CS 3750 Machine Learning Lecture 4

Markov Random Fields

Milos Hauskrecht
milos@,cs.pitt.edu
5329 Sennott Square

Markov random fields

- Probabilistic models with symmetric dependences.
- Typically models spatially varying quantities

$$
P(x) \propto \prod_{c \in c l(x)} \phi_{c}\left(x_{c}\right)
$$

$\phi_{c}\left(x_{c}\right)$ - A potential function (defined over factors)

- If $\phi_{c}\left(x_{c}\right)$ is strictly positive we can rewrite the definition as:

$$
P(x)=\frac{1}{Z} \exp \left(-\sum_{c \in c l(x)} E_{c}\left(x_{c}\right)\right) \quad \text { - Energy function }
$$

- Gibbs (Boltzman) distribution
$Z=\sum_{x \in\{x\}} \exp \left(-\sum_{c \in c=c \mid(x)} E_{c}\left(x_{c}\right)\right) \quad$ - A partition function

Graphical representation of MRFs

An undirected network (also called independence graph)

- $\mathrm{G}=(\mathrm{S}, \mathrm{E})$
- $\mathrm{S}=1,2$, .. N correspond to random variables
$-\quad(i, j) \in E \Leftrightarrow \exists c:\{i, j\} \subset c$
or x_{i} and x_{j} appear within the same factor c
Example:
- variables A,B ..H
- Assume the full joint of MRF $P(A, B, \ldots H) \sim$
$\phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G)$ $\phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$

Markov random fields

- regular lattice (Ising model)

- Arbitrary graph

Markov random fields

- regular lattice
(Ising model)

- Arbitrary graph

Markov random fields

- Pairwise Markov property
- Two nodes in the network that are not directly connected can be made independent given all other nodes

$$
\begin{array}{r}
P\left(x_{A}, x_{B} \mid x_{r}\right)=\frac{P\left(x_{A}, x_{B}, x_{r}\right)}{P\left(x_{r}\right)} \propto \exp \left(-\sum_{c: c \cap A \neq\}} E_{c}\left(x_{c}\right)-\sum_{c: c \cap A=\}, c \cap B \neq\}} E_{c}\left(x_{c}\right)-\sum_{c: c \cap A=\}, c \cap B=\{ \}} E_{c}\left(x_{c}\right)\right. \\
\quad \propto \exp \left(-\sum_{c: c \cap A \neq\}} E_{c}\left(x_{c}\right)\right) \exp \left(-\sum_{c: c \cap A=\}, c \cap B *\}} E_{c}\left(x_{c}\right)\right) \approx P\left(x_{A} \mid x_{r}\right) P\left(x_{B} \mid x_{r}\right)
\end{array}
$$

Markov random fields

- Pairwise Markov property
- Two nodes in the network that are not directly connected can be made independent given all other nodes
- Local Markov property
- A set of nodes (variables) can be made independent from the rest of nodes variables given its immediate neighbors
- Global Markov property
- A vertex set A is independent of the vertex set B (A and B are disjoint) given set C if all chains in between elements in A and B intersect C

Types of Markov random fields

- MRFs with discrete random variables
- Clique potentials can be defined by mapping all cliquevariable instances to R
- Example: Assume two binary variables A,B with values $\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3\}$ and $\{\mathrm{b} 1, \mathrm{~b} 2\}$ are in the same clique c . Then:
$\phi_{c}(A, B) \cong$

a1	b1	0.5
a1	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

Types of Markov random fields

- Gaussian Markov Random Field

$$
\begin{aligned}
& \mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
& p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
\end{aligned}
$$

- Precision matrix $\boldsymbol{\Sigma}^{-1}$
- Variables in x are connected in the network only if they have a nonzero entry in the precision matrix
- All zero entries are not directly connected
- Why?

MRF variable elimination inference

Example:

$$
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)
$$

$=\sum_{A, C, \mathcal{D}, . . H} \phi_{1}(A, B, C) \phi_{2}(B, D, E) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$

Eliminate E

$$
=\frac{\sum_{A, C, D, F, G, H} \phi_{1}(A, B, C) \underbrace{\left[\sum_{E} \phi_{2}(B, D, E)\right.}_{\tau_{1}(B, D)}]}{\operatorname{cs}_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G)}
$$

