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Motivation: Machine Learning

 Linear Regression
minimize

௪,௕
			∑ ௜ݔ௧ݓ ൅ ܾ െ ௜ݕ ଶ௡

௜ୀଵ

 SVM
minimize

௪,௕
			 ݓ ଶ ൅ ܥ ∑ ௜ߝ

௡
௜ୀଵ

௜ݔ்ݓ௜ሺݕ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൅ ܾሻ ൒ 1 െ ݅		௜ߝ ൌ 1,…݊
௜ߝ ൒ 0		݅ ൌ 1,… , ݊

 PGDM metric learning
minimize

௉
			∑ ௜ݔ െ ௝ݔ ௉ሺ௫೔,	௫ೕሻ∈ௌ

	݋ݐ	ݐ݆ܾܿ݁ݑݏ ∑ ௜ݔ െ ௝ݔ ௉ሺ௫೔,	௫ೕሻ∈஽ ൒ 1

ܲ ≽ 0

2



1/3/2012

2

Hamed Valizadegan 

Optimization Problem

minimize
௫

				 ଴݂ ݔ
			݋ݐ	ݐ݆ܾܿ݁ݑݏ ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉

݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌

 ݔ ∈ ܴ௡ is the variable to find
 ଴݂: ܴ௡ → ܴ is called the objective (cost or utility) function
 ௜݂ : ܴ௡ → ܴ, ݅ ൌ 1,…݉ are the inequality constraints (defines a set)
 ݄௜: ܴ௡ → ܴ, ݅ ൌ ݌…,1 are the equality constraints (defines a set)

 Solution: ݌∗ ൌ inf	ሼ ଴݂ ݔ | ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉	, ݄௜ ݔ ൌ 0		݅ ൌ 1,… , {݌
 Constrained vs. unconstrained problems: whether you have the constrains 

or not.

 A feasible point x is optimal if ଴݂ ݔ ൌ ை௉்ܺ ;∗݌ is the set of optimal points.
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Feasibility

 An optimization problem is feasible 
 if ݔ ∈ 	݉݋݀ ଴݂ (implicit constraints) and it satisfies all the (explicit) 

constraints ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉ & ݄௜ ݔ ൌ 0		݅ ൌ 1,… ,  .݌
 For infeasible problems, we say ݌∗ ൌ ൅∞

 Feasibility problem
ݔ																݂݀݊݅
			݋ݐ	ݐ݆ܾܿ݁ݑݏ ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉

݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌

 Equivalent to the following optimization problem
0		݁ݖ݅݉݅݊݅݉
			݋ݐ	ݐ݆ܾܿ݁ݑݏ ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉

݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌
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Locally Optimal Points 

 For the following problem
minimize

௫
				 ଴݂ ݔ

.ݏ .ݐ 		 ௜݂ ݔ ൑ 0		݅ ൌ 1, …݉
݄௜ ݔ ൌ 0		݅ ൌ 1, … , ݌

 x is locally optimum if there is an R > 0 such that x is optimal for the 
following problem

minimize
௭

				 ଴݂ ݖ

.ݏ .ݐ 		 ௜݂ ݖ ൑ 0		݅ ൌ 1,…݉
݄௜ ݖ ൌ 0		݅ ൌ 1,… , ݌
ݖ െ ݔ ଶ ൑ ܴ
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Regularization 

 A form of limiting the feasible search space of an optimization problem
 Can be considered as the prior information that the solution is located 

in the neighborhood of point x

minimize
௫

				 ଴݂ ݔ  minimize
௭

				 ଴݂ ݖ

.ݏ .ݐ 		 ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉ .ݏ .ݐ 		 ௜݂ ݖ ൑ 0		݅ ൌ 1,…݉

݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌ ݄௜ ݖ ൌ 0		݅ ൌ 1,… , ݌
ݖ െ ݔ ௣ ൑ ܴ

 Leads to sparse solution for x =0 and small p
 I will get back to this.
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Convexity

 An optimization problem is convex if
 ଴݂: ܴ௡ → ܴ is a convex function 
 Constrains ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉ & ݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌ are convex sets.
 ଴݂: ܴ௡ → ܴ, ௜݂ : ܴ௡ → ܴ, ݅ ൌ 1,…݉, ݄௜: ܴ௡ → ܴ, ݅ ൌ ݌…,1 can be linear or 

nonlinear 

 Importance
 Any local optimum is a global optimum
 Local optimality can be verified. No general tractable global optimum 

test
 So, for convex problems, it is easy to check if a point is a global 

optimum.

