X d

covariance matrix. The eigenvectors of C are the
same as the right singular vectors of A.

Vector Space Model

* Documents and queries are represented as
vectors

e Each dimension corresponds to a separate
term

e If aterm occurs in a document or query, its
value is non-zero

d] = [Wl,j Waj Wt,j]T

q — [W1 W2 Wt]T

9/30/2014



Vector Space Model (cont.)

Documents

D1:How to bake bread without recipes

D2:The classic art of Viennese pastry
D3:Numerical recipes: The art of scientific computing

D4:Breads, pastries, pies and cakes: quantity baking recipes

D5:Pastry: A book of best french recipes

Terms

T1:bak(e,ing) T2:recipes T3:bread T4:cake T5:pastr(y,ies) T6:pie

/ ) i
stemming di=[1 1 1 0 0 0]

Vector Space Model (cont.)

Whole database: d documents described by t terms
t x d term-by-document matrix

10 01 0 5774 0 0 .4082 0
1 01 11 5774 0 1 .4082 .7071
A= 10 010 A= 5774 0 0 .4082 0
0 001 O0 0 0 0 .4082 0
01 011 0 1 0 .4082 .7071
0 001 O0 0 0 0 .4082 0

9/30/2014
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Similarity Measure

* Relevant documents are identified by simple
vector operations

* Using spatial proximity for semantic proximity
e Cosine similarity is a widespread similarity

measure. It gives the cosine of the angle
between two vectors.

%3
cos(O;:5) = ———
(65) Il ¥l

Denominator is one when dealing with unit vectors

9/30/2014
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Two-Dimensional Example (two terms)

0]

Term Weighting

* Simplest term (vector component) weightings are:
— Count of number of times word occurs in document
— Binary: word does or doesn’t occur in document

* A document may be considered a better match if a

word occurs three times, as opposed to once, but not a
three times better match.

— Weighting Functions
e 1+ log(x)ifx > 0elsex
e But... Occurrence of a term in a document may be
more important if that term does not occur in many
other documents
— Solution: weight = global weight X local weight

12



Vector Space Shortcomings

* Inability to address synonymy and polysemy.
— synonymy refers to a case where two different words
(say car and automobile) have the same meaning.
* synonymy > underestimate true similarity
— polysemy on the other hand refers to the case where
a term such as charge has multiple meanings
» polysemy —> overestimate true similarity

Could we use the co-occurrences of terms (e.g., “car” and
“automobile”) to capture the latent semantic associations of
terms?

Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI)

* Possible solution to synonymy/polysemy issue.

e Goal: Cluster similar documents which may share no
terms in the latent semantic space, which is a low-
dimensional subspace.

* LS| projects queries and documents into a space with
latent semantic dimensions.

— co-occurring words are projected on the same dimensions

— non-co-occurring words are projected onto different
dimensions

* LSl can seen as a method for dimensionality reduction

— for example, we want to project “car” and automobile
onto the same dimension

9/30/2014
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Latent Semantic Indexing (cont.)

Dimensions of the reduced semantic space
correspond to the axes of greatest variation in
the original space

LSl is accomplished by applying SVD to term-by-
document matrix

Steps:

— Preprocessing: Compute optimal low-rank
approximation (latent semantic space) to the original
term-by-document matrix with help of SVD

— Evaluation: Rank similarity of terms and docs to query

in the latent semantic space via a usual similarity
measure

LS| (cont.)

dl d2 d3 d4 d5

o
(o))

cosmonaut 1 O 1 0 0 O .

astronaut 0 1 0 0 0 O ° Alsaterm_by_

mon 1 1 0 0 0 0 document matrix

car 1 0 0 1 1 o0

tuck 0 0 0 1 0 1) e \Newantto reduceto

. less dimensions

NN — Maybe two?
a * Space

dim1 ¢ Automobiles

d2 d:

9/30/2014
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SVD for LSI
A =TSD'

A is the term-by-document matrix

T is interpreted as a term-to-concept similarity matrix
S is interpreted as the concept strengths

D is interpreted as concept-to-doc similarity matrix

If rank of A is smaller than term count, we can directly
project into a reduced dimensionality space. We may
also want to reduce the dimensionality of A further by
setting small singular values of S to zero.

LS| Steps (visual example follows)

Compute SVD of A = TSD'

Form A by replacing the r - k smallest singular values on the
diagonal by zeros, which is the optimal reduced rank-k
approximation of A.

