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Markov random fields

* Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities

P(x)oc []4.(x)

cecl(x)

#.(x,) - A potential function (defined over factors)

- If #.(x,) is strictly positive we can rewrite the definition as:

1
P(x)= ?exp [— z J - Energy function
cecl(x

- Gibbs (Boltzman) distribution

Z=) exp (— > E. (xC)J - A partition function

xe{x} cecl(x)
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Graphical representation of MRF's

An undirected network (also called independence graph)
« G=(S,E)
— S=1, 2, ..N correspond to random variables
- (,j)e Ee dc:{i,jlcc
or x; and x; appear within the same factor ¢
Example:
— variables A,B .H

Ai
— Assume the full joint of MRF / \C G— H
P(A4,B,.H)~ _— \F/
¢I(A5B’C)¢2(B5D5E)¢3(A’G) \\
$:(C, F)ps(G,H)$(F,H) p E
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Markov random fields

* regular lattice
(Ising model)

« Arbitrary graph
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Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

* Local Markov property

— A set of nodes (variables) can be made independent from
the rest of nodes variables given its immediate neighbors
* Global Markov property
— A vertex set A is independent of the vertex set B (A and B

are disjoint) given set C if all chains in between elements in
A and B intersect C
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Types of Markov random fields

e MRFs with discrete random variables

— Clique potentials can be defined by mapping all clique-
variable instances to R

— Example: Assume two binary variables A,B with values
{al,a2,a3} and {bl,b2} are in the same clique c. Then:

¢C(A,B); al bl 0.5

al b2 0.2

a2 bl 0.1

a2 b2 0.3

a3 bl 0.2

a3 b2 0.4
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Types of Markov random fields

Gaussian Markov Random Field
X~ N(p,X)

p(x|mE) = —%(X—H)Tzl(x—u)}

1
(272')d/2|2|1/2 eXp‘:
Precision matrix X '

Variables in x are connected in the network only if they
have a nonzero entry in the precision matrix

— All zero entries are not directly connected
— Why?
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Tree decomposition of the graph

A -
* A tree decomposition of / \C . H
a graph G: _—C—_§ e

\

— A tree T with a vertex set \
associated to every node. D/E
— For all edges {v,w}eG:
there is a set containing
both vand win T.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph
A
* A tree decomposition of /
a graph G: B
— A tree T with a vertex set \\
associated to every node. -

Cliques in
the graph

D E
— For all edges {v,w}eG:

there is a set containing
both vand win T.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

« Another tree /A\C /3? H
decomposition of a ao—C—_} /
graph G: \\

— A tree T with a vertex set b E
associated to every node.

— For all edges {v,w}eG:
there is a set containing
both vand win 7.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Treewidth of the graph

* Width of Fh'e tree /A /G\\ H
decomposition: —C—_¢ /
max,; | X, | -1 \>
* Treewidth of a graph p E

G: tw(G)= minimum
width over all tree
decompositions of G.
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Trees

Why do we like trees?
» Inference in trees structures can be done in time
linear in the number of nodes

A B C D
O—0O0—C0L—0O

T
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Clique tree

Clique tree = a tree decomposition of the graph
Can be constructed:
—  from the induced graph
Built by running the variable elimination procedure
— from the chordal graph

Built by running the triangulation algorithm

We have precompiled the clique tree.

So how to take advantage of the clique tree to perform
inferences?
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VE on the Clique tree

Variable Elimination on the clique tree
— works on factors

Makes factor a data structure

— Sends and receives messages

Cluster graph for set of factors, each node i is associated with
a subset (cluster) C,.

— Family-preserving: each factor’s variables are completely
embedded in a cluster
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Clique tree properties

* Sepset Sl,j = Ci M Cj
— separation set: Variables X on one side of sepset are

separated from the variables Y on the other side in the
factor graph given variables in S

* Running intersection property

— 1f C; and C,; both contain X, then all cliques on the unique
path between them also contain X
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Clique trees

7°(G,S,1)

z°(C,D) 7°(G,1,D)

Running intersection:
E.g. Cliques involving S form
a connected subtree.

7°(G,J,S,L)

Initial potentials 7:
Assign factors to cliques
and multiply them.

7°(H,G,J)
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Message Passing VE

*  Query for P(J)
— Eliminate C: 7(D)=) #[C,D]
C

Message sent
from [C,D]
to [G,I,D]

N
D

Message received
at [G,I, D] --
[G,I,D] updates:

]G, 1,D]=5,(D)x (G, 1, D]
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Message Passing VE

*  Query for P(J)
— Eliminate D: %(G.D)=Y m[G,1,D]
D

Message sent
from [G,I,D]
to [G,S,I]

N >
D G,I

Message received
at [G,S,I] --
[G,S,I] updates:

1[G,S,N=1,(G,D)x2[G,S,1]
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Message Passing VE

*  Query for P(J)
_ Eliminate I: %(G.8)=) m[G,S.1] (©
I

Message sent
from [G,S,I]
! G,S to [G,],S,L]

S5 >
D G,I

Message received
at [G,],S,L] --
[G,],S,L] updates:

7[4[GJ5S7L]:T3(G9S)X7Z.2[G5J9S5L] !
[G,],5,L] is not ready!
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Message Passing VE

*  Query for P(J)
— Eliminate H: 7,(G,J)=Y ,[H,G,J] ©

H . .
€8 —@E8 {88  message sent

> from [H,G,]]
D G,I J G,S to [GIJIéIL,]
*G,J

7[4[G)J9S)L] =T3(G,S)XT4(G,J)X7T2[G,J,S,L]
And ...

