CS 3750 Machine Learning

Lecture 3

Advanced Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845
http://www.cs.pitt.edu/~milos/courses/cs3750/

Supervised learning

Data: $D=\left\{d_{1}, d_{2}, . ., d_{n}\right\} \quad$ a set of \boldsymbol{n} examples

$$
d_{i}=\left\langle\mathbf{x}_{i}, y_{i}\right\rangle
$$

\mathbf{x}_{i} is input vector, and y is desired output (given by a teacher)
Objective: learn the mapping $f: X \rightarrow Y$
s.t. $y_{i} \approx f\left(x_{i}\right)$ for all $i=1, . ., n$

Two types of problems:

- Regression: X discrete or continuous \rightarrow

Y is continuous

- Classification: X discrete or continuous \rightarrow

Y is discrete

Supervised learning examples

- Regression: Y is continuous

Debt/equity Earnings Future product orders	\longrightarrow company stock price

- Classification: Y is discrete

Label " 3 "

Handwritten digit (array of 0,1s)

Linear regression

- Model $f(\mathbf{x})=\mathbf{w}^{\mathbf{T}} \mathbf{x}+b$

Mean Squared Error (or Loss): x

$$
J_{n}=\frac{1}{n} \sum_{i=1, \ldots n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1, \ldots n}\left(y_{i}-\mathbf{w}^{\mathbf{T}} \mathbf{x}_{i}-b\right)^{2}
$$

Linear regression

- Model $y=f(x)=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b$

Alternative view:

$$
f(\mathbf{x}) \sim N\left(\mathbf{w}^{T} \mathbf{x}+b, \sigma\right)
$$

Optimize the predictive loglikelihood

$$
\log P(Y \mid X, \mathbf{w})=\log \prod_{i=1, \ldots, n} P\left(y_{i} \mid x_{i}, \mathbf{w}\right)=-C \sum_{i=1, \ldots n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}-b\right)^{2}+B
$$

Regularization

Penalty for the model complexity

- L1 (lasso) regularization penalty
- L2 (ridge) regularization penalty
- Typically: the optimization of weights \mathbf{w} looks as follows

$$
\min _{\mathbf{w}} \operatorname{Loss}(D, \mathbf{w})+Q(\mathbf{w})
$$

- Loss (D, \mathbf{w}) functions:
- Mean squared error
- Negative log-likelihood
- Regularization penalty $Q(\mathbf{w})$:
- L1 $\quad Q(\mathbf{w})=\|\mathbf{w}\|_{L 1}=\sum_{i=1, \ldots}\left|w_{i}\right|$
- L2 $\quad Q(\mathbf{w})=\|\mathbf{w}\|_{L 2}=\left(\sum_{i=1, \ldots, \ldots}^{i=1, \ldots d} w_{i}{ }^{2}\right)^{\frac{1}{2}}$

Classification: Linear decision boundary

Logistic regression model

- Discriminant functions:

$$
g_{1}(\mathbf{x})=g\left(\mathbf{w}^{T} \mathbf{x}\right) \quad g_{0}(\mathbf{x})=1-g\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

- where

$$
g(z)=1 /\left(1+e^{-z}\right)-\text { is a logistic function }
$$

$$
f(\mathbf{x}, \mathbf{w})=g_{1}\left(\mathbf{w}^{T} \mathbf{x}\right)=g\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

Linear decision boundary

- Logistic regression model defines a linear decision boundary
- Why?
- Answer: Compare two discriminant functions.
- Decision boundary: $g_{1}(\mathbf{x})=g_{0}(\mathbf{x})$
- For the boundary it must hold:

$$
\begin{gathered}
\log \frac{g_{o}(\mathbf{x})}{g_{1}(\mathbf{x})}=\log \frac{1-g\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}{g\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}=0 \\
\log \frac{g_{o}(\mathbf{x})}{g_{1}(\mathbf{x})}=\log \frac{\frac{\exp -\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}{1+\exp -\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}}{\frac{1}{1+\exp -\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)}}=\log \exp -\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}\right)=\mathbf{w}^{\mathrm{T}} \mathbf{x}=0
\end{gathered}
$$

Logistic regression: parameter learning

Likelihood of outputs

- Let

$$
D_{i}=<\mathbf{x}_{i}, y_{i}>\quad \mu_{i}=p\left(y_{i}=1 \mid \mathbf{x}_{i}, \mathbf{w}\right)=g\left(z_{i}\right)=g\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

- Then

$$
L(D, \mathbf{w})=\prod_{i=1}^{n} P\left(y=y_{i} \mid \mathbf{x}_{i}, \mathbf{w}\right)=\prod_{i=1}^{n} \mu_{i}^{y_{i}}\left(1-\mu_{i}\right)^{1-y_{i}}
$$

- Find weights w that maximize the likelihood of outputs
- Apply the log-likelihood trick. The optimal weights are the same for both the likelihood and the log-likelihood

$$
\begin{gathered}
l(D, \mathbf{w})=\log \prod_{i=1}^{n} \mu_{i}^{y_{i}}\left(1-\mu_{i}\right)^{1-y_{i}}=\sum_{i=1}^{n} \log \mu_{i}^{y_{i}}\left(1-\mu_{i}\right)^{1-y_{i}}= \\
=\sum_{i=1}^{n} y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)
\end{gathered}
$$

