CS 3750 Machine Learning Lecture 5

Markov Random Fields

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 3750 Advanced Machine Learning

Markov random fields

- Probabilistic models with symmetric dependences.
 - Typically models spatially varying quantities

$$P(x) \propto \prod_{c \in cl(x)} \phi_c(x_c)$$

 $\phi_c(x_c)$ - A potential function (defined over factors)

- If $\phi_c(x_c)$ is strictly positive we can rewrite the definition as:

$$P(x) = \frac{1}{Z} \exp\left(-\sum_{c \in cl(x)} E_c(x_c)\right)$$
 - Energy function

- Gibbs (Boltzman) distribution

$$Z = \sum_{x \in \{x\}} \exp \left(-\sum_{c \in cl(x)} E_c(x_c) \right) - A \text{ partition function}$$

Graphical representation of MRFs

An undirected network (also called independence graph)

- G = (S, E)
 - S=1, 2, .. N correspond to random variables
 - $-(i,j) \in E \Leftrightarrow \exists c : \{i,j\} \subset c$
 - or x_i and x_i appear within the same factor c

Example:

- variables A,B ..H
- Assume the full joint of MRF

$$P(A, B, ... H) \sim$$

 $\phi_1(A, B, C)\phi_2(B, D, E)\phi_3(A, G)$
 $\phi_4(C, F)\phi_5(G, H)\phi_6(F, H)$

CS 3750 Advanced Machine Learning

Markov random fields

regular lattice (Ising model)

Arbitrary graph

Markov random fields

Pairwise Markov property

 Two nodes in the network that are not directly connected can be made independent given all other nodes

Local Markov property

 A set of nodes (variables) can be made independent from the rest of nodes variables given its immediate neighbors

Global Markov property

A vertex set A is independent of the vertex set B (A and B are disjoint) given set C if all chains in between elements in A and B intersect C

CS 3750 Advanced Machine Learning

Types of Markov random fields

MRFs with discrete random variables

- Clique potentials can be defined by mapping all cliquevariable instances to R
- Example: Assume two binary variables A,B with values {a1,a2,a3} and {b1,b2} are in the same clique c. Then:

$$\phi_c(A,B) \cong$$

al	b1	0.5
al	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

Types of Markov random fields

Gaussian Markov Random Field

$$\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

- Precision matrix Σ^{-1}
- Variables in x are connected in the network only if they have a nonzero entry in the precision matrix
 - All zero entries are not directly connected
 - Why?

CS 3750 Advanced Machine Learning

Tree decomposition of the graph

- A tree decomposition of a graph G:
 - A tree T with a vertex set associated to every node.
 - For all edges $\{v,w\} \in G$: there is a set containing both v and w in T.
 - For every v ∈ G : the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- A tree decomposition of a graph G:
 - A tree T with a vertex set associated to every node.
 - For all edges $\{v,w\} \in G$: there is a set containing both v and w in T.
 - For every v ∈ G : the nodes in T that contain v form a connected subtree.

CS 3750 Advanced Machine Learning

Tree decomposition of the graph

- Another tree decomposition of a graph G:
 - A tree T with a vertex set associated to every node.
 - For all edges $\{v,w\} \in G$: there is a set containing both v and w in T.
 - For every $v \in G$: the nodes in T that contain v form a connected subtree.

Treewidth of the graph

• Width of the tree decomposition:

$$\max_{i \in I} |X_i| - 1$$

• Treewidth of a graph G: tw(G)= minimum width over all tree decompositions of G.

CS 3750 Advanced Machine Learning

Trees

Why do we like trees?

• Inference in trees structures can be done in time linear in the number of nodes

Clique tree

- Clique tree = a tree decomposition of the graph
- Can be constructed:
 - from the induced graph
 Built by running the variable elimination procedure
 - from the chordal graph
 Built by running the triangulation algorithm
- We have precompiled the clique tree.
- So how to take advantage of the clique tree to perform inferences?