CS 3750 Advanced Machine Learning




Message Passing VE

*  Query for P(J)

— Eliminate K:  7(S) =Z7TO[S,K]
K

[ool—sa0}5Hesa]

> >
D G,I I G,S
<«

All messages
received at [G,],S,L] | 1 G,]

[G,3,S,L] updates: -

to [G,3,S,L]

Message sent
from [S,K]

7Z4[G3J9S3L] :T3(GaS)XT4(G3J)XT6(S)Xﬂ-é(t)[GaJaSaL]

And calculate P(J) from it by summing out G,S,L
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Message Passing VE

[G,J,S,L] clique potential

... 1s used to finish the inference

! G,S
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Message passing VE

* Often, many marginals are desired
— Inefficient to re-run each inference from scratch
— One distinct message per edge & direction

*  Methods :

— Compute (unnormalized) marginals for any vertex
(clique) of the tree

— Results in a calibrated clique tree Z T, = z T
Ci-58y C;-5y

* Recap: three kinds of factor objects
— Initial potentials, final potentials and messages
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Two-pass message passing VE

* Chose the root clique, e.g. [S,K]
» Propagate messages to the root

GI |,@G,s
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Two-pass message passing VE

* Send messages back from the root

< <«
G,S
easi— o |
S
GJl!

Notation:

* number the cliques and
denote the messages

o

i—> j
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Message Passing: BP

* Graphical model of a distribution
— More edges = larger expressive power
— Clique tree also a model of distribution

— Message passing preserves the model but changes the
parameterization

+ Different but equivalent algorithm
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Factor division

A=l |B=1 |05 =1 |B=1 |0.5/0.4=1.25
A=l |B=2 |04 =1 |B=2 |04/0.4=1.0
_ 7 =1 |04
A=2 |B=1 |08 A=2 | B=1 |[0.8/04=2.0
> A=2 |04
A=2 | B=2 |02 A=3 |05 A=2 | B=2 [02/04=2.0
A=3 |B=1 |06 A=3 | B=1 [0.6/0.5=12
A=3 |B=2 |05 A=3 | B=2 [0.5/0.5=1.0

Inverse of factor product
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Message Passing: BP

Each node: multiply all the messages and divide by the one
that is coming from node we are sending the message to

— Clearly the same as VE

DI I | K
C,-S;

s, Ci—S; keN (i)
i>j S = S5 = Z H 5kﬁi

joi joi Ci=S; keN(i)\j

o

— Initialize the messages on the edges to 1
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Message Passing: BP

Mz = 1
2°(4,B) 2B,C) ——  2%C,D)
Store the last message 0,43 = (z 73 (B, C)j

on the edge and divide
each passing message
by the last stored.

7,(C,D) = ﬂy(c,D)% =73(C,D)Y_75(B,C)
B

23

My3 =0, 5= [Z 75 (B, C)j New message
B
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Message Passing: BP
=[Z;:§(B,C)J

me—fel{me e o

C,D)=r(C,D Y(B,C)=x)(C,D
Store the last message 7(C.D) =5 );”2( )=m(C. D)ty

on the edge and divide

each passing message C.D
by the last stored. O3-s2 (2”3( )

7,(B,C) = 73(B,C) 3-52,) ’;Z(B(C? x;ﬂﬁ(amwsw)wr?(B,oX;ﬂ;)(c,D)

Uy =0y, = [Zﬁ3(c D)J > 7(C,D)> 73(B,C) New message
D B
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Message Passing: BP

ty=Y.m(C,D)Y 73(B,C)

ae—fel{me | e o

7'(A4,B) 7,(B,C) «— z,(CD)

C,D)=r)(C,D 9(B,C
Store the last message 7 (€ D)= 75 );”2( )

on the edge and divide

each passing message S = C.D
by the last stored. 2 ;%( D)

7,(B,C)=73(B,C)x ) 75 (C, D) The same as before
; 2(C.D)x Y 7 (B.C) .
e B YTV o) YT X B
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Message Propagation: BP

» Lauritzen-Spiegelhalter algorithm
» Two kinds of objects: clique and sepset potentials
— Initial potentials not kept
» Improved “stability” of asynchronous algorithm (repeated
messages cancel out)
* New distribution representation
— clique tree potential
I1~.(Cc)

7Z'T — C;eT PF(X)

T #,(5,)

(C;e>C el

— Clique tree invariant = Py,
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Loopy belief propagation

The asynchronous BP algorithm works on clique trees
What if we run the belief propagation algorithm on a non-tree

structure?

Sometimes converges
If it converges it leads to an approximate solution
Advantage: tractable for large graphs
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Loopy belief propagation

If the BP algorithm converges, it converges to an optimum of
the Bethe free energy

See papers:

Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief
Propagation, 2000

Yedidia J.S., Freeman W.T. and Weiss Y. Understanding
Belief Propagation and Its Generalizations, 2001
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