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Markov Random Fields
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Markov random fields

• Probabilistic models with symmetric dependences. 
– Typically models spatially varying quantities
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- A potential function (defined over factors)
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- A partition function

- Gibbs (Boltzman) distribution

- If             is strictly positive we can rewrite the definition as:

- Energy function
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Graphical representation of MRFs

An undirected network (also called independence graph)
• G = (S, E)

– S=1, 2, .. N  correspond to random variables  
–

or xi and xj appear within the same factor c
Example:

– variables A,B ..H
– Assume the full joint of MRF
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Markov random fields

• regular lattice 
(Ising model)

• Arbitrary graph  
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Markov random fields

• Pairwise Markov property
– Two nodes in the network that are not directly connected 

can be made independent given all other nodes
• Local Markov property

– A set of nodes (variables) can be made independent from 
the rest of nodes variables given its immediate neighbors

• Global Markov property
– A vertex set A is independent of the vertex set B (A and B 

are disjoint) given set C if all chains in between elements in 
A and B intersect C 
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Types of Markov random fields

• MRFs with discrete random variables
– Clique potentials can be defined by mapping all clique-

variable instances to R
– Example: Assume two binary variables A,B with values 

{a1,a2,a3} and {b1,b2} are in the same clique c. Then:

≅),( BAcφ a1 b1 0.5

a1 b2 0.2

a2 b1 0.1

a2 b2 0.3

a3 b1 0.2

a3 b2 0.4
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Types of Markov random fields

• Gaussian Markov Random Field

• Precision matrix
• Variables in x are connected in the network only if they 

have a nonzero entry in the precision matrix
– All zero entries are not directly connected
– Why? 
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Tree decomposition of the graph

• A tree decomposition of 
a graph G:
– A tree T with a vertex set 

associated to every node.
– For all edges {v,w}∈G: 

there is a set containing 
both v and w in T.

– For every v ∈G : the nodes 
in T that contain v form a 
connected subtree.
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Tree decomposition of the graph

• A tree decomposition of 
a graph G:
– A tree T with a vertex set 

associated to every node.
– For all edges {v,w}∈G: 

there is a set containing 
both v and w in T.

– For every v ∈G : the nodes 
in T that contain v form a 
connected subtree.
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Cliques in 
the graph
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Tree decomposition of the graph

• Another tree 
decomposition of a 
graph G:
– A tree T with a vertex set 

associated to every node.
– For all edges {v,w}∈G: 

there is a set containing 
both v and w in T.

– For every v ∈G : the nodes 
in T that contain v form a 
connected subtree.
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Treewidth of the graph
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• Width of the tree 
decomposition:

• Treewidth of a graph 
G: tw(G)= minimum 
width over all tree 
decompositions of G.

1||max −∈ iIi X
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Trees

Why do we like trees? 
• Inference in trees structures can be done in time

linear in the number of nodes
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Clique tree

• Clique tree = a tree decomposition of the graph
• Can be constructed:

– from the induced graph 
Built by running the variable elimination procedure

– from the chordal graph 
Built by running the triangulation algorithm

• We have precompiled the clique tree.  
• So how to take advantage of the clique tree to perform 

inferences? 
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VE on the Clique tree

• Variable Elimination on the clique tree 
– works on factors

• Makes factor a data structure
– Sends and receives messages

• Cluster graph for set of factors, each node i is associated with 
a subset (cluster) Ci.
– Family-preserving: each factor’s variables are completely 

embedded in a cluster
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Clique tree properties

• Sepset 
– separation set: Variables X on one side of sepset are 

separated from the variables Y on the other side in the 
factor graph given variables in S

• Running intersection property
– if Ci and Cj both contain X, then all cliques on the unique 

path between them also contain X 
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Clique trees

C,D

G,J,S,L

G,S,IG,I,D

H,G,J

Running intersection: 
E.g. Cliques involving S form
a connected subtree.

