CS 3750 Machine Learning Lecture 3

Advanced Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3750/

CS 3750 Advanced Machine Learning

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,..., n$

Two types of problems:

• Regression: X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

Supervised learning examples

• Regression: Y is continuous

Debt/equity
Earnings company stock price
Future product orders

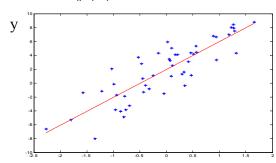
• Classification: Y is discrete

Handwritten digit (array of 0,1s)

CS 3750 Advanced Machine Learning

Linear regression

• Model $f(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$

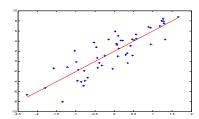


Mean Squared Error (or Loss):

$$J_{n} = \frac{1}{n} \sum_{i=1,..n} (y_{i} - f(\mathbf{x}_{i}))^{2} = \frac{1}{n} \sum_{i=1,..n} (y_{i} - \mathbf{w}^{T} \mathbf{x}_{i} - b)^{2}$$

Linear regression

• Model $y = f(x) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + b$



Alternative view:

$$f(\mathbf{x}) \sim N(\mathbf{w}^T \mathbf{x} + b, \sigma)$$

Optimize the predictive loglikelihood

$$\log P(Y | X, \mathbf{w}) = \log \prod_{i=1,...n} P(y_i | x_i, \mathbf{w}) = -C \sum_{i=1,..n} (y_i - \mathbf{w}^T \mathbf{x} - b)^2 + B$$

CS 3750 Advanced Machine Learning

Regularization

Penalty for the model complexity

- L1 (lasso) regularization penalty
- L2 (ridge) regularization penalty
- Typically: the optimization of weights **w** looks as follows

$$\min_{\mathbf{w}} \quad Loss(D, \mathbf{w}) + Q(\mathbf{w})$$

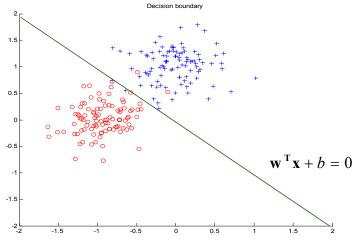
fit

Complexity penalty

- $Loss(D, \mathbf{w})$ functions:
 - Mean squared error
 - Negative log-likelihood
- Regularization penalty $Q(\mathbf{w})$:

$$- L1 \qquad Q(\mathbf{w}) = ||\mathbf{w}||_{L1} = \sum_{i=1,\dots d} |w_i|$$

$$- L2 \qquad Q(\mathbf{w}) = ||\mathbf{w}||_{L2} = \left(\sum_{i=1,\dots d} w_i^2\right)^{\frac{1}{2}}$$



CS 3750 Advanced Machine Learning

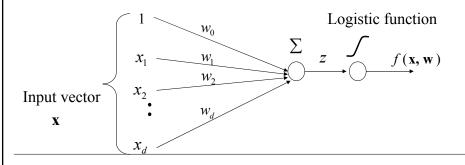
Logistic regression model

• Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

• where $g(z) = 1/(1 + e^{-z})$ - is a logistic function

$$f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$



Linear decision boundary

- Logistic regression model defines a linear decision boundary
- · Why?
- Answer: Compare two discriminant functions.
- Decision boundary: $g_1(\mathbf{x}) = g_0(\mathbf{x})$
- For the boundary it must hold:

$$\log \frac{g_o(\mathbf{x})}{g_1(\mathbf{x})} = \log \frac{1 - g(\mathbf{w}^T \mathbf{x})}{g(\mathbf{w}^T \mathbf{x})} = 0$$

$$\log \frac{g_o(\mathbf{x})}{g_1(\mathbf{x})} = \log \frac{\frac{\exp(\mathbf{w}^T \mathbf{x})}{1 + \exp(\mathbf{w}^T \mathbf{x})}}{\frac{1}{1 + \exp(\mathbf{w}^T \mathbf{x})}} = \log \exp(\mathbf{w}^T \mathbf{x}) = \mathbf{w}^T \mathbf{x} = 0$$

CS 2750 Machine Learning

Logistic regression: parameter learning

Likelihood of outputs

• I of

$$D_i = \langle \mathbf{x}_i, y_i \rangle$$
 $\mu_i = p(y_i = 1 | \mathbf{x}_i, \mathbf{w}) = g(z_i) = g(\mathbf{w}^T \mathbf{x})$

