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Markov random fields 

•  Probabilistic models with symmetric dependences.  
–  Typically models spatially varying quantities 

- A potential function (defined over factors) 

- A partition function 

- Gibbs (Boltzman) distribution 

- If             is strictly positive we can rewrite the definition as: 

- Energy function 
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Graphical representation of MRFs 

An undirected network (also called independence graph) 
•  G = (S, E) 

–  S=1, 2, .. N  correspond to random variables   
–    

 or xi and xj appear within the same factor c 
Example:  

–  variables A,B ..H 
–  Assume the full joint of MRF 

B C 

D E 

F 

H 
A G 
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Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   
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Markov random fields 

•  regular lattice  
 (Ising model) 

•  Arbitrary graph   
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Markov random fields 

•  Pairwise Markov property 
–  Two nodes in the network that are not directly connected 

can be made independent given all other nodes  

A 

B 
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Markov random fields 

•  Pairwise Markov property 
–  Two nodes in the network that are not directly connected 

can be made independent given all other nodes  
•  Local Markov property 

–  A set of nodes (variables) can be made independent from 
the rest of nodes variables given its immediate neighbors 

•  Global Markov property 
–  A vertex set A is independent of the vertex set B (A and B 

are disjoint) given set C if all chains in between elements in 
A and B intersect C  
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Types of Markov random fields 

•  MRFs with discrete random variables 
–  Clique potentials can be defined by mapping all clique-

variable instances to R 
–  Example: Assume two binary variables A,B with values 

{a1,a2,a3} and {b1,b2} are in the same clique c. Then: 

a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 
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Types of Markov random fields 

•  Gaussian Markov Random Field 

•  Precision matrix 
•  Variables in x are connected in the network only if they 

have a nonzero entry in the precision matrix 
–  All zero entries are not directly connected 
–  Why?  
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MRF variable elimination inference 

Example: 

B C 

D E 

F 
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Eliminate E 
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Factors 
•   Factor:  is a function that maps value assignments for a 

subset of random variables to ℜ (reals) 
•   The scope of the factor:  

–   a set of variables defining the factor 
•  Example:  

–  Assume discrete random variables x (with values a1,a2, a3) 
and y (with values b1 and b2) 

–  Factor:  

–  Scope of the factor: 

a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 

CS 3750 Advanced Machine Learning 

Factor Product 

b1 c1 0.1 

b1 c2 0.6 

b2 c1 0.3 

b2 c2 0.4 

a1 b1 0.5 

a1 b2 0.2 

a2 b1 0.1 

a2 b2 0.3 

a3 b1 0.2 

a3 b2 0.4 

a1 b1 c1 0.5*0.1 

a1 b1 c2 0.5*0.6 

a1 b2 c1 0.2*0.3 

a1 b2 c2 0.2*0.4 

a2 b1 c1 0.1*0.1 

a2 b1 c2 0.1*0.6 

a2 b2 c1 0.3*0.3 

a2 b2 c2 0.3*0.4 

a3 b1 c1 0.2*0.1 

a3 b1 c2 0.2*0.6 

a3 b2 c1 0.4*0.3 

a3 b2 c2 0.4*0.4 

Variables: A,B,C 
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Factor Marginalization 

a1 b1 c1 0.2 

a1 b1 c2 0.35 

a1 b2 c1 0.4 

a1 b2 c2 0.15 

a2 b1 c1 0.5 

a2 b1 c2 0.1 

a2 b2 c1 0.3 

a2 b2 c2 0.2 

a3 b1 c1 0.25 

a3 b1 c2 0.45 

a3 b2 c1 0.15 

a3 b2 c2 0.25 

a1 c1 0.2+0.4=0.6 

a1 c2 0.35+0.15=0.5 

a2 c1 0.8 

a2 c2 0.3 

a3 c1 0.4 

a3 c2 0.7 

Variables: A,B,C 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate D 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate H 
B C 

D E 

F 

H 
A G 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate F 
B C 

D E 

F 

H 
A G 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate G B C 

D E 

F 

H 
A G 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate C B C 

D E 

F 

H 
A G 
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MRF variable elimination inference 

Example (cont): 

B C 

D E 

F 

H 
A G 

Eliminate A B C 

D E 

F 

H 
A G 

B C 

D E 

F 

H 
A G 

CS 3750 Advanced Machine Learning 

Induced graph 

•  A graph induced by a specific variable 
elimination order:   

•  a graph G extended by links that represent 
intermediate factors 
–  . 

