CS 3750 Machine Learning

Lecture 3

Advanced Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3750/

CS 3750 Advanced Machine Learning

Supervised learning

Data: D={d,,d,,...d,} asetof n examples
d, =<x,,y,>

X, 1s input vector, and y is desired output (given by a teacher)

Objective: learn the mapping f : X =7V
st. y,= f(x;) foralli=1,..,n
Two types of problems:
* Regression: X discrete or continuous —
Y is continuous
* Classification: X discrete or continuous —
Y is discrete

CS 3750 Advanced Machine Learning

Supervised learning examples

* Regression: Y is continuous

Debt/equity
Earnings _— company stock price

Future product orders

e Classification: Y is discrete

AR

FEREEE Label “379

¥
FERNEEE

Handwritten digit (array of 0,1s)

CS 3750 Advanced Machine Learning

Linear regression

* Model f(x)=w'x+b

Y s & 7
>
+ **//
* * //
e -
* % _F "
* e
- N
L e T
>
+* %
" T *
* s * *
/‘/l *
e ok
7 *
,/
v
.

Mean Squared Error (or Loss): X

7=t 0 =L Y (- wTx, - b)’

i=l,.n i=l,.n

CS 3750 Advanced Machine Learning

Linear regression
« Model y=f(x)=w'x+bh

Alternative view:
f(xX)~NW'x+b,0)
Optimize the predictive loglikelihood
log P(Y | X,w) =log []P(y;|x,w)=—-C 3 (v, -w'x-b) +B

i=l,..n i=l,..n

CS 3750 Advanced Machine Learning

Regularization

Penalty for the model complexity
— L1 (lasso) regularization penalty
— L2 (ridge) regularization penalty
» Typically: the optimization of weights w looks as follows
min , Loss (D,w)+ Q(w)
fit | Complexity penalty |

o Loss (D,w) functions:
— Mean squared error
— Negative log-likelihood
« Regularization penalty Q(W):
L1 0w = wll,= X lw |
2 i=1,..d 1

[

O(w) =|| w Hmf > wj

\i=l,...d

Classification: Linear decision boundary

Decision boundary

CS 3750 Advanced Machine Learning

Logistic regression model

* Discriminant functions:
g, (x) = g(w'x) go(x)=1-g(w'x)
Where g(z)=1/(14+e7) -isalogistic function
S(xw) =g (w'x)=g(w'x)

1 w Logistic function

X \VV\Z z -é- f({(,W)
< X 5

Input vector
X

Linear decision boundary

 Logistic regression model defines a linear decision boundary
* Why?

* Answer: Compare two discriminant functions.

* Decision boundary: g (x)=g,(x)

 For the boundary it must hold:

_ T
loggo—(x)zlo M:O

g,(x) g(wa)
exp—(W'x)
_ T
logg"—(x) ~ log 1+exp—(W'X) _ logexp—(Wwx) = w'x = 0

g,(x) 1
1+exp—(W'x)

CS 2750 Machine Learning

Logistic regression: parameter learning

Likelihood of outputs
* Let

Dy =<x,,p; > p=py,=1|x,w)=g(z)=g(W'x)
* Then

L(D,w) = H P(y=y |x,w)= H Iu[yl (l_ﬂi)l_y[
i=1 i=1

* Find weights w that maximize the likelihood of outputs
— Apply the log-likelihood trick. The optimal weights are
the same for both the likelihood and the log-likelihood

(D, w)=log [T (1= u)"™" =3 log u” (1= p)"™" =
i=1

i= i=1

=2, ylogu, +(1-y)log(1-u,)

i=1

CS 2750 Machine Learning

Regularization
The same way as for the linear regression model we can penalize
non-zero weights of the logistic regression model
— L1 (lasso) regularization penalty
— L2 (ridge) regularization penalty
* The optimization of weights w looks as follows
min Loss (D,w)+ Q(w)

w

fit | Complexity penalty |

e Loss (D,w) functions: - /(D,w)