Initial potentials     : 
Assign factors to cliques
and multiply them. 
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Message Passing VE

• Query for P(J)
– Eliminate C: ∑=

C
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H,G,J

Message sent
from [C,D]
to [G,I,D]D

Message received 
at [G,I,D] --
[G,I,D] updates:
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Message Passing VE

• Query for P(J)
– Eliminate D: ∑=

D
DIGIG ],,[),( 22 πτ

C,D

G,J,S,L

G,S,IG,I,D

SK

H,G,J

Message sent
from [G,I,D]
to [G,S,I]D

Message received 
at [G,S,I] --
[G,S,I] updates:
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Message Passing VE

• Query for P(J)
– Eliminate I:

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J

Message sent
from [G,S,I]
to [G,J,S,L]D

Message received 
at [G,J,S,L] --
[G,J,S,L] updates:
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!
[G,J,S,L] is not ready!
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Message Passing VE

• Query for P(J)
– Eliminate H:

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J

Message sent
from [H,G,J]
to [G,J,S,L]D

],,,[),(),(],,,[ 0
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G,I G,S
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Message Passing VE

• Query for P(J)
– Eliminate K:

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J

Message sent
from [S,K]
to [G,J,S,L]D

All messages 
received at [G,J,S,L]
[G,J,S,L] updates:
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And calculate P(J) from it by summing out G,S,L
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Message Passing VE

• [G,J,S,L] clique potential 
• … is used to finish the inference
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Message passing VE

• Often, many marginals are desired
– Inefficient to re-run each inference from scratch
– One distinct message per edge & direction 

• Methods :
– Compute (unnormalized) marginals for any vertex 

(clique) of the tree
– Results in a calibrated clique tree

• Recap: three kinds of factor objects
– Initial potentials, final potentials and messages
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Two-pass message passing VE

• Chose the root clique, e.g.  [S,K]
• Propagate messages to the root
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Two-pass message passing VE

• Send messages back from the root

C,D

G,J,S,L

G,S,IG,I,D

S,K

H,G,J

D G,I

G,S

G,J 
S

Notation:
number the cliques and
denote the messages

ji→δ
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Message Passing: BP

• Graphical model of a distribution
– More edges = larger expressive power
– Clique tree also a model of distribution
– Message passing preserves the model but changes the 

parameterization
• Different but equivalent algorithm
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Factor division

A=1 B=1 0.5

A=1 B=2 0.4

A=2 B=1 0.8

A=2 B=2 0.2

A=3 B=1 0.6

A=3 B=2 0.5

A=1 0.4

A=2 0.4

A=3 0.5

A=1 B=1 0.5/0.4=1.25

A=1 B=2 0.4/0.4=1.0

A=2 B=1 0.8/0.4=2.0

A=2 B=2 0.2/0.4=2.0

A=3 B=1 0.6/0.5=1.2

A=3 B=2 0.5/0.5=1.0

Inverse of factor product
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Message Passing: BP

• Each node: multiply all the messages and divide by the one 
that is coming from node we are sending the message to
– Clearly the same as VE

– Initialize the messages on the edges to 1
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Message Passing: BP

A,B C,DB,CB C
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on the edge and divide
each passing message 
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Message Passing: BP

A,B C,DB,CB C









= ∑

B
CB ),(0

23,2 πµ

3,2
0
3

0
2

0
33 ),(),(),(),( µππππ DCCBDCDC

B

== ∑

),(0
1 BAπ ),(0

2 CBπ









= ∑>−

D
DC ),(323 πδ

),(3 DCπ

∑∑ ×=××== >−

DD

DCCBCDC
C
CB

C
CBCB ),(),()(),(

)(
),(

)(
),(),( 0

3
0
23,2

0
3

3,2

0
2

3,2

230
22 ππµπ

µ
π

µ
δππ

Store the last message
on the edge and divide
each passing message 
by the last stored.
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Message Passing: BP

A,B C,DB,CB C
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The same as before
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Message Propagation: BP

• Lauritzen-Spiegelhalter algorithm
• Two kinds of objects: clique and sepset potentials

– Initial potentials not kept
• Improved “stability” of asynchronous  algorithm (repeated 

messages cancel out)
• New distribution representation

– clique tree potential 

– Clique tree invariant = PF
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Loopy belief propagation
• The asynchronous BP algorithm works on clique trees
• What if we run the belief propagation algorithm on a non-tree 

structure?

• Sometimes converges
• If it converges it leads to an approximate solution
• Advantage: tractable for large graphs
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Loopy belief propagation

• If the BP algorithm converges, it converges to an optimum of 
the Bethe free energy 

See papers: 
• Yedidia J.S., Freeman W.T. and Weiss Y. Generalized Belief 

Propagation, 2000 
• Yedidia J.S., Freeman W.T. and Weiss Y. Understanding 

Belief Propagation and Its Generalizations, 2001 


