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Markov random fields

* Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities

P(x)oc []4.(x)

cecl(x)

#.(x,) - A potential function (defined over factors)

- If #.(x,) is strictly positive we can rewrite the definition as:

1
P(x)= ?exp [— z J - Energy function
cecl(x

- Gibbs (Boltzman) distribution

Z=) exp (— > E. (xC)J - A partition function

xe{x} cecl(x)
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Types of Markov random fields

e MRFs with discrete random variables

— Clique potentials can be defined by mapping all clique-
variable instances to R

— Example: Assume two binary variables A,B with values
{al,a2,a3} and {bl,b2} are in the same clique c. Then:

¢C(A,B); al bl 0.5

al b2 0.2

a2 bl 0.1

a2 b2 0.3

a3 bl 0.2

a3 b2 0.4

— Next: Learning MRFs with discrete random vars
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An example of MRF

* Undirected Graph

O
* Full joint distribution
p(X):%‘//1(X17X2)"//2(X2’X3)'

* Parameters
v (X, =0,X, =0),y,(X, =0,X, =),
v (X, =LX, =0),y (X, =1LX, =1,
w,(X,=0,X;=0),p,(X, =0,X;=1),
v,(X, =1,X;=0),y,(X, =1,X, =1).




Assumptions

Complete data set
— No hidden variables, no missing value
— Independent identically distribution (IID)
Discrete model
Known structure
Parameter independency
Maximum likelihood estimation
— More difficult than that of Bayesian network
— Decomposable or non-decomposable model

Notations

V' : set of nodes of the graph.

X, : the random variable associated with welV
X, : an instantiation of X,

C : asubset of V,

X, set of variables indexed by C

X, : an instantiation of X,

X, orx : an instantiation of all random variables

N : number of samples in the data set D

n:Index of data.n = 1,2...N

D: (D, D, ...,Dy) = (x,), X, 5 .. .X, )




Maximum likelihood estimation for MRF

Full joint distribution

1
p(x, [0)= EHWc(xc)a Z= ZHWC()CC)
C xc C
Likelihood

p(Dn | 0) = p(xV,n | 0) = Hp(xV | 9)5()‘%)‘%”)

Xy

§(xV,xV’n) =1iff x, =Xy,

pD1O)=T]px,, 1O=T]]]p(x |0)""""

n o xy

Maximum likelihood estimation for MRF

Log likelihood
Z(H,D) = logp(D | 0) = log(HHp(xV | 0)5(x1,,,x;,rﬂ)j

nooxy

=2.2.6(x,.x,,)log p(x,|0) =Y m(x,)log p(x, | 6)

» Count: the number of times that configuration x,, is
observed is defined as:

m(x, )= Z o(x,, Xy on )
* And marginal count for clique C :

m(x;) = Z m(x, )

xy\C




Count and Marginal Count

X, | X, | X,
0 0 0

0 0 1 m((X,=0, X, =0, X; =1)) = ?
1 1 0

1 0 1

° 0 m((X,=1, X, =0))= ?

1 0 1

1 1 1

0 0 1

1 0 0

0 1 0

Count and Marginal Count

X, | X | X

0 0 0

5 5 1 m((X,=0, X, =0, X;=1)) = 3
1 1 0

1 0 1

0 0 1

1 0 1

1 1 1 m((X,=1, X, =0)) = ?

0 0 1

1 0 0

0 1 0




Count and Marginal Count

-

m((X,=0, X, =0, X, =1)) = 3

m((X,=1, X, =0))= 3

O_\O_\_\O_\_\OOX
~|lo|lo|=|o|o|o|=|o|o|X
Oo_\_\_\_\_\o_\owx

Maximum likelihood estimation for MRF

* Log likelihood
1(6,D)

=>>6(x,,x,,)log p(x, | 0)

noxy

=D m(x,)log p(x, | 0)