* Regularization penalty Q(w):
L oW = W= Y iw |

ke o(w) :HWHLZ:[Zwinz

i=1,..d

Generative approach to classification

Idea:
1. Represent and learn the distribution p(X,)
2. Use it to define probabilistic discriminant functions

Eg g, (x)=p(y=0[x) g x)=py=1[x)

Typical model p(x,y)=px[y)p(y)
« p(x|y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) pr(x|y=1
« p(¥) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

p(y=0)+py=DH=1

CS 2750 Machine Learning

Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
Xx~N(p,, X, for y=0
x~N(p,,x,) for y=1
Multivariate normal x ~ N(p,X)

p(x|p,E) = %exp{—l(x Wz (x- u)}
(27)""?|Z| 2

« Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,@):@y(l—e)‘-y y €10,1}

CS 2750 Machine Learning

Linear discriminant analysis (LDA)
 When covariances are the same x ~ N(p,,X),y =0
X~ N(MI’Z)J Yy =1

CS 2750 Machine Learning

LDA: Linear decision boundary

Contours of class-conditional densities

CS 2750 Machine Learning

LDA: linear decision boundary

Decision boundary

+ t,
+
150
+ + +
+ il ol
+ o+ e +
+ Tt T + o4t
P+ o+
1r b PR T4
3 +4 4+ +
e
4 + +
0.5F O+ + +
+ +
L+
ol
0.5
Al
151
2)
2 1.5 -1 0.5 0 0.5 1 1.5 2

CS 2750 Machine Learning

When is the logistic regression model correct?

* Members of the exponential family can be often more
naturally described as

0'x — A(e)}

f(x[0,9)= h(x,cp)eXp{ 20)

0 - Alocation parameter @ - A scale parameter

* Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small network

CS 2750 Machine Learning

Fisher linear discriminant

Error: J(w) = w

2
s+ S,

Within class variance after the projection
SI? = Z (y, _mk)2
ieC,
Optimal solution:

-1
W= Sw (m2 _ml)

Sw = Z (Xi _ml)(xi _ml)T

ieC

+ Z (x, —m,)(x,—m,)"

ieC,

Other algorithms

Perceptron algorithm:

* Simple iterative procedure for modifying the weights of the
linear model

* Works for inputs x where each x; is in [0,1]

+ guaranteed convergence if the classes are linearly
separable

Winow algorithm:
+ Similar to perceptron. Different weight update

* Guaranted convergence even for nonseparable classes

Algorithms for linearly separable sets

Linear program solution:
* Finds weights that satisfy
the following constraints:

]
wiX, +w, 20 For all i, such that y, = +1
wix, +w, <0 For all i, such that y, = —1
Together: V(WX +w)20

Property: if there is a hyperplane separating the examples, the
linear program finds the solution

Linearly separable classes

There is a hyperplane that separates training instances with no
error

Hyperplane: t
wix+w,=0
)
Class (+1) " ®
])
wix+w,>0 u
|

Class (-1)

wix+w, <0

CS 3750 Advanced Machine Learning

Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

* These are called support vectors

CS 3750 Advanced Machine Learning

Maximum margin hyperplane

* We want to maximize d, +d_ = 2
[wl

* We do it by minimizing
||w||2 /2=w"w/2
w,w, - variables
— But we also need to enforce the constraints on points:

(W x+wy)=1]2 0

CS 3750 Advanced Machine Learning

Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization
* Optimization problem (Lagrangian)

J(wW,w,,a)= ||w||2 /2—iai[yi(wa+ wo)—l]
i=1

a; 20 - Lagrange multipliers

* Minimize with regard to w,w, (primal variables)

* Maximize with regard to a (dual variables)
Lagrange multipliers enforce the satisfaction of constraints