Projection of documents from the original space to the
reduced rank-k approximation

— in the original space, n dimensions correspond to terms

— in the new reduced space, k dimensions correspond to concepts
Project the query from the original space to the reduced rank-
k approximation
Then we can rank similarity of documents to query in the
reduced latent semantic space via a usual similarity measure

9/30/2014
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d1i
cosmonaut 1
astronaut 0
moon 1
car 1
truck 0

d2 d3 d4

o O B Pk O

o O O O -

Example

o
[63)
(=X
[«

o B O O O
O O O O

diml dim2 dim3 dim4 dim5
cosmonaut —-0.44 -0.30 057 058 0.25
astronaut -0.13 -0.33 -0.59 0.00 0.73

moon -048 -051 -037 0.00 -061
car -070 035 015 -058 0.16
truck -026 065 -041 058 -0.09

216 0 0 0 0
0 15 0 0 0
S=| 0 0 128 0 0
0 0 0 100 O
0 0 0 0 039

di d2 d3 d4 d5 dé
diml -075 -028 -020 -045 -0.33 -0.12
dim2 -029 -053 -019 0.63 022 041
dim3 028 -075 045 -020 012 -0.33
dim4 0 0 0.58 0 -0.58 0.58
dim5 -053 029 -063 019 041 -0.22

D' =

DT =

Cos monaut

astronaut

moon
car
truck

dim3
dim4
dim5

di
diml -075 -0.28 -0.20
dim2 -0.29 -0.53 -0.19

0
0
0

o o o o o

o o o o o
o o o o o

dim1
—-0.44
-0.13
-0.48
-0.70
-0.26

d2

0

0
0

Example (cont.)
e Rank-2 Approximation

We can get rid of zero valued columns and rows
And have a 2 x 2 concept strength matrix

dim2 dim3 dim4 dim5

-0.30

-033

-051
0.35
0.65

a3

0

0
0

We can get rid of zero valued columns
And have a 5 x 2 term-to-concept similarity matrix

o o o o o

d6

-044 -033 -0.12

0 0

0 0

0 0

0 0

0 0

d4 d5

065 022
0 0
0 0
0 0

0.41 We can get rid of zero valued columns
0 And have a 2 x 6 concept-to-doc similarity matrix
0
0

dim1 and dim2 are the new concepts

9/30/2014
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Query

Original space ; Reduced latent semantic space

cosmonaut 1

astronaut 0 :
| moon 0 Q" diml -0.44
car 0 dim2 -0.30
truck 0
dl d2 d3 d4 d5 dé
cosmonaut 1 0 1 0O O O
astronat 0 1 0 0 O 0 d1 a2 K] d4 d5 d6
“|  moon 1 1. 0 0 0 o|—T B=[diml -162 -060 —044 —097 -0.70 —0.26
car 1 0 0 1 1 0 ' dim2 -046 -0.84 -030 1.00 035 065
truck 0o 0 0 1 o0 1

cos(Q,d2)=0 — cos(Q",d2)=0.88

We see that query is not related to document 2 in the original space but
in the latent semantic space they become highly related

PCA for Facial Recognition

* We have n images of different faces.

* We receive a new image of a
and want to match the face in th
new image to a face in our existing
dataset.

17
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PCA for Facial Recognition (cont.)

* A vector of pixel intensities (e.g., a single
greyscale value) is used to represent each image.

* Match the new face image to our existing dataset
by minimizing the distance to the images in our
dataset.

* It turns out that this method works better if we
measure distance not along the original axes, but
the principal component axes.

— There will be w - h (width times height of image)
components

PCA for Image Compression

* aka Hotelling, or Karhunen and Leove (KL) Transform

* For facial recognition, we calculated wh eigenvectors
for our PCA transformation matrix.

* For image compression, we transpose our data before
calculating the eigenvectors.

— So the observations (a vector of pixel intensities) in our
original dataset, are now treated like the features, and the
original features (intensity of a particular pixel), are now
treated like observations.

— Covariance matrix will be n X n, where n is the number of
images, whereas it is typically d X d, where d is the
number of dimensions.

* For compressing the data, we keep apply PCA using k

dimensions, where k < n. A lower k will result in more
compression.

18
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PCA for Image Compression (cont.)

PCA for Image Compression (cont.)