Factors

- Factor: is a function that maps value assignments for a subset of random variables to \mathfrak{R} (reals)
- The scope of the factor:
- a set of variables defining the factor
- Example:
- Assume discrete random variables x (with values $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3$) and y (with values b1 and b2)
- Factor:

$$
\phi(x, y) \longrightarrow
$$

- Scope of the factor:

$$
\{x, y\}
$$

a1	b1	0.5
a1	b2	0.2
a2	b1	0.1
a2	b2	0.3
a3	b1	0.2
a3	b2	0.4

Factor Product

$\phi(A, B, C)=\phi(B, C) \circ \phi(A, B)$						$\phi(A, B, C)$			
$\phi(B, C)$			$\phi(A, B)$			al	b1	c1	0.5*0.1
			al	b1	c2	${ }^{0.5 * 0.6}$			
			al	bl	0.5	al	b2	cl	$0^{0.2 * 0.3}$
b1	cl	0.1				al	b2	c2	$0^{0.2 * 0.4}$
			a1	b2	0.2	a2	b1	c1	${ }^{0.1 * 0.1}$
b1	c2	0.6	a2	b1	0.1	a^{2}	b1	c2	$0.1 * 0.6$
						a2	b2	cl	${ }^{0.3}{ }^{*} 0.3$
b2	c1	0.3	a2	b2	0.3	a2	b2	c2	${ }^{0.3 * 0.4}$
b2	c2	0.4	${ }^{\text {a }} 3$	b1	0.2	a3	b1	cl	$0.2 * 0.1$
						a3	b1	c2	${ }^{0.2 *}{ }^{*} 0.6$
			${ }^{\text {a }} 3$	b2	0.4	a3	b2	cl	$0^{0.4 * 0.3}$
						a3	b2	c2	$0.4 * 0.4$

Factor Marginalization

Variables: A, B, C $\quad \phi(A, C)=\sum_{B} \phi(A, B, C)$

a1	b1	c1	0.2	B		
a1	b1	c2	0.35			
a1	b2	c1	0.4			
a1	b2	c2	0.15			
				al	c1	$0.2+0.4=0.6$
a2	b1	c1	0.5	al	c2	$0.35+0.15=0.5$
a2	b1	c2	0.1	a2	c1	0.8
a2	b2	c1	0.3	a2	c2	0.3
a2	b2	c2	0.2	a3	c1	0.4
				a3	c2	0.7
a3	b1	c1	0.25			

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
& \text { Example (cont): } \\
& P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\sum_{A, C, D, F, G, H} \phi_{1}(A, B, C) \tau_{1}(B, D) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H) \\
& \text { Eliminate } \mathrm{D} \\
& =\sum_{A, C, F, G, H} \phi_{1}(A, B, C) \underbrace{\tau_{1}(B, D)}_{\tau_{2}(B)}] \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)
\end{aligned}
$$

MRF variable elimination inference

Example (cont):
$P(B)=\sum_{A, C, \mathcal{D}, \ldots H} P(A, B, \ldots H)$

$=\sum_{A, C, F, G, H} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \phi_{5}(G, H) \phi_{6}(F, H)$
Eliminate H

$=\sum_{A, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F)[\underbrace{\sum_{\tau_{3}(F, G, H)}^{\phi_{5}(G, H) \phi_{6}(F, H)}}_{\tau_{4}(F, G)}]$

MRF variable elimination inference

Example (cont):

$$
P(B)=\sum_{A, C, D, \ldots H} P(A, B, \ldots H)
$$

$=\sum_{A, C, F, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \phi_{4}(C, F) \tau_{4}(F, G)$
Eliminate F

$=\sum_{A, C, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G)\left[\sum_{F}^{\sum_{t_{4}}(C, F) \tau_{4}(F, G)}\right]$
$\tau_{5}(C, F, G)$
$\underbrace{}_{\tau_{6}(G, C)}$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B) & =\sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\sum_{A, C, G} \phi_{1}(A, B, C) \tau_{2}(B) \phi_{3}(A, G) \tau_{6}(C, G)
\end{aligned}
$$

Eliminate G

$$
=\sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B)[\underbrace{\sum_{\tau_{7}(A, C, G)}^{\phi_{3}(A, G) \tau_{6}(C, G)}}_{\boldsymbol{\tau}_{8}(A, C)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{aligned}
P(B)= & \sum_{A, C, D, \ldots H} P(A, B, \ldots H) \\
& =\sum_{A, C} \phi_{1}(A, B, C) \tau_{2}(B) \tau_{8}(A, C)
\end{aligned}
$$