Regularization

The same way as for the linear regression model we can penalize non-zero weights of the logistic regression model

- L1 (lasso) regularization penalty
- L2 (ridge) regularization penalty
- The optimization of weights \mathbf{w} looks as follows
$\min _{\mathrm{w}} \operatorname{Loss}(D, \mathbf{w})+Q(\mathbf{w})$
fit Complexity penalty
- Loss (D, \mathbf{w}) functions: - $l(D, \mathbf{w})$
- Regularization penalty $Q(\mathbf{w})$:
- L1 $\quad Q(\mathbf{w})=\|\mathbf{w}\|_{L 1}=\sum_{i=1, \ldots d}\left|w_{i}\right|_{1}$
- L2 $\quad Q(\mathbf{w})=\|\mathbf{w}\|_{L 2}=\left(\sum_{i=1, \ldots, \ldots}^{i=1, \ldots d} w_{i}\right)^{2}$

Generative approach to classification

Idea:

1. Represent and learn the distribution $p(\mathbf{x}, y)$
2. Use it to define probabilistic discriminant functions
E.g. $g_{o}(\mathbf{x})=p(y=0 \mid \mathbf{x}) \quad g_{1}(\mathbf{x})=p(y=1 \mid \mathbf{x})$

Typical model $\quad p(\mathbf{x}, y)=p(\mathbf{x} \mid y) p(y)$

- $p(\mathbf{x} \mid y)=$ Class-conditional distributions (densities) binary classification: two class-conditional distributions

$$
p(\mathbf{x} \mid y=0) \quad p(\mathbf{x} \mid y=1)
$$

- $p(y)=$ Priors on classes - probability of class y

binary classification: Bernoulli distribution

$$
p(y=0)+p(y=1)=1
$$

Quadratic discriminant analysis (QDA)

Model:

- Class-conditional distributions
- multivariate normal distributions

$$
\begin{array}{rll}
\mathbf{x} \sim N\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}\right) & \text { for } & y=0 \\
\mathbf{x} \sim N\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right) & \text { for } & y=1
\end{array}
$$

Multivariate normal $\quad \mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right]
$$

- Priors on classes (class 0,1) $y \sim$ Bernoulli
- Bernoulli distribution

$$
p(y, \theta)=\theta^{y}(1-\theta)^{1-y} \quad y \in\{0,1\}
$$

Linear discriminant analysis (LDA)

- When covariances are the same

$$
\begin{aligned}
& \mathbf{x} \sim N\left(\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}\right), y=0 \\
& \mathbf{x} \sim N\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}\right), y=1
\end{aligned}
$$

CS 2750 Machine Learning

When is the logistic regression model correct?

- Members of the exponential family can be often more naturally described as

$$
f(\mathbf{x} \mid \boldsymbol{\theta}, \boldsymbol{\varphi})=h(x, \boldsymbol{\varphi}) \exp \left\{\frac{\boldsymbol{\theta}^{T} \mathbf{x}-A(\boldsymbol{\theta})}{a(\boldsymbol{\varphi})}\right\}
$$

$$
\boldsymbol{\theta} \text { - A location parameter } \boldsymbol{\varphi} \text { - A scale parameter }
$$

- Claim: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor φ
- Very powerful result !!!!
- We can represent posteriors of many distributions with the same small network

Fisher linear discriminant

Error: $\quad J(\mathbf{w})=\frac{m_{2}-m_{1}}{s_{1}^{2}+s_{2}^{2}}$
Within class variance after the projection

$$
s_{k}^{2}=\sum_{i \in C_{k}}\left(y_{i}-m_{k}\right)^{2}
$$

Optimal solution:

$$
\begin{gathered}
\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \\
\mathbf{S}_{\mathbf{w}}=\sum_{i \in C_{1}}\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{1}\right)^{T} \\
+\sum_{i \in C_{2}}\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{i}-\mathbf{m}_{2}\right)^{T}
\end{gathered}
$$

Other algorithms

Perceptron algorithm:

- Simple iterative procedure for modifying the weights of the linear model
- Works for inputs \mathbf{x} where each x_{i} is in [0,1]
- guaranteed convergence if the classes are linearly separable

Winow algorithm:

- Similar to perceptron. Different weight update
- Guaranted convergence even for nonseparable classes

Algorithms for linearly separable sets

Linear program solution:

- Finds weights that satisfy the following constraints:

$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 0 \quad$ For all i, such that $y_{i}=+1$
$\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq 0 \quad$ For all i, such that $y_{i}=-1$
Together: $\quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+w_{0}\right) \geq 0$
Property: if there is a hyperplane separating the examples, the linear program finds the solution

Linearly separable classes

There is a hyperplane that separates training instances with no error

Hyperplane:
$\mathbf{w}^{T} \mathbf{x}+w_{0}=0$

Class (+1)
$\mathbf{w}^{T} \mathbf{x}+w_{0}>0$
Class (-1)
$\mathbf{w}^{T} \mathbf{x}+w_{0}<0$