B C 

D E 

F 

H 
A G 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

Cliques in  
the graph 
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Tree decomposition of the graph 

•  A tree decomposition of 
a graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 
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Tree decomposition of the graph 

•  Another tree 
decomposition of a 
graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

G 
F 

C G 

A G 

H 
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Tree decomposition of the graph 

•  Another tree 
decomposition of a 
graph G: 
–  A tree T with a vertex set 

associated to every node. 
–  For all edges {v,w}∈G: 

there is a set containing 
both v and w in T. 

–  For every v ∈G : the nodes 
in T that contain v form a 
connected subtree. 

B C 

D E 

F 

A 
B C 

B D 
E 

H 
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A G 

H F F C G G 
H 
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Treewidth of the graph 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

•  Width of the tree 
decomposition: 

•  Treewidth of a graph 
G: tw(G)= minimum 
width over all tree 
decompositions of G. 
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Treewidth of the graph 

B C 

D E 

F 

A A 
B C C 

B D 
E 

H 

F G F C G G 

A G 

H 

•  Treewidth of a graph G: 
tw(G)= minimum width over 
all tree decompositions of G 

•  Why is it important? 
•  The calculations can take 

advantage of the structure and 
be performed more efficiently 

•  treewidth gives the best case 
complexity 

A C B 
D E 

F 
G 

H 

vs 
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Trees 

Why do we like trees?  
•   Inference in trees structures can be done in time 
    linear in the number of nodes in the tree 

A B C D 

E 
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Converting BBNs to MRFs 

Moral-graph H[G]: of a bayesian network over X is an 
undirected graph over X that contains an edge between x and 
y if: 
  There exists a directed edge between them in G. 
  They are both parents of the same node in G. 

C 

D I 

G S 

L 

J H 

C 

D I 

G S 

L 

J H 
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Moral Graphs 
Why moralization?  

C 

D I 

G S 

L 

J H 

C 

D I 

G S 

L 

J H 
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Chordal graphs 

Chordal Graph: an undirected graph G whose minimum cycle 
contains 3 verticies.   

C 

D I 

G S 

L 

J 
H 

C 

D I 

G S 

L 

J 
H 

Chordal. Not Chordal. 
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Chordal Graphs 

Properties: 
–  There exists an elimination ordering that adds no edges. 
–  The minimal induced treewidth of the graph is equal to the 

size of the largest clique - 1.  
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Triangulation 

The process of converting a graph G into a chordal graph is 
called Triangulation.  

•   A new graph obtained via triangulation is: 
1)  Guaranteed to be chordal. 
2)  Not guaranteed to be (treewidth) optimal. 

•  There exist exact algorithms for minimal chordal 
graphs, and heuristic methods with a guaranteed upper 
bound.  
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Chordal Graphs 

•  Given a minimum triangulation for a graph G, we can carry 
out the variable-elimination algorithm in the minimum 
possible time.   

•  Complexity of the optimal triangulation: 
–  Finding the minimal triangulation is NP-Hard. 

•  The inference limit:  
–  Inference time is exponential in terms of the largest 

clique (factor) in G. 
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Inference: conclusions 

•  We cannot escape exponential costs in the treewidth. 

•  But in many graphs the treewidth is much smaller than the total 
number of variables  

•  Still a problem: Finding the optimal decomposition is hard 
–  But, paying the cost up front may be worth it. 
–  Triangulate once, query many times.  
–  Real cost savings if not a bounded one.    


