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Supervised learning

Data: D={d,,d,,...d,} asetof n examples
d, =<x,,y,>

X, 1s input vector, and y is desired output (given by a teacher)

Objective: learn the mapping f : X =7V
st. y,= f(x;) foralli=1,..,n
Two types of problems:
* Regression: X discrete or continuous —
Y is continuous
* Classification: X discrete or continuous —
Y is discrete
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Supervised learning examples

* Regression: Y is continuous

Debt/equity
Earnings _— company stock price

Future product orders

e Classification: Y is discrete

# AR

FEREEE Label “379

# ¥
FERNEEE

Handwritten digit (array of 0,1s)
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Linear regression

* Model f(x)=w'x+b
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Mean Squared Error (or Loss): X

7=t 0 =L Y (- wTx, - b)’

i=l,.n i=l,.n
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Linear regression
« Model y=f(x)=w'x+bh

Alternative view:
f(xX)~NW'x+b,0)
Optimize the predictive loglikelihood
log P(Y | X,w) =log []P(y;|x,w)=—-C 3 (v, -w'x-b) +B

i=l,..n i=l,..n
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Regularization

Penalty for the model complexity
— L1 (lasso) regularization penalty
— L2 (ridge) regularization penalty
» Typically: the optimization of weights w looks as follows
min , Loss (D,w)+ Q(w)
fit | Complexity penalty |

o Loss (D,w) functions:
— Mean squared error
— Negative log-likelihood
« Regularization penalty Q(W):
L1 0w = wll,= X lw |
2 i=1,..d 1

[

O(w) =|| w Hmf > wj

\i=l,...d




Classification: Linear decision boundary

Decision boundary
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Logistic regression model

* Discriminant functions:
g, (x) = g(w'x) go(x)=1-g(w'x)
Where g(z)=1/(14+e7) -isalogistic function
S(xw) =g (w'x)=g(w'x)

1 w Logistic function

X \VV\Z z -é- f({(,W)
< X 5

Input vector
X




Linear decision boundary

 Logistic regression model defines a linear decision boundary
* Why?

* Answer: Compare two discriminant functions.

* Decision boundary: g (x)=g,(x)

 For the boundary it must hold:

_ T
loggo—(x)zlo M:O

g,(x) g(wa)
exp—(W'x)
_ T
logg"—(x) ~ log 1+exp—(W'X) _ logexp—(Wwx) = w'x = 0

g,(x) 1
1+exp—(W'x)
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Logistic regression: parameter learning

Likelihood of outputs
* Let

Dy =<x,,p; > p=py,=1|x,w)=g(z)=g(W'x)
* Then

L(D,w) = H P(y=y |x,w)= H Iu[yl (l_ﬂi)l_y[
i=1 i=1

* Find weights w that maximize the likelihood of outputs
— Apply the log-likelihood trick. The optimal weights are
the same for both the likelihood and the log-likelihood

(D, w)=log [T (1= u)"™" =3 log u” (1= p)"™" =
i=1

i= i=1

=2, ylogu, +(1-y)log(1-u,)

i=1
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Regularization
The same way as for the linear regression model we can penalize
non-zero weights of the logistic regression model
— L1 (lasso) regularization penalty
— L2 (ridge) regularization penalty
* The optimization of weights w looks as follows
min Loss (D,w)+ Q(w)

w

fit | Complexity penalty |

e Loss (D,w) functions: - /(D,w)

* Regularization penalty Q(w):
L oW = W= Y iw |

ke o(w) :HWHLZ:[ Zwinz

i=1,..d

Generative approach to classification

Idea:
1. Represent and learn the distribution p(X, )
2. Use it to define probabilistic discriminant functions

Eg g, (x)=p(y=0[x) g x)=py=1[x)

Typical model p(x,y)=px[y)p(y)
« p(x|y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) pr(x|y=1
« p(¥) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

p(y=0)+py=DH=1
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Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
Xx~N(p,, X, for y=0
x~N(p,,x,) for y=1
Multivariate normal x ~ N(p,X)

p(x|p,E) = %exp{—l(x Wz (x- u)}
(27)""?|Z| 2

« Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,@):@y(l—e)‘-y y €10,1}
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Linear discriminant analysis (LDA)
 When covariances are the same  x ~ N(p,,X),y =0
X~ N(MI’Z)J Yy =1
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LDA: Linear decision boundary

Contours of class-conditional densities
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LDA: linear decision boundary

Decision boundary
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When is the logistic regression model correct?