 Feasible set of a convex optimization problem is convex.
 Convex set and convex function??
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Affine and Convex Sets

 Affine sets: the line through any two disjoint points 
 ݔ ൌ ଵݔߠ ൅ 1 െ ߠ ,ଶݔ ߠ				 ∈ Թ
 Or equivalently, solution set of linear equation ݔܣ|ݔ ൌ ܾ

 Line segment: line segment between two points 
 ݔ ൌ ଵݔߠ ൅ 1 െ ߠ ,ଶݔ 				0 ൑ ߠ ൑ 1

 Convex Sets: a set that contains the line segment of any two points of the 
set
 ,ଵݔ ଶݔ ∈ ܵ, 0 ൑ ߠ ൑ 1		 ⟹ ଵݔߠ	 ൅ 1 െ ߠ ଶݔ 	∈ ܵ	

8
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Convex Sets (examples)

 Convex hull of set ܵ ൌ ,ଵݔ ,ଶݔ … , ௞ݔ :  Set of all convex combinations of points in 
S
 ∑หݔ ௜ݔ௜ߠ

௞
௜ୀଵ ,	 ∑ ௜ߠ

௞
௜ୀଵ ൌ 1, ௜ߠ ൒ 0

 Conic combination of two points
 ݔ ൌ ଵݔଵߠ ൅ ,ଶݔଶߠ 				0 ൑ ,ଵߠ ଶߠ

 Convex cone of set S: a set that contains all conic combinations of points in S

 Hyperplanes ݔ்ܽ) ൅ ܾ ൌ 0, linear equality)
 Halfspaces ݔ்ܽ) ൅ ܾ ൑ 0, linear inequality)

 Euclidean balls and Ellipsoids: ݔ|	ሺݔ െ ݔ௖ሻ்ܲିଵሺݔ െ ௖ሻݔ ൑ 1 (P ∈  ௡ାା, i.e. P isࡿ
positive-definite P)

 Norm ball: ݔห ݔ െ ௖ݔ ൑ ݎ

 Norm cone: C= ሺݔ, ሻหݐ ݔ ൑ ݐ ∈ Թ௡ାଵ

 Euclidean norm cone ( ݔ ଶ) is called second order cone
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Operations that preserve convexity

 Intersection of convex sets 

 The image of a convex set under affine (linear) function
 Թ௡	:ܨ → Թ௠: F(x)=Ax+b
 scaling (aS), translation(S+a), projection

 Perspective function 
 Թ௡ାଵ	:ܨ → Թ௡: F(x,t)=x/t,   dom(F)={(x,t)|t>0)
 Image and inverse image of convex sets under perspective 

are convex

 Linear-fractional functions: 

 Թ௡	:ܨ → Թ௠: F(x,t)= ஺௫ା௕

௖೅௫ାௗ
,   dom(F)={x|்ܿݔ ൅ ݀>0)

 Image and inverse image of convex sets under linear-
fractional functions are convex

10
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Convexity preserving operations (cont.)

 Intersection of convex sets is convex.

 Polyhedra is convex
 Intersection of finite number of halfspaces and 

hyperplanes

 Positive semidefinite (PSD) cone: Set of all PSD matrices 
is convex
 Intersection of infinite number of halfspaces and 

hyperspaces passing through origin 
( ∩
௭ஷ଴

ܺ ∈ 	௡ࡿ ݖ்ܺݖ	 ൒ 0ሽ)

 We denote it by ࡿ௡ା
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Generalized Inequalities

 Definition: A cone ܭ ⊆ Թ௡ is a proper cone if
 ܭ is convex
 ܭ is closed
 ܭ is solid: it has nonempty interior
 ܭ is pointed: it contains no line

 Generalized inequalities: defined by a proper cone K, is a 
partial ordering

ݔ ≼௄ 		ݕ ⟺ ݕ െ ݔ ∈ ܭ
ݔ ≺௄ 		ݕ ⟺ ݕ െ ݔ ∈ ሻܭ	݂݋	ݎ݋݅ݎ݁ݐሺ݅݊	