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Markov Random Fields: learning
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Markov random fields

• Probabilistic models with symmetric dependences. 
– Typically models spatially varying quantities
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- A potential function (defined over factors)
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- A partition function

- Gibbs (Boltzman) distribution

- If             is strictly positive we can rewrite the definition as:

- Energy function
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Types of Markov random fields

• MRFs with discrete random variables
– Clique potentials can be defined by mapping all clique-

variable instances to R
– Example: Assume two binary variables A,B with values 

{a1,a2,a3} and {b1,b2} are in the same clique c. Then:

– Next:  Learning MRFs with discrete random vars

≅),( BAcφ a1 b1 0.5

a1 b2 0.2

a2 b1 0.1

a2 b2 0.3

a3 b1 0.2

a3 b2 0.4

An example of MRF

• Undirected Graph

• Full joint distribution

• Parameters 
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Assumptions

• Complete data set 
– No hidden variables, no missing value
– Independent identically distribution (IID)

• Discrete model
• Known structure
• Parameter independency
• Maximum likelihood estimation

– More difficult than that of Bayesian network
– Decomposable or non-decomposable model

Notations

• V : set of nodes of the graph.
• Xu : the random variable associated with           , 

xu : an instantiation of Xu
• C : a subset of V, 

XC : set of variables indexed by C
xc : an instantiation of XC
xV or x : an instantiation of all random variables

• N : number of samples in the data set D
n : Index of data. n = 1,2…N

• D : (D1, D2, … ,DN) = (xv,1, xv,2, … ,xv,N )
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Maximum likelihood estimation for MRF

• Full joint distribution

• Likelihood
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Maximum likelihood estimation for MRF

• Log likelihood

• Count: the number of times that configuration xV is 
observed is defined as: 

• And marginal count for clique C :
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Count and Marginal Count

X1 X2 X3
0 0 0
0 0 1
1 1 0
1 0 1
0 0 1
1 0 1
1 1 1
0 0 1
1 0 0
0 1 0

m((X1=0, X2 =0, X3 =1)) = ?

m((X1=1, X2 =0))= ?

Count and Marginal Count

X1 X2 X3
0 0 0
0 0 1
1 1 0
1 0 1
0 0 1
1 0 1
1 1 1
0 0 1
1 0 0
0 1 0

m((X1=0, X2 =0, X3 =1)) = 3

m((X1=1, X2 =0)) = ?



Count and Marginal Count

X1 X2 X3
0 0 0
0 0 1
1 1 0
1 0 1
0 0 1
1 0 1
1 1 1
0 0 1
1 0 0
0 1 0

m((X1=0, X2 =0, X3 =1)) = 3

m((X1=1, X2 =0))= 3

Maximum likelihood estimation for MRF

• Log likelihood 
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Bayesian network vs MRF

• Bayesian network

• MRF
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Parameters are 
decomposed

Parameters are not
decomposed
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Maximum likelihood estimation for MRF

• The derivative of the normalization factor Z
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Maximum likelihood estimation for MRF

• The derivative of the log likelihood

• Set it to zero, we obtain:

• An important property of MLE of MRF
– For each clique C, the model marginals
must be equal to the empirical marginals
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Decomposable models

• Graph G is decomposable iff it can be recursively 
subdivided into disjoint sets A, B and S, where S
separates A and B, and where S is complete. The 
union of A and S and the union of B and S are also 
decomposable

X1 X2

X4
X3

X1 X2
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X3



MLE of Decomposable models

• For every clique C, set the clique potential to the empirical 
marginal for that clique

• For every non-empty intersection between cliques, associate 
an empirical with that intersection, and divide that empirical 
marginal into the potential of one of the two cliques that form 
the intersection.  

MLE for decomposable models: example
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MLE for decomposable models: example

• Could we set ?

• MLE of full joint probability 
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Iterative proportional fitting (IPF)

• Properties of IPF
– It works for both decomposable and non-decomposable 

models
– It is guaranteed to converge (to a local optima)
– Log-likelihood is guaranteed to increase or remain the same 

after

• IPF update equation (coordinate ascent)

• Keep updating potentials to make the empirical and 
modeled marginal distributions on the cliques the 
same
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Two properties of the update equation

• From the update equation, we can get:

• The marginal of updated clique C is equal to its 
empirical marginal 

• The normalization factor Z remains constant
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The relationship between MLE and KL 
divergence 

• MLE

• KL divergence

• Maximizing the likelihood is equivalent to minimizing 
the KL divergence
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Iterative proportional fitting (IPF)

• IPF update equation (coordinate ascent)

• Updates potentials to make the empirical and 
modeled marginal distributions the same

• How hard is it to compute the update? 
– Empirical clique marginals are typically easy
– Model clique marginals require inference:

• Jirousek & Preucil 1995 - More efficient IPF 
implementation using the junction tree 
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