CS 3750 Advanced Machine Learning

VE on the Clique tree

- Variable Elimination on the clique tree
 - works on factors
- Makes factor a data structure
 - Sends and receives messages
- Cluster graph for set of factors, each node *i* is associated with a subset (cluster) C_i.
 - Family-preserving: each factor's variables are completely embedded in a cluster

Clique tree properties

- Sepset $S_{ij} = C_i \cap C_j$
 - separation set: Variables X on one side of sepset are separated from the variables Y on the other side in the factor graph given variables in S
- Running intersection property
 - if C_i and C_j both contain X, then all cliques on the unique path between them also contain X

- Query for P(J)
 - Eliminate C: $\tau_1(D) = \sum_C \pi_1^0[C, D]$

$$\pi_2[G,I,D] = \tau_1(D) \times \pi_2^0[G,I,D]$$

CS 3750 Advanced Machine Learning

Message Passing VE

- Query for P(J)
 - Eliminate D: $\tau_2(G,I) = \sum_D \pi_2[G,I,D]$

 $\pi_3[G,S,I] = \tau_2(G,I) \times \pi_3^0[G,S,I]$

CS 3750 Advanced Machine Learning

H,G,J

- Query for P(J)
 - Eliminate I: $\tau_3(G,S) = \sum_I \pi_3[G,S,I]$

 $\pi_4[G,J,S,L] = \tau_3(G,S) \times \pi_4^0[G,J,S,L]$ [G,J,S,L] is not ready!

Message Passing VE

CS 3750 Advanced Machine Learning

- Query for P(J)
 - Eliminate H: $\tau_4(G,J) = \sum_H \pi_5[H,G,J]$

 $\pi_4[G,J,S,L] = \tau_3(G,S) \times \tau_4(G,J) \times \pi_4^0[G,J,S,L]$

And ...

CS 3750 Advanced Machine Learning

(D)

Message Passing VE

- Query for P(J)
 - Eliminate K: $\tau_6(S) = \sum_{K} \pi^0[S, K]$

$$\pi_4[G,J,S,L] = \tau_3(G,S) \times \tau_4(G,J) \times \tau_6(S) \times \pi_4^0[G,J,S,L]$$

And calculate P(J) from it by summing out G,S,L

CS 3750 Advanced Machine Learning

Message Passing VE

- [G,J,S,L] clique potential
- ... is used to finish the inference

Message passing VE

- · Often, many marginals are desired
 - Inefficient to re-run each inference from scratch
 - One distinct message per edge & direction
- Methods:
 - Compute (unnormalized) marginals for any vertex (clique) of the tree
 - Results in a *calibrated* clique tree $\sum_{C_i S_{ij}} \pi_i = \sum_{C_j S_{ij}} \pi_j$
- Recap: three kinds of factor objects
 - Initial potentials, final potentials and messages

CS 3750 Advanced Machine Learning

Two-pass message passing VE

- Chose the root clique, e.g. [S,K]
- Propagate messages to the root

Two-pass message passing VE

• Send messages back from the root

CS 3750 Advanced Machine Learning

Message Passing: BP

- Graphical model of a distribution
 - More edges = larger expressive power
 - Clique tree also a model of distribution
 - Message passing preserves the model but changes the parameterization
- Different but equivalent algorithm

Factor division

A=1	B=1	0.5/0.4=1.25
A=1	B=2	0.4/0.4=1.0
A=2	B=1	0.8/0.4=2.0
A=2	B=2	0.2/0.4=2.0
A=3	B=1	0.6/0.5=1.2
A=3	B=2	0.5/0.5=1.0

Inverse of factor product

CS 3750 Advanced Machine Learning

Message Passing: BP

- Each node: multiply all the messages and divide by the one that is coming from node we are sending **the message to**
 - Clearly the same as VE

$$\delta_{i \to j} = \frac{\sum\limits_{C_i - S_{ij}} \pi_i}{\delta_{j \to i}} = \frac{\sum\limits_{C_i - S_{ij}} \prod\limits_{k \in N(i)} \delta_{k \to i}}{\delta_{j \to i}} = \sum\limits_{C_i - S_{ij}} \prod\limits_{k \in N(i) \setminus j} \delta_{k \to i}$$