19
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k=37,30,20,10

PCA for Image Compression (cont.)

e The algorithm requires storingann X k
transformation matrix of eigenvectors for
compressing and decompressing (n is number
of images in dataset, and k is the number of
principal components).

e Compression Ratioisn: k

| did not try compressing and uncompressing
images that were outside the dataset used to
generate the eigenvectors.

9/30/2014
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Kleinberg’s Algorithm
Hyperlink-Induced Topic Search (HITS)
aka ‘hubs and authorities’

Extracting information from link structures of a hyperlinked
environment

e Basic essentials
e Authorities
e Hubs

For a topic, authorities are relevant nodes which are referred by
many hubs

e For a topic, hubs are nodes which connect many related authorities
for that topic

e Authorities are defined in terms of hubs and hubs defined in terms
of authorities

e Mutually enforcing relationship (global nature)

e Pages each receive two scores, the authority score and hub score
e Authority score estimates value of content on page
¢ Hub score estimates value of links on page

Authorities and Hubs

Hubs 87. Authorities

* The algorithm can be applied to arbitrary hyperlinked
environments
— World Wide Web (nodes correspond to web pages with links)

— Publications Database (nodes correspond to publications and
links to co-citation relationship)

9/30/2014
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HITS (cont.)

e Three Steps
— Create a focused sub-graph of the Web
— Iteratively compute hub and authority scores
— Filter out the top hubs and authorities

HITS (cont.)

e For the success of the algorithm base set (sub-graph)
should be
— relatively small
— rich in relevant pages
— contains most of the strongest authorities
 Start first with a root set
— obtained from a text-based search engine
— does not satisfy third condition of a useful subgraph
* Solution: extending root set
— add any page pointed by a page in the root set to it
— add any page that points to a page in the root set to it (at most

— the extended root set becomes our base set

9/30/2014
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Root and Base Set

Two Operations

Updating authority weight Updating hub weight
ql ql

i Aﬁ

page p O
a[p]=sum of h[q], page p
for all q pointing to p h[p]=sum of a[q],
93 for all g pointed by p q3

a[p] ... authority weight for page p
h[p] ... hub weight for page p
Iterative algorithm

1. set all weights for each pageto 1

2. apply both operations on each page from the base set and
normalize authority and hub weights separately (sum of squares=1)

3. repeat step 2 until weights converge

9/30/2014
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Matrix Notation

n4
G nl n2 n3 n4d n5
o 2 % nn 0 1 1 1 0
s A= n2 0 0 0 1 O
n3 0 0 0 0 1
Cw / nd 0 0 0 0 0
Q 5 0 0 0 1 0

G (root set) is a directed graph with web pages as
nodes and their links

G can be presented as a connectivity matrix A
1. A(i,j)=1 only if i-th page points to j-th page

Authority weights can be represented as a unit vector a
1. a(i) is the authority weight of the i-th page

Hub weights can be represented as a unit vector h
1. h(i) is the hub weight of the i-th page

Convergence

Two mentioned basic operations can be written as matrix
operations (all values are updated simultaneously)

1. Updating authority weights: a = ATh
2. Updating hub weights: h = Aa
After k iterations:

a,=A"h,
h = Aa,
Thus
1. h,is a unit vector in the direction of (AAT)h,
2. a.is a unit vector in the direction of (ATA)¥th,
Theorem

1. converges to the principal eigenvector of ATA
2. h, converges to the principal eigenvector of AAT

h, = AATR, = b, = (AAT)*h,

Note: This slide was not included when presenting.

9/30/2014
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+ (ATA)*xv' = (const) v, where k>>1, v' is a random vector, v, is the

Convergence

eigenvector of ATA
Proof:
(ATA)k= (ATA) x (ATA) X ... = (VA2VT) x (VA2VY) x ...
= (VAWVT) x ... = (VASVT ) x ... = (VAZkVT)
Using spectral decomposition:
(ATA)k= (VAZVT) = A 2K v, v T+ 2, v, T+ L+ A 2Ky v T
because A, , A, > A ZK>> A, %
thus (ATA)k= A, 2kv, v,T
now (ATA)kxv" = A, 2kv, v;Tx v = (const) v,
because v;™x v' is a scalar.

Note: This slide was not included when presenting.

