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Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping 
s.t.

Two types of problems:
• Regression: X discrete or continuous

Y is continuous
• Classification: X discrete or continuous

Y is discrete
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Supervised learning examples

• Regression:  Y is continuous

Debt/equity
Earnings company stock price
Future product orders

• Classification: Y is discrete

Handwritten digit (array of 0,1s)

Label “3”
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Linear regression
• Model bf += xwx T)(
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Mean Squared Error (or Loss):
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Linear regression
• Model

Alternative view:
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Optimize the predictive loglikelihood

Regularization
Penalty for the model complexity

– L1 (lasso) regularization penalty
– L2 (ridge) regularization penalty

• Typically: the optimization of weights w looks as follows

• functions:
– Mean squared error
– Negative log-likelihood

• Regularization penalty           :
– L1
– L2 
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Classification: Linear decision boundary
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Logistic regression model

• Discriminant functions:

• where
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Linear decision boundary

• Logistic regression model defines a linear decision boundary
• Why?
• Answer: Compare two discriminant functions.
• Decision boundary:
• For the boundary it must hold: 

0
)(

)(1log
)(
)(log

1

=
−

=
xw

xw
x
x

T

T

g
g

g
go

)()( 01 xx gg =

0)(explog

)(exp1
1

)(exp1
)(exp

log
)(
)(log

1

==−=

−+

−+
−

= xwxw

xw

xw
xw

x
x TT

T

T

T

g
go

CS 2750 Machine Learning

Likelihood of outputs
• Let

• Then

• Find weights w that maximize the likelihood of outputs
– Apply the log-likelihood trick.  The optimal weights are 

the same for both the likelihood and the log-likelihood

Logistic regression: parameter learning
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Regularization
The same way as for the linear regression model we can penalize 

non-zero weights of the logistic regression model
– L1 (lasso) regularization penalty
– L2 (ridge) regularization penalty

• The optimization of weights w looks as follows

• functions:  -
• Regularization penalty           :

– L1
– L2 
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Quadratic discriminant analysis (QDA)

Model:  
• Class-conditional distributions

– multivariate normal distributions

• Priors on classes  (class 0,1)
– Bernoulli distribution





 −−−= − )()(

2
1exp

)2(
1)|( 1

2/12/
µxΣµx

Σ
Σµ,x T

d
p

π

0for),(~ 00 =yN Σµx
1for),(~ 11 =yN Σµx

y

x

Multivariate normal ),(~ Σµx N

yyyp −−= 1)1(),( θθθ

Bernoulliy ~

}1,0{∈y

CS 2750 Machine Learning

Linear discriminant analysis (LDA)
• When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx
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LDA: Linear decision boundary
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LDA: linear decision boundary
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When is the logistic regression model correct?

• Members of the exponential family can be often more 
naturally described as 

• Claim: A logistic regression is a correct model when class 
conditional densities are from the same distribution in the 
exponential family and have the same scale factor

• Very powerful result !!!! 
– We can represent posteriors of many distributions with 

the same small network
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Other algorithms

Perceptron algorithm:
• Simple iterative procedure for modifying the weights of the 

linear model
• Works for inputs x where each xi is in [0,1]
• guaranteed convergence if the classes are linearly 

separable

Winow algorithm:
• Similar to perceptron. Different weight update
• Guaranted convergence even for nonseparable classes

Algorithms for linearly separable sets

Linear program solution:
• Finds weights that satisfy 

the following constraints:

Property: if there is a hyperplane separating the examples, the 
linear program finds the solution

00 ≥+ wi
T xw For all i, such that 1+=iy

00 ≤+ wi
T xw For all i, such that 1−=iy

0)( 0 ≥+ wy i
T

i xwTogether:  



CS 3750 Advanced Machine Learning

Linearly separable classes

There is a hyperplane that separates training instances with no 
error

00 =+ wT xw

Hyperplane:

Class  (+1)

00 >+ wT xw

Class  ( -1)

00 <+ wT xw
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances)

• These are called support vectors
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Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on points:
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Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization
• Optimization problem (Lagrangian)

• Minimize with regard to               (primal variables)
• Maximize with regard to         (dual variables) 
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Max margin hyperplane solution
• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum hyperplane solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained through Karush-Kuhn-Tucker 
conditions 

Solution properties
• for all points that are not on the margin
• is a linear combination of support vectors only
• The decision boundary:
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Extension to a linearly non-separable case

• Idea: Allow some flexibility on crossing the separating 
hyperplane
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Extension to the linearly non-separable case

• Relax constraints with variables

• Error occurs  if             ,             is the upper bound on the 
number of errors 

• Introduce a penalty for the errors
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Hinge loss

Regularization penalty
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The parameter         is obtained through KKT conditions 

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

• Dual form after              are expressed (     s cancel out)  
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Support vector machines

• The decision boundary:

• The decision:

• (!!):
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, the optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel

• One view: kernels define a distance measure
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