* Members of the exponential family can be often more
naturally described as

0'x — A(e)}

f(x[0,9)= h(x,cp)eXp{ 20)

0 - Alocation parameter @ - A scale parameter

* Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small network
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Fisher linear discriminant

Error: J(w) = w

2
s+ S,

Within class variance after the projection
SI? = Z (y, _mk)2
ieC,
Optimal solution:

-1
W= Sw (m2 _ml)

Sw = Z (Xi _ml)(xi _ml)T

ieC

+ Z (x, —m,)(x,—m,)"

ieC,




Other algorithms

Perceptron algorithm:

* Simple iterative procedure for modifying the weights of the
linear model

*  Works for inputs x where each x; is in [0,1]

+ guaranteed convergence if the classes are linearly
separable

Winow algorithm:
+ Similar to perceptron. Different weight update

* Guaranted convergence even for nonseparable classes

Algorithms for linearly separable sets

Linear program solution:
* Finds weights that satisfy
the following constraints:

]
wiX, +w, 20 For all i, such that y, = +1
wix, +w, <0 For all i, such that y, = —1
Together: V(WX +w)20

Property: if there is a hyperplane separating the examples, the
linear program finds the solution




Linearly separable classes

There is a hyperplane that separates training instances with no
error

Hyperplane: t
wix+w,=0
)
Class (+1) " ®
] )
wix+w,>0 u
|

Class (-1)

wix+w, <0
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Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

* These are called support vectors
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Maximum margin hyperplane

* We want to maximize d, +d_ = 2
[wl

* We do it by minimizing
||w||2 /2=w"w/2
w,w, - variables
— But we also need to enforce the constraints on points:

(W x+wy)=1]2 0
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Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization
* Optimization problem (Lagrangian)

J(wW,w,,a)= ||w||2 /2—iai[yi(wa+ wo)—l]
i=1

a; 20 - Lagrange multipliers

* Minimize with regard to w,w, (primal variables)

* Maximize with regard to a  (dual variables)
Lagrange multipliers enforce the satisfaction of constraints

It |y,(w'x+w)-1]>0 = a, -0
Else = a,>0  Active constraint
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Max margin hyperplane solution

 Set derivatives to 0 (Kuhn-Tucker conditions)
V. J(W,wi,a)=w - Z o, yX, = 0
i=1

oJ (W, w,,a) .
— 20 =% a,y,=0
o 21: e

* Now we need to solve for Lagrange parameters (Wolfe dual)

d 1 ..
J(a) = z a, - > z aiajyiyj(xiij) <== maximize

i=1 ij=1

Subject to constraints
a, =20 foralli, and z a;y, =0
i=1

* Quadratic optimization problem: solution ¢, for all i
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Maximum hyperplane solution

* The resulting parameter vector w can be expressed as:

W = z a,y,X, @, is the solution of the dual problem
i=1

* The parameter w, is obtained through Karush-Kuhn-Tucker
conditions

di[yi(wxi +wp) _1]: 0

Solution properties

* ¢,=0 forall points that are not on the margin

« W isalinear combination of support vectors only
* The decision boundary:

wix+w, = Zdiy[(xiTx)+ w, =0
ieSV
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Support vector machines

* The decision boundary:

A A T
WX+ wy =D a,y(x, X)+w,
ieSV
e The decision:

)A} = sign {Z diyi(XiTX) + Wo}
ieSV

Note:

* Decision on a new x requires to compute the inner product
T
between the examples (X, X)

 Similarly, optimization depends on (XiTX)
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Extension to a linearly non-separable case

* Idea: Allow some flexibility on crossing the separating
hyperplane
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Extension to the linearly non-separable case

» Relax constraints with variables E>0
wix, +w,21-¢& for y; =+l

wix, +w, <-1+&, for v =-1

e Error occurs if &, =1, Z ¢ is the upper bound on the
number of errors =

 Introduce a penalty for the errors

minimize Hinge loss

Regularization penalty

Subject to constraints
C — set by a user, larger C leads to a larger penalty for an error
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Extension to linearly non-separable case

» Lagrange multiplier form (primal problem)

Jwowo,a) =W 12+ €Y & =Y a v x e w) -1+ £ ] Y g
i=1 i=1

i=1

* Dual form after w,w, are expressed (£, s cancel out)

n 1 n
J(a)= z a = z aiajyl.yj(xl.ij)
i=1 i,j=1
Subjectto: 0< ¢, < C foralli, and Z a,y;=0

i=1

Solution: W = Z a.yX,
i=1
The difference from the separable case: 0<a,<C

The parameter W, is obtained through KKT conditions
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Support vector machines

The decision boundary:

AT _ A
wix+w, = Zaiyi+ w,
ieSV

The decision:

P = sign[Zdl.y+ W0:|
ieSV
(M

Decision on a new x requires to compute the inner product
between the examples (x,” x)

Similarly, the optimization depends on  (x,"x )

n 1 n
J(O{) = zai _Ezaiajyiyj
i=1 i,j=1
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Nonlinear case

. . T
The linear case requires to compute (X, X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = @(X)
It is possible to use SVM formalism on feature vectors

o(x) o(x")
Kernel function

K(x,x")=¢(x) ¢(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!
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Kernel function example

« Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

X = @(x) =[x}, 67, V233,720, 20,1
» Kernel function for the feature space:
K(x',x)=(x") 9(x)
= X/ X" +x xS +2x,x,x", x', +2x, %" +2x,x", +1
= (x,x',+x,x',+1)°
= 1+ (x"x)’
* The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

Linear kernel

K(x,x')=x"x'

Polynomial kernel

K(x,x') = [1 + XTX'] g
Radial basis kernel

K(x,x") =exp {— %”x - x'||2}

One view: Kernels define a distance measure
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