Eliminate C

$$
=\sum_{A} \tau_{2}(B)[\underbrace{\sum_{\tau_{9}(A, B, C)}^{\phi_{1}(A, B, C) \tau_{8}(A, C)}}_{\tau_{10}(A, B)}]
$$

MRF variable elimination inference

Example (cont):

$$
\begin{array}{rl}
P(B)=\sum_{A, C, D, \ldots H} & P(A, B, \ldots H) \\
& =\sum_{A} \tau_{2}(B) \tau_{10}(A, B) \\
& =\tau_{2}(B) \sum_{A} \tau_{10}(A, B)
\end{array}
$$

Eliminate A
B

$$
=\tau_{2}(B) \underbrace{\sum_{A} \tau_{10}(A, B)}_{\tau_{11}(B)}
$$

$$
=\tau_{2}(B) \tau_{11}(B)
$$

B

Induced graph

- A graph induced by a specific variable elimination order:
- a graph G extended by links that represent intermediate factors
- .

Tree decomposition of the graph

- A tree decomposition of a graph \mathbf{G} :
- A tree T with a vertex set associated to every node.
- For all edges $\{v, w\} \in G$: there is a set containing both v and w in T.
- For every $v \in G$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- A tree decomposition of a graph G:
- A tree T with a vertex set associated to every node.
- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in G$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- A tree decomposition of a graph G:
- A tree T with a vertex set associated to every node.
- For all edges $\{v, w\} \in G$:
 there is a set containing both v and w in T.
- For every $v \in G$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- Another tree decomposition of a graph G:
- A tree T with a vertex set associated to every node.

- For all edges $\{v, w\} \in \mathrm{G}$: there is a set containing both v and w in T.
- For every $v \in G$: the nodes in T that contain v form a connected subtree.

Tree decomposition of the graph

- Another tree
decomposition of a graph G:
- A tree T with a vertex set associated to every node.

- For all edges $\{v, w\} \in G$: there is a set containing both v and w in T.
- For every $v \in G$: the nodes in T that contain v form a connected subtree.

Treewidth of the graph

- Width of the tree decomposition:

$$
\max _{i \in I}\left|X_{i}\right|-1
$$

- Treewidth of a graph
 $G: \operatorname{tw}(G)=$ minimum width over all tree decompositions of G.

Treewidth of the graph

- Treewidth of a graph G : $\operatorname{tw}(G)=$ minimum width over all tree decompositions of G
- Why is it important?
- The calculations can take
 advantage of the structure and be performed more efficiently
- treewidth gives the best case complexity

Trees

Why do we like trees?

- Inference in trees structures can be done in time linear in the number of nodes in the tree

Converting BBNs to MRFs

Moral-graph H[G]: of a bayesian network over X is an undirected graph over X that contains an edge between x and y if:

- There exists a directed edge between them in G.
- They are both parents of the same node in G.

Moral Graphs

Why moralization?

$$
\begin{aligned}
& P(C, D, G, I, S, L, J, H)= \\
& \quad=P(C) P(D \mid C) P(G \mid I, D) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J) \\
& \quad=\phi_{1}(C) \phi_{2}(D, C) \phi_{3}(G, I, D) \phi_{4}(S, I) \phi_{5}(L, G) \phi_{6}(J, L, S) \phi_{7}(H, G, J)
\end{aligned}
$$

Chordal graphs

Chordal Graph: an undirected graph G whose minimum cycle contains 3 verticies.

Chordal.

Not Chordal.

Chordal Graphs

Properties:

- There exists an elimination ordering that adds no edges.
- The minimal induced treewidth of the graph is equal to the size of the largest clique -1 .

Triangulation

The process of converting a graph G into a chordal graph is called Triangulation.

- A new graph obtained via triangulation is:

1) Guaranteed to be chordal.
2) Not guaranteed to be (treewidth) optimal.

- There exist exact algorithms for minimal chordal graphs, and heuristic methods with a guaranteed upper bound.

Chordal Graphs

- Given a minimum triangulation for a graph G, we can carry out the variable-elimination algorithm in the minimum possible time.
- Complexity of the optimal triangulation:
- Finding the minimal triangulation is NP-Hard.
- The inference limit:
- Inference time is exponential in terms of the largest clique (factor) in G.

Inference: conclusions

- We cannot escape exponential costs in the treewidth.
- But in many graphs the treewidth is much smaller than the total number of variables
- Still a problem: Finding the optimal decomposition is hard
- But, paying the cost up front may be worth it.
- Triangulate once, query many times.
- Real cost savings if not a bounded one.