Sign of Eigenvector

We know that (ATA)k= A 2kv, v,T

Since A is the adjacency matrix, elements of
(ATA)k are all positive

>\, %v, v,T should be positive

A,%kis positive =2 v, v, is positive = all
elements of v, should have the same sign

(either all elements are positive or all are
negative)

Note: This slide was not included when presenting.

9/30/2014
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Sub-Communities

Authority vector converges to the principal eigenvector of
ATA, which lets us choose strong authorities

Hub vector converges to the principal eigenvector of AAT
which lets us choose strong hubs
These chosen authorities and hubs build a cluster in our
network
However there can exist different clusters of authorities
and hubs for a given topic, which correspond to:
— different meanings of a term (e.g. jaguar = animal,car,team)
— different communities for a term (e.g. randomized algorithms)
— polarized thoughts for a term (e.g. abortion)
Extension:

— each eigenvector of ATA and AAT represents distinct authority
and hub vectors for a sub-community in Graph G, respectively.

Note: This slide was not included when presenting.

PageRank Algorithm

PageRank is a link analysis algorithm that assigns
weights to nodes of a hyperlinked environment

It assigns importance scores to every node in the set
which is similar to the authority scores in Kleinberg
algorithm

It is an iterative algorithm like Kleinberg algorithm

Main assumptions:

— in-degree of nodes are indicators of their importance

— links from different nodes are not counted equally. They
are normalized by the out-degree of its source.

Not performed at query time, like Kleinberg’s

algorithm.

9/30/2014
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Simplified PageRank (WWW)

Pr(U) B veg(:u) Fl)—r((vv))

B(u) is the set of nodes
which have alink to u

PageRank Algorithm simulates a random walk over web
pages.
Pr value are interpreted as probabilities

In each iteration we update Pr values of each page
simultaneously

After several passes, Pr value converges to a probability
distribution used to represent the probability that a person
randomly clicking on links will arrive at any particular page

Note: This slide was not included when presenting.

Matrix Notation

Update step 1
p A N E Jifie B;
Pl = Mg X Py M; = J
0 , else

k is the number of total pages
B;is the set of pages which have alink to i-th page

M(i,j) is the transition matrix and defines the
fragment of the jth page’s Pr value which
contributes to the Pr value of the ith page

Note: This slide was not included when presenting.

9/30/2014
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PageRank and Markov Chain

e PageRank defines a Markov Chain on the

pages

— with transition matrix M and stationary

distribution Pr

states are pages

transitions are the links between pages (all equally probable)

e Prvalue of a page is the probability of being at

that page after lots of clicks.

Note: This slide was not included when presenting.

zO,

Matrix Notation

Update step
X 0 05 1 X
yl=l1 0 O0|x|y
z 0 05 0 z

Xx=0-x+1/2-y+1-z
y=1-x+0-y+0-2
z=0-x+1/2-y+0-z

Note: This slide was not included when presenting.

9/30/2014
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Non-Simplified PageRank (WWW)

Pr(u)=ﬁ+d- > Pr(v)

k veB(u) L(V)
Matrix Notation 1— d d
e A ~ T + W Jifie Bj
Plioa = My X Py M; =
1-d
k is the number of total pages k ’ else

B;is the set of pages which have alink to i-th page

* (1-d) defines the probability to jump to a page,
for which there is no link from the current page

— Pr converges to the principal eigenvector of the
transition matrix M

Note: This slide was not included when presenting.

Randomized HITS

 Random walk on HITS
e Odd time steps: update authority
e Even time steps: update hubs
a®) =1+ (1 - e)ArowTh(t)
RED = €1 + (1 — €)Agq ' a®
e t:avery large odd number, large enough that
the random walk converged = The authority

weight of a page = the chance that the page is
visited on time step t

Note: This slide was not included when presenting.

9/30/2014
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Stability of Algorithms

* Being stable to perturbations of the link structure.

e HITS: if the eigengap is big, insensitive to small
perturbations; if it’s small there may be a small

perturbation that can dramatically change its results.

* PageRank: if the perturbed/modified web pages did
not have high overall PageRank, then the perturbed
PageRank scores will not be far from the original.

e Randomized HITS: insensitive to small perturbations

Note: This slide was not included when presenting.

Additional PCA and SVD Applications

e Pattern Detection and Visualization in Gene
Expression Data

e Recommendation Systems and Collaborative
Filtering (winning entry for Netflix Prize
included SVD models)

9/30/2014
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Thanks to Sherry, Cem, and lyad!
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