Then

$$L(D, \mathbf{w}) = \prod_{i=1}^{n} P(y = y_i \mid \mathbf{x}_i, \mathbf{w}) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1 - y_i}$$

- Find weights w that maximize the likelihood of outputs
 - Apply the log-likelihood trick. The optimal weights are the same for both the likelihood and the log-likelihood

$$l(D, \mathbf{w}) = \log \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1 - y_i} = \sum_{i=1}^{n} \log \mu_i^{y_i} (1 - \mu_i)^{1 - y_i} =$$

$$= \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)$$

Regularization

The same way as for the linear regression model we can penalize non-zero weights of the logistic regression model

- L1 (lasso) regularization penalty
- L2 (ridge) regularization penalty
- The optimization of weights w looks as follows

min w
$$Loss(D, \mathbf{w}) + Q(\mathbf{w})$$

fit Complexity penalty

- Loss (D, \mathbf{w}) functions: $l(D, \mathbf{w})$
- Regularization penalty $Q(\mathbf{w})$:

- L1
$$Q(\mathbf{w}) = \|\mathbf{w}\|_{L1} = \sum_{i=1,...d} |w_i|_{1}$$

- L2 $Q(\mathbf{w}) = \|\mathbf{w}\|_{L2} = \left(\sum_{i=1,...d} w_i^2\right)^{\frac{1}{2}}$

Generative approach to classification

Idea:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Use it to define probabilistic discriminant functions

E.g.
$$g_{0}(\mathbf{x}) = p(y = 0 | \mathbf{x})$$
 $g_{1}(\mathbf{x}) = p(y = 1 | \mathbf{x})$

Typical model
$$p(\mathbf{x}, y) = p(\mathbf{x} | y) p(y)$$

- $p(\mathbf{x} \mid y) = \mathbf{Class\text{-}conditional\ distributions\ (densities)}$ binary classification: two class-conditional distributions $p(\mathbf{x} \mid y = 0)$ $p(\mathbf{x} \mid y = 1)$
- p(y) = Priors on classes probability of class y binary classification: Bernoulli distribution

$$p(y = 0) + p(y = 1) = 1$$

CS 2750 Machine Learning

X

Quadratic discriminant analysis (QDA)

Model:

- Class-conditional distributions
 - multivariate normal distributions

$$\mathbf{x} \sim N(\mathbf{\mu}_0, \mathbf{\Sigma}_0)$$
 for $y = 0$
 $\mathbf{x} \sim N(\mathbf{\mu}_1, \mathbf{\Sigma}_1)$ for $y = 1$

Multivariate normal $\mathbf{x} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

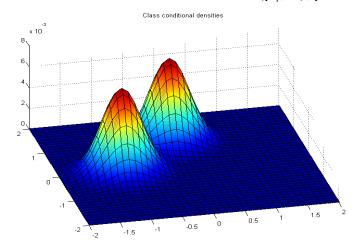
- Priors on classes (class 0,1) $y \sim Bernoulli$
 - Bernoulli distribution

$$p(y,\theta) = \theta^{y} (1-\theta)^{1-y}$$
 $y \in \{0,1\}$

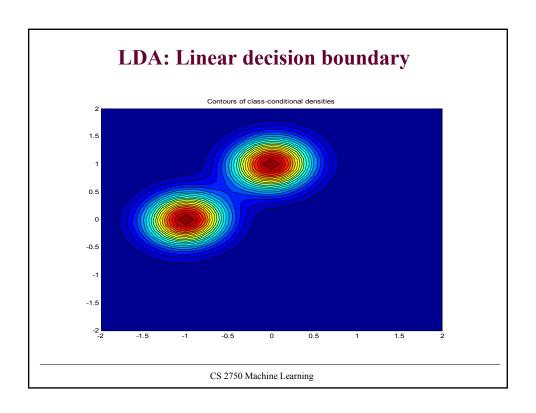
CS 2750 Machine Learning

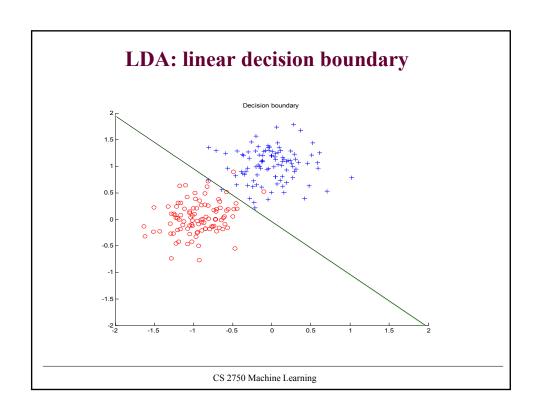
Linear discriminant analysis (LDA)

• When covariances are the same $\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}), \ y = 0$ $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}), \ y = 1$



CS 2750 Machine Learning





When is the logistic regression model correct?