It |y,(w'x+w)-1]>0 = a, -0
Else = a,>0 Active constraint

CS 3750 Advanced Machine Learning

Max margin hyperplane solution

 Set derivatives to 0 (Kuhn-Tucker conditions)
V. J(W,wi,a)=w - Z o, yX, = 0
i=1

oJ (W, w,,a) .
— 20 =% a,y,=0
o 21: e

* Now we need to solve for Lagrange parameters (Wolfe dual)

d 1 ..
J(a) = z a, - > z aiajyiyj(xiij) <== maximize

i=1 ij=1

Subject to constraints
a, =20 foralli, and z a;y, =0
i=1

* Quadratic optimization problem: solution ¢, for all i

CS 3750 Advanced Machine Learning

Maximum hyperplane solution

* The resulting parameter vector w can be expressed as:

W = z a,y,X, @, is the solution of the dual problem
i=1

* The parameter w, is obtained through Karush-Kuhn-Tucker
conditions

di[yi(wxi +wp) _1]: 0

Solution properties

* ¢,=0 forall points that are not on the margin

« W isalinear combination of support vectors only
* The decision boundary:

wix+w, = Zdiy[(xiTx)+ w, =0
ieSV

CS 3750 Advanced Machine Learning

Support vector machines

* The decision boundary:

A A T
WX+ wy =D a,y(x, X)+w,
ieSV
e The decision:

)A} = sign {Z diyi(XiTX) + Wo}
ieSV

Note:

* Decision on a new x requires to compute the inner product
T
between the examples (X, X)

 Similarly, optimization depends on (XiTX)

CS 3750 Advanced Machine Learning

Extension to a linearly non-separable case

* Idea: Allow some flexibility on crossing the separating
hyperplane

CS 2750 Machine Learning

Extension to the linearly non-separable case

» Relax constraints with variables E>0
wix, +w,21-¢& for y; =+l

wix, +w, <-1+&, for v =-1

e Error occurs if &, =1, Z ¢ is the upper bound on the
number of errors =

 Introduce a penalty for the errors

minimize Hinge loss

Regularization penalty

Subject to constraints
C — set by a user, larger C leads to a larger penalty for an error

CS 2750 Machine Learning

Extension to linearly non-separable case

» Lagrange multiplier form (primal problem)

Jwowo,a) =W 12+ €Y & =Y a v x e w) -1+ £] Y g
i=1 i=1

i=1

* Dual form after w,w, are expressed (£, s cancel out)

n 1 n
J(a)= z a = z aiajyl.yj(xl.ij)
i=1 i,j=1
Subjectto: 0< ¢, < C foralli, and Z a,y;=0

i=1

Solution: W = Z a.yX,
i=1
The difference from the separable case: 0<a,<C

The parameter W, is obtained through KKT conditions

CS 2750 Machine Learning

Support vector machines

The decision boundary:

AT _ A
wix+w, = Zaiyi+ w,
ieSV

The decision:

P = sign[Zdl.y+ W0:|
ieSV
(M

Decision on a new x requires to compute the inner product
between the examples (x,” x)

Similarly, the optimization depends on (x,"x)

n 1 n
J(O{) = zai _Ezaiajyiyj
i=1 i,j=1

CS 2750 Machine Learning

Nonlinear case

. . T
The linear case requires to compute (X, X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = @(X)
It is possible to use SVM formalism on feature vectors

o(x) o(x")
Kernel function

K(x,x")=¢(x) ¢(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!

CS 3750 Advanced Machine Learning

Kernel function example

« Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

X = @(x) =[x}, 67, V233,720, 20,1
» Kernel function for the feature space:
K(x',x)=(x") 9(x)
= X/ X" +x xS +2x,x,x", x', +2x, %" +2x,x", +1
= (x,x',+x,x',+1)°
= 1+ (x"x)’
* The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space

CS 3750 Advanced Machine Learning

Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space

CS 3750 Advanced Machine Learning

Kernel functions

Linear kernel

K(x,x')=x"x'

Polynomial kernel

K(x,x') = [1 + XTX'] g
Radial basis kernel

K(x,x") =exp {— %”x - x'||2}

One view: Kernels define a distance measure

CS 3750 Advanced Machine Learning