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called support vectors

Maximum margin hyperplane

- We want to maximize $d_{+}+d_{-}=\frac{2}{\|\mathbf{w}\|}$
- We do it by minimizing

$$
\|\mathbf{w}\|^{2} / 2=\mathbf{w}^{T} \mathbf{w} / 2
$$

\mathbf{w}, w_{0} - variables

- But we also need to enforce the constraints on points:

$$
\left\lfloor y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1\right\rfloor \geq 0
$$

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$
\begin{gathered}
J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1\right] \\
\alpha_{i} \geq 0 \quad \text { - Lagrange multipliers }
\end{gathered}
$$

- Minimize with regard to \mathbf{w}, w_{0} (primal variables)
- Maximize with regard to $\boldsymbol{\alpha} \quad$ (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

$$
\text { If } \text { Active constraint }
$$

Max margin hyperplane solution

- Set derivatives to 0 (Kuhn-Tucker conditions)

$$
\begin{gathered}
\nabla_{\mathbf{w}} J\left(\mathbf{w}, w_{0}, \alpha\right)=\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=\overline{0} \\
\frac{\partial J\left(\mathbf{w}, w_{0}, \alpha\right)}{\partial w_{0}}=-\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{gathered}
$$

- Now we need to solve for Lagrange parameters (Wolfe dual)

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right) \hookleftarrow \text { maximize }
$$

Subject to constraints

$$
\alpha_{i} \geq 0 \quad \text { for all } i, \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

- Quadratic optimization problem: solution $\hat{\alpha}_{i}$ for all i

Maximum hyperplane solution

- The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as: $\hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i} \quad \hat{\alpha}_{i}$ is the solution of the dual problem
- The parameter w_{0} is obtained through Karush-Kuhn-Tucker conditions

$$
\hat{\alpha}_{i}\left[y_{i}\left(\hat{\mathbf{w}} \mathbf{x}_{i}+w_{0}\right)-1\right]=0
$$

Solution properties

- $\hat{\alpha}_{i}=0$ for all points that are not on the margin
- $\hat{\mathbf{w}}$ is a linear combination of support vectors only
- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}=0
$$

Support vector machines

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- The decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}\right]
$$

Note:

- Decision on a new \mathbf{x} requires to compute the inner product between the examples $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)$
- Similarly, optimization depends on $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)$

Extension to a linearly non-separable case

- Idea: Allow some flexibility on crossing the separating hyperplane

Extension to the linearly non-separable case

- Relax constraints with variables $\xi_{i} \geq 0$

$$
\begin{array}{lll}
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \geq 1-\xi_{i} \quad \text { for } & y_{i}=+1 \\
\mathbf{w}^{T} \mathbf{x}_{i}+w_{0} \leq-1+\xi_{i} \text { for } & y_{i}=-1
\end{array}
$$

- Error occurs if $\xi_{i} \geq 1, \sum_{i=1}^{n} \xi_{i}$ is the upper bound on the number of errors
- Introduce a penalty for the errors

Regularization penalty

Subject to constraints
C - set by a user, larger C leads to a larger penalty for an error

Extension to linearly non-separable case

- Lagrange multiplier form (primal problem)
$J\left(\mathbf{w}, w_{0}, \alpha\right)=\|\mathbf{w}\|^{2} / 2+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)-1+\xi_{i}\right]-\sum_{i=1}^{n} \mu_{i} \xi_{i}$
- Dual form after \mathbf{w}, w_{0} are expressed (ξ_{i} s cancel out)
$J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$
Subject to: $0 \leq \alpha_{i} \leq C$ for all i, and $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$
Solution: $\quad \hat{\mathbf{w}}=\sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$
The difference from the separable case: $\quad 0 \leq \alpha_{i} \leq C$
The parameter w_{0} is obtained through KKT conditions

Support vector machines

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}\right)+w_{0}
$$

- The decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}+w_{0}\right]\right.
$$

- (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples ($\mathbf{x}_{i}{ }^{T} \mathbf{x}$)
- Similarly, the optimization depends on $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)
$$

Nonlinear case

- The linear case requires to compute ($\mathbf{x}_{i}{ }^{T} \mathbf{x}$)
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- It is possible to use SVM formalism on feature vectors

$$
\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Kernel function

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Crucial idea: If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

Kernel function example

- Assume $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ and a feature mapping that maps the input into a quadratic feature set

$$
\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]^{T}
$$

- Kernel function for the feature space:

$$
\begin{aligned}
K\left(\mathbf{x}^{\prime}, \mathbf{x}\right) & =\boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)^{T} \boldsymbol{\varphi}(\mathbf{x}) \\
& =x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+1 \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =\left(1+\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)\right)^{2}
\end{aligned}
$$

- The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel function example

Linear separator in the feature space

Non-linear separator in the input space

Kernel functions

- Linear kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left[1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right]^{k}
$$

- Radial basis kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left[-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right]
$$

- One view: kernels define a distance measure

