CS 3750 Machine Learning Lecture 1

Advanced Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3750/

CS 3750 Advanced Machine Learning

Administration

A seminar course

- Classes:
 - Lectures
 - Student (topic-centered) presentations
- No homework assignments
- Short abstracts for assigned readings due before the class
- Course projects

Administration

Course Projects:

- 2 projects
 - Midterm project (assigned)
 - Final project (selected areas, student input welcomes)
- Grading:
 - Projects
 - Paper presentations/ discussions

CS 3750 Advanced Machine Learning

Study material

Study material:

- Textbook from CS 2750
- Handouts (electronic or hardcopy form)
- Books:
 - Chris Bishop. Pattern recognition and Machine Learning Springer, 2006.

Study material

Study material

Other books:

- Koller, Friedman. Probabilistic graphical models.
- Duda, Hart, Stork. *Pattern classification*. 2nd edition. J Wiley and Sons, 2000.
- Friedman, Hastie, Tibshirani. *Elements of statistical learning*. Springer, 2001.
- B. Scholkopf and A. Smola. *Learning with kernels*. MIT Press, 2002.

CS 3750 Advanced Machine Learning

Tentative topics

- · Review: supervised learning, density estimation
- Probabilistic models:
 - BBNs, MRFs, Monte Carlo inference, variational inference
- · Low dimensional representation of data
 - Component analysis and Latent variable models
- Non-parametric models and methods:
 - Graph-based kernels for classification and clustering
- Extending standard learning frameworks:
 - active learning, multi-dimensional learning, transfer learning, learning from multiple annotators
- Outlier detection:
 - unconditional, conditional

Supervised learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of *n* examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \rightarrow Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,...,n$

Two types of problems:

• **Regression:** X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

CS 3750 Advanced Machine Learning

Active learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of n examples $d_i = \langle \mathbf{x}_i, ? \rangle$

 \mathbf{x}_i is input vector, and y is missing

Goal: learn the mapping $f: X \rightarrow Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,...,n$

by asking the user for labels for the different examples in D

Objective: ask as little examples as possible

Multi-dimensional classification learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of *n* examples $d_i = \langle \mathbf{x}_i, \mathbf{y}_i \rangle$

 \mathbf{x}_i is input vector, and \mathbf{y}_i is desired set of outputs

Objective: learn the mapping
$$f: X \rightarrow Y$$

s.t. $\mathbf{y}_i \approx f(\mathbf{x}_i)$ for all $i = 1,...,n$

Caveat: dependences among y components

CS 3750 Advanced Machine Learning

Transfer learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of *n* examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y_i is a desired output

Objective: learn the mapping $f: X \rightarrow Y$

s.t.

$$\mathbf{y}_i \approx f(\mathbf{x}_i)$$
 for all $i = 1,...,n$

Caveat: n is small and the dimensionality of x is high

Assumption: we have $D' = \{d_1', d_2', ..., d_m'\}$

where $d_i' = \langle \mathbf{x}_i, z_i \rangle$ and z and y are related

Anomaly Detection

- Traditional (unconditional) anomaly detection:
 - Data $D=\{x\}$
 - Goal: find anomalous entries in the data
 - find data entries x in low density regions
 - p(x) is small relative to other entries
- Conditional anomaly detection:
 - Data $D=\{(x,y)\}$
 - Goal: find entries with anomalous response y for x
 - find (x,y) entries for which p(y|x) is small relative to alternative responses y for x