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Markov random fields

* Probabilistic models with symmetric dependences.
— Typically models spatially varying quantities

P(x) o J]o.(x)

cecl(x)

¢.(x,) - Apotential function (defined over factors)

- If ¢.(x.) is strictly positive we can rewrite the definition as:
1
P(x) = ~ eXp( - Le;) - Energy function
- Gibbs (Boltzman) distribution

Z = exp( - E (x, )) - A partition function
xE{x}

cEcl(x)
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Graphical representation of MRFs

An undirected network (also called independence graph)
* G=(S,E)
— S=1, 2, .. N correspond to random variables
- (4, ))EE<=3Tc:{i,j} Cc
or x; and x; appear within the same factor ¢
Example:
— variables A,B .H L
_ Assume the full joint of MRF / G—
P(A,B,..H) ~ \C\F
¢ (4, B,C)p,(B, D, E)ps(A,G) \>
¢.(C, F)¢s (G, H) s (F, H) p E
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Markov random fields

* regular lattice
(Ising model)

* Arbitrary graph
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Markov random fields

* regular lattice
(Ising model)

* Arbitrary graph
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Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

A
P P(x,,Xp,X,)
ceNA={},cNB={} cieNA={},cNB={}
x exp - EEC(XC) exp - Ec(xc) zP(xA |xr)P(xB |xr
ceNA={} cieNA={},cNB={}

CS 3750 Advanced Machine Learning




Markov random fields

* Pairwise Markov property

— Two nodes in the network that are not directly connected
can be made independent given all other nodes

* Local Markov property

— A set of nodes (variables) can be made independent from
the rest of nodes variables given its immediate neighbors
* Global Markov property
— A vertex set A is independent of the vertex set B (A and B

are disjoint) given set C if all chains in between elements in
A and B intersect C
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Types of Markov random fields

e MRFs with discrete random variables

— Clique potentials can be defined by mapping all clique-
variable instances to R

— Example: Assume two binary variables A,B with values
{al,a2,a3} and {b1,b2} are in the same clique c. Then:

¢C (A, B) = al bl 0.5

al b2 0.2

a2 bl 0.1

a2 b2 0.3

a3 bl 0.2

a3 b2 0.4

CS 3750 Advanced Machine Learning




Types of Markov random fields

e Gaussian Markov Random Field
X~ N(H: Z)

p(x| 1 E) = xp —%(x—u)Tz"(x—m

(2ﬂ)d/2|2|1/2 €
o e . -1
e Precision matrix 2

* Variables in x are connected in the network only if they
have a nonzero entry in the precision matrix

— All zero entries are not directly connected
— Why?
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MRF variable elimination inference

e
Example: / \ G\/H
P(B) = P(A,B,..H) BZ € TF
A,;..H \>
D E

= CE¢1(A,B,C)¢2(B,D,E)¢3(A,G)¢4(C,F)¢5(G,H)¢6(F,H)

a

G —
/H
Eliminate E B_ ¢ —F

N~
D E
-3 ¢1<A,B,C)[Eqsz(B,D,E)J@(A,G)¢4(c,F)¢5(G,H)¢6(F,H)
v,(B.D)
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Factors

» Factor: is a function that maps value assignments for a
subset of random variables to ) (reals)

* The scope of the factor:
— aset of variables defining the factor
* Example:

— Assume discrete random variables x (with values al,a2, a3)
and y (with values bl and b2)

— Factor: a | o ] o
al b2 0.2
——

¢(x, )
a2 bl 0.1
— Scope of the factor: 2 | m | o
{X, y} a3 b1 02
a3 b2 0.4
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Factor Product

.
Variables: A,B,C
¢(4,B,C) =¢(B,C)o¢(4,B) ¢(A4,B,C)
(B C) ¢(A B) al bl cl 0.5%0.1
b
¢ > al bl IS 05%0.6
al b2 cl 02%0.3
al b2 02 a2 bl cl 0.1%0.1
bl ) 0.6 a2 bl IS 0.1%0.6
a2 bl 0.1
a2 b2 cl 03%0.3
b2 1 03
¢ a2 b2 03 a2 b2 2 03%0.4
- " 0 3 o ” a3 bl cl 02%0.1
a3 bl IS 02%0.6
a3 b2 04 a3 b2 cl 0.4%0.3
a3 b2 2 0.4%0.4
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Factor Marginalization

.
Variables: A,B,C #(A4,C) = E ¢(4,B,C)
B
al bl cl 0.2
al bl c2 0.35
al b2 cl 0.4
al b2 c2 0.15
al cl 0.2+0.4=0.6
a2 bl cl 0.5
al c2 0.35+0.15=0.5
a2 bl c2 0.1 a2 ol 0.8
a2 b2 cl 0.3 a2 c2 0.3
a3 cl 0.4
a2 b2 c2 0.2
a3 c2 0.7
a3 bl cl 0.25
a3 bl c2 0.45
a3 b2 cl 0.15
a3 b2 c2 0.25
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MRF variable elimination inference

A
Example (cont): /N Gy
PB)= > P(A4B..H) R O
oy N
D

= Y h(4,B.C)r (B, D) (A4, G, (C, F)ps(G, H)ps (F, H)

A,C,D,F,G,H
A
Eliminate D /N T

B
\
D
¢1(A,B,C)‘ Z T (B,D)]¢3(A,G)¢4(C,F)¢5(G,H)¢6(F»H)

7,(B)
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MRF variable elimination inference

G

Example (cont): /A\i H
P(B) = CE P(A,B,..H) B~ C TF

= $ (A4, B, C)t, (B)p; (A, G)p, (C, F)ps (G, H)p (F', H)