Xy

- Zna(x»log(%nwc (xc>]
= Zm(xV )Zlogwc (xc)— Zm(xV)logZ

=> > m(xc)logy (x.)—NlogZ

C xc




Bayesian network vs MRF

Bayesian network

1(0,D) = Z Z (X 3 pau ) 10 0, (X111 paany)

U Xuyopa(u)

Z(H,D)=ZZm(xC)10gWC(xC)—N10gZ
C xc
10gZ=10gZHWC(xC)
xc C

Maximum likelihood estimation for MRF

* The derivative of the normalization factor Z

e s S
=-Z§(xc, xe) e )(Hwn(xn)j
- —Za(xc xc)gm, (%)

C( )ZHI//D(xD)

S, xe _ p(xc)
‘//c( )Z (erxe)p(x) = Yel(xe)

= Zé‘(xc Xc)




Maximum likelihood estimation for MRF

* The derivative of the log likelihood

AO.D) _ mix) _ plxo)
oWe(xe) welxe) Wel(xe)

» Set it to zero, we obtain:

. 1 ~
P (xc) = ﬁm(xc) = p(xc)
* An important property of MLE of MRF

— For each clique C, the model marginals P (Xc)

must be equal to the empirical marginals p(xe)

Decomposable models

» Graph G is decomposable iff it can be recursively
subdivided into disjoint sets 4, B and S, where S
separates A and B, and where S is complete. The
union of 4 and S and the union of B and § are also
decomposable

X. X. X X.




MLE of Decomposable models

» For every clique C, set the clique potential to the empirical
marginal for that clique

* For every non-empty intersection between cliques, associate
an empirical with that intersection, and divide that empirical
marginal into the potential of one of the two cliques that form
the intersection.

MLE for decomposable models: example

l/>123,ML (x),%,,%3) = P(X;,X,,X5);
D(xy,X5,%,)

‘/}234,ML(xz,x3ax4): = =7 =1
p(x27x3)
7 ﬁ(x 5 Xys X )
‘//234,ML(xzax4,x5):%.
p(x23x4)
¢ X% %)
X5

x X X0 )6 X, X




MLE for decomposable models: example

Could we set ?
WV iosam (X1, X5,X3) = P(X,,X,,X3);
W oz am (%25 X3,%,) = P35, %5, X,);
V345 0 (X5, X4, X5) = P(x5,X,, X5).
MLE of full joint probability
e
P (X) = m

Iterative proportional fitting (IPF)

Properties of IPF

— It works for both decomposable and non-decomposable
models

— It is guaranteed to converge (to a local optima)
— Log-likelihood is guaranteed to increase or remain the same
after

IPF update equation (coordinate ascent)
pE (o) =yl (ve) B
P (xe)
Keep updating potentials to make the empirical and
modeled marginal distributions on the cliques the
same




Two properties of the update equation

* From the update equation, we can get:
z"
P (x) = Wp(xc)

* The marginal of updated clique C is equal to its

empirical marginal 1 B
P (xe) = plxc)

* The normalization factor Z remains constant

VAL, 40

p(xc)
(1)

P (xc)

= p(Hl)(xV) = p(t) (xV)

The relationship between MLE and KL
divergence

« MLE 10,D) =% 5(x,.x,,,)log p(x, | 6)
=Y m(x,)log p(x, | )

=N B(x,)log p(x, | 6)
« KL divergenceXV 500)
D(p(x) || p(x]0)) = ZP(X)log f 0
= Zp(x) log p(x) — Zp(X) log p(x | )

. Max1m121ng the hkehhood is equivalent to minimizing
the KL divergence




Iterative proportional fitting (IPF)

* IPF update equation (coordinate ascent)

. Plxe)
v (xe) = w (e )
P (xc)

» Updates potentials to make the empirical and
modeled marginal distributions the same

* How hard is it to compute the update?
— Empirical clique marginals are typically easy
— Model clique marginals require inference:

* Jirousek & Preucil 1995 - More efficient IPF
implementation using the junction tree