- Initialize the messages on the edges to 1

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$\delta_{2\to 3} = \left(\sum_{B} \pi_2^0(B, C)\right)$$

$$\pi_3(C,D) = \pi_3^0(C,D) \frac{\delta_{2\to3}}{\mu_{2,3}} = \pi_3^0(C,D) \sum_B \pi_2^0(B,C)$$

$$\mu_{2,3} = \delta_{2\to 3} = \left(\sum_{B} \pi_2^0(B,C)\right)$$
 New message

CS 3750 Advanced Machine Learning

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$\pi_3(C,D) = \pi_3^0(C,D) \sum_B \pi_2^0(B,C) = \pi_3^0(C,D) \mu_{2,3}$$

$$\delta_{3\to 2} = \left(\sum_{D} \pi_3(C, D)\right)$$

$$\pi_2(B,C) = \pi_2^0(B,C) \frac{\delta_{3\to 2}}{\mu_{2,3}(C)} = \frac{\pi_2^0(B,C)}{\mu_{2,3}(C)} \times \sum_D \pi_3^0(C,D) \times \mu_{2,3}(C) = \pi_2^0(B,C) \times \sum_D \pi_3^0(C,D)$$

$$\mu_{2,3} = \delta_{3\to 2} = \left(\sum_{D} \pi_3(C, D)\right) = \sum_{D} \pi_3^0(C, D) \sum_{B} \pi_2^0(B, C)$$
 New message

Message Passing: BP

Store the last message on the edge and divide each passing message by the last stored.

$$\pi_3(C,D) = \pi_3^0(C,D) \sum_B \pi_2^0(B,C)$$

$$\delta_{3\to 2} = \left(\sum_{D} \pi_3(C, D)\right)$$

$$\pi_2(B,C) = \pi_2^0(B,C) \times \sum_D \pi_3^0(C,D)$$

The same as before

$$\pi_{2}(B,C) = \pi_{2}^{0}(B,C) \times \sum_{D} \pi_{3}^{0}(C,D)$$
 The same
$$\pi_{2}(B,C) = \pi_{2}(B,C) \frac{\delta_{3\to2}}{\mu_{2,3}(C)} = \pi_{2}(B,C) \times \frac{\sum_{D} \pi_{3}^{0}(C,D) \times \sum_{B} \pi_{2}^{0}(B,C)}{\sum_{D} \pi_{3}^{0}(C,D) \times \sum_{B} \pi_{2}^{0}(B,C)} = \pi_{2}(B,C)$$

CS 3750 Advanced Machine Learning

Message Propagation: BP

- Lauritzen-Spiegelhalter algorithm
- Two kinds of objects: clique and sepset potentials
 - Initial potentials not kept
- Improved "stability" of asynchronous algorithm (repeated messages cancel out)
- **New distribution representation**
 - clique tree potential

$$\pi_T = \frac{\prod_{C_i \in T} \pi_i(C_i)}{\prod_{(C_i \leftrightarrow C_j) \in T} \mu_{ij}(S_{ij})} = P_F(X)$$

Clique tree invariant = $P_{\rm F}$

Loopy belief propagation

- The asynchronous BP algorithm works on clique trees
- What if we run the belief propagation algorithm on a non-tree structure?

- Sometimes converges
- If it converges it leads to an approximate solution
- Advantage: tractable for large graphs

CS 3750 Advanced Machine Learning

Loopy belief propagation

• If the BP algorithm converges, it converges to an optimum of the Bethe free energy

See papers:

- Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief Propagation, 2000
- Yedidia J.S., Freeman W.T. and Weiss Y. Understanding Belief Propagation and Its Generalizations, 2001