A4,C.F.G.H

G —

A
Eliminate H / \ H

B~ ¢ TF

= Z ¢1(A,B,C)Tz(3)¢3(A,G)¢4(C,F)[Z ¢5(G,H)¢6(F,€)
A,CF,G \ .
~

. TnF.GH)

Y
7,(F.G)
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MRF variable elimination inference

Example (cont): / \ \
P(B) = ; P(A,B,...H) g— €

2@(14 B,C),(B)¢s (4, )¢, (C, F)T4(F G)

Eliminate F B//\C \\

-3 (A,B,C>r2(3)¢3(A,G)[2 4.(C.F)r,(F.G)
,C,G \
¢

tS(C:Fa G) J

Y
7,(G,C)
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MRF variable elimination inference

A
Example (cont): / \ /G
P(B) = CE P(A,B,..H) B— €

A,C.D,.H

= AZ(A(A,B,C)TZ(B)%(A,G)%(C, G)

A~ G
/NS
g— C

Eliminate G

- S0, (B)[Z .(4.G)r,(C.G)

.
7,(4,C,G)

Y
7,(4,C)
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MRF variable elimination inference

A
Example (cont): / \
P(B) = ; P(A,B,..H) B~ C
A,C,D,..H

= Z@(A,B, CO)r,(B)T(A4,0)

Eliminate C g— C

- Zrz (B)[Z ¢L(A,B, QTS(A,g)

|\ T9(A5B3C)J

Y
7,,(4,B)
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MRF variable elimination inference
Example (cont): /
P(B) = CE P(A,B,..H) B

B ERGLACH
=772(B)27510(A>B) A

Eliminate A

= Tz(B)ZTm(AaB)
%_J
7,,(B)

=7,(B)T,,(B)
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Induced graph

* A graph induced by a specific variable
elimination order:

« a graph G extended by links that represent
intermediate factors

N

D E
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Tree decomposition of the graph

A -
* A tree decomposition of G

/ H
a graph G: B/\C\F/
— Atree T with a vertex set T~
associated to every node.
— For all edges {v,w}€EG:
there is a set containing
both vand win T.
— For every v €G : the nodes

in T that contain v form a
connected subtree.

D E
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Tree decomposition of the graph
A
* A tree decomposition of /
a graph G: B
— Atree T with a vertex set \\
associated to every node. -

D E Cliques in

— For all edges {v,w}EG: the graph
there is a set containing
both v and win 7.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

A
* A tree decomposition of H

a graph G: 8
— Atree T with a vertex set

associated to every node.
— For all edges {v,w}€EG:

there is a set containing

both vand win T.

— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

A—Gg—_

* Another tree H

decomposition of a B//\C/\)F(/
graph G: \\

— A tree T with a vertex set D E

associated to every node.
— For all edges {v,w}EG:
there is a set containing
both vand win T.
— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Tree decomposition of the graph

AT QG
* Another tree / 4 \\ H
decomposition of a —3 /
graph G: \\
— Atree T with a vertex set D/E
associated to every node.
— For all edges {v,w}EG:
there is a set containing
both vand win T.
— For every v €G : the nodes
in T that contain v form a
connected subtree.
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Treewidth of the graph
* Width of the tree / \C / \ H
decomposition: B— C—F /
max ., | X, | -1 N
* Treewidth of a graph p E

G: tw(G)= minimum
width over all tree
decompositions of G.
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Treewidth of the graph

Treewidth of a graph G: A——G—
tw(G)= minimum.\yidth over / \C / \
all tree decompositions of G g—C—F
Why is it important? \>

The calculations can take D E

advantage of the structure and
be performed more efficiently

treewidth gives the best case
complexity

VS

-

H
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Trees

Why do we like trees?
 Inference in trees structures can be done in time
linear in the number of nodes in the tree

A B C D
O—0O—~0Q—0O

™
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Converting BBNs to MRFs

Moral-graph H[G]: of a bayesian network over X is an
undirected graph over X that contains an edge between x and
y if:

= There exists a directed edge between them in G.

= They are both parents of the same node in G.

& b

g@/@ ,:,e
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Moral Graphs

Why moralization?

P(,D,G,1,S,L,J,H) =
= P(C)P(D|CYP(G|I,D)P(S|I)P(L|G)P(J|L,S)P(H|G,J)
= (O, (D, C)py(G,1,D)¢, (S, D5 (L, G)(J, L, S)¢ (H, G, J)

P(G|1,D)

$5(G,1,D)
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Chordal graphs

Chordal Graph: an undirected graph G whose minimum cycle
contains 3 verticies.

Chordal. Not Chordal.
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Chordal Graphs

Properties:
— There exists an elimination ordering that adds no edges.

— The minimal induced treewidth of the graph is equal to the
size of the largest clique - 1.
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Triangulation

The process of converting a graph G into a chordal graph is
called Triangulation.

. A new graph obtained via triangulation is:
1) Guaranteed to be chordal.
2) Not guaranteed to be (treewidth) optimal.

»  There exist exact algorithms for minimal chordal
graphs, and heuristic methods with a guaranteed upper
bound.
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Chordal Graphs

Given a minimum triangulation for a graph G, we can carry
out the variable-elimination algorithm in the minimum
possible time.

Complexity of the optimal triangulation:
— Finding the minimal triangulation is NP-Hard.

The inference limit:

— Inference time is exponential in terms of the largest
clique (factor) in G.
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Inference: conclusions
* We cannot escape exponential costs in the treewidth.

* But in many graphs the treewidth is much smaller than the total
number of variables

 Still a problem: Finding the optimal decomposition is hard
— But, paying the cost up front may be worth it.
— Triangulate once, query many times.

— Real cost savings if not a bounded one.
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