 Members of the exponential family can be often more naturally described as

$$f(\mathbf{x} \mid \mathbf{\theta}, \mathbf{\phi}) = h(x, \mathbf{\phi}) \exp \left\{ \frac{\mathbf{\theta}^T \mathbf{x} - A(\mathbf{\theta})}{a(\mathbf{\phi})} \right\}$$

 θ - A location parameter ϕ - A scale parameter

- Claim: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor φ
- Very powerful result !!!!
 - We can represent posteriors of many distributions with the same small network

CS 2750 Machine Learning

Fisher linear discriminant

Error:
$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance after the projection

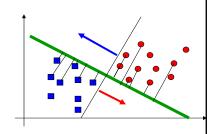
$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Optimal solution:

$$\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1}(\mathbf{m}_{2} - \mathbf{m}_{1})$$

$$\mathbf{S}_{\mathbf{w}} = \sum_{i \in C_{1}} (\mathbf{x}_{i} - \mathbf{m}_{1})(\mathbf{x}_{i} - \mathbf{m}_{1})^{T}$$

$$+ \sum_{i \in C_{2}} (\mathbf{x}_{i} - \mathbf{m}_{2})(\mathbf{x}_{i} - \mathbf{m}_{2})^{T}$$



Other algorithms

Perceptron algorithm:

- Simple iterative procedure for modifying the weights of the linear model
- Works for inputs **x** where each x_i is in [0,1]
- guaranteed convergence if the classes are linearly separable

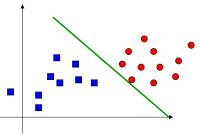
Winow algorithm:

- Similar to perceptron. Different weight update
- Guaranted convergence even for nonseparable classes

Algorithms for linearly separable sets

Linear program solution:

• Finds weights that satisfy the following constraints:



$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$
 For all i, such that $y_i = +1$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$
 For all i, such that $y_i = -1$

Together:
$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

Linearly separable classes

There is a **hyperplane** that separates training instances with no error

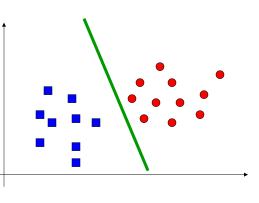
$$\mathbf{w}^T \mathbf{x} + w_0 = 0$$

Class (+1)

$$\mathbf{w}^T\mathbf{x} + w_0 > 0$$

Class (-1)

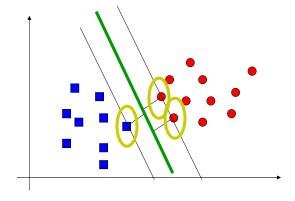
$$\mathbf{w}^T\mathbf{x} + w_0 < 0$$



CS 3750 Advanced Machine Learning

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called **support vectors**



Maximum margin hyperplane

- We want to maximize $d_+ + d_- = \frac{2}{\|\mathbf{w}\|}$
- We do it by **minimizing**

$$\|\mathbf{w}\|^2 / 2 = \mathbf{w}^T \mathbf{w} / 2$$

 \mathbf{w}, w_0 - variables

- But we also need to enforce the constraints on points:

$$\left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 \right] \ge 0$$

CS 3750 Advanced Machine Learning

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 \right]$$

$$\alpha_i \ge 0 \quad \text{- Lagrange multipliers}$$

- Minimize with regard to \mathbf{w} , w_0 (primal variables)
- Maximize with regard to α (dual variables)
 Lagrange multipliers enforce the satisfaction of constraints

If $[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1] > 0 \implies \alpha_i \to 0$ Else $\implies \alpha_i > 0$ Active constraint

Max margin hyperplane solution

• Set derivatives to 0 (Kuhn-Tucker conditions)

$$\nabla_{\mathbf{w}} J(\mathbf{w}, w_0, \alpha) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \overline{0}$$

$$\frac{\partial J(\mathbf{w}, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^n \alpha_i y_i = 0$$

• Now we need to solve for Lagrange parameters (Wolfe dual)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \iff \text{maximize}$$

Subject to constraints

$$\alpha_i \ge 0$$
 for all i , and $\sum_{i=1}^n \alpha_i y_i = 0$

• Quadratic optimization problem: solution $\hat{\alpha}_i$ for all i

CS 3750 Advanced Machine Learning

Maximum hyperplane solution

• The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as:

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i} \qquad \hat{\alpha}_{i} \text{ is the solution of the dual problem}$$

• The parameter w_0 is obtained through Karush-Kuhn-Tucker conditions $\hat{\alpha}_i \left[v_i(\hat{\mathbf{w}} \mathbf{x}_i + w_0) - 1 \right] = 0$

Solution properties

- $\hat{\alpha}_i = 0$ for all points that are not on the margin
- $\hat{\mathbf{w}}$ is a linear combination of support vectors only
- The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0$$

• The decision:

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0\right]$$

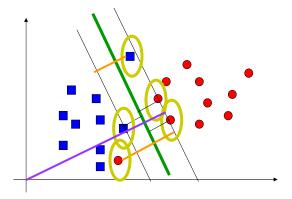
Note:

- Decision on a new \mathbf{x} requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, optimization depends on $(\mathbf{x}_i^T \mathbf{x})$

CS 3750 Advanced Machine Learning

Extension to a linearly non-separable case

• **Idea:** Allow some flexibility on crossing the separating hyperplane



CS 2750 Machine Learning

Extension to the linearly non-separable case

• Relax constraints with variables $\xi_i \ge 0$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1 - \xi_i \quad \text{for} \quad y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 + \xi_i \quad \text{for} \qquad \qquad y_i = -1$$

- Error occurs if $\xi_i \ge 1$, $\sum_{i=1}^n \xi_i$ is the upper bound on the number of errors
- Introduce a penalty for the errors

minimize $\left(\left\|\mathbf{w}\right\|^{2}/2\right) + \left(C\sum_{i=1}^{n} \xi_{i}\right)$ Hinge loss

Regularization penalty

Subject to constraints

C – set by a user, larger C leads to a larger penalty for an error

CS 2750 Machine Learning

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w}^T \mathbf{x} + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \mu_i \xi_i$$

• Dual form after \mathbf{w}, w_0 are expressed (ξ_i s cancel out)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

Subject to: $0 \le \alpha_i \le C$ for all i, and $\sum_{i=1}^n \alpha_i y_i = 0$

Solution: $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$

The difference from the separable case: $0 \le \alpha_i \le C$

The parameter W_0 is obtained through KKT conditions

Support vector machines

The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

The decision:

$$\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y (\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$$

- · (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_j)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

CS 2750 Machine Learning

Nonlinear case

- The linear case requires to compute $(\mathbf{x}_i^T \mathbf{x})$
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$x \to \phi(x)$$

• It is possible to use SVM formalism on feature vectors

$$\varphi(\mathbf{x})^T \varphi(\mathbf{x}')$$

Kernel function

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{\varphi}(\mathbf{x})^T \mathbf{\varphi}(\mathbf{x}')$$

• Crucial idea: If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

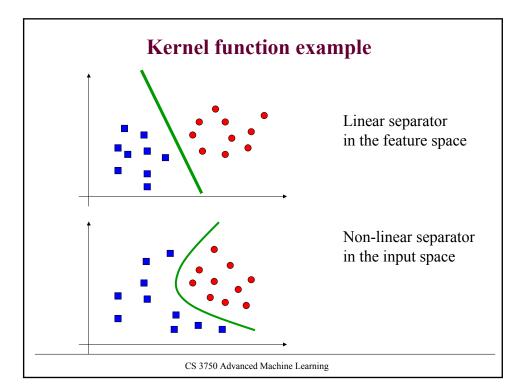
$$K(\mathbf{x'}, \mathbf{x}) = \mathbf{\phi}(\mathbf{x'})^{T} \mathbf{\phi}(\mathbf{x})$$

$$= x_{1}^{2} x_{1}^{2} + x_{2}^{2} x_{2}^{2} + 2x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} + 2x_{1} x_{1}^{\prime} + 2x_{2} x_{2}^{\prime} + 1$$

$$= (x_{1} x_{1}^{\prime} + x_{2} x_{2}^{\prime} + 1)^{2}$$

$$= (1 + (\mathbf{x}^{T} \mathbf{x'}))^{2}$$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space



Kernel functions

Linear kernel

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

• Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = \left[1 + \mathbf{x}^T \mathbf{x}'\right]^k$$

· Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right]$$

• One view: kernels define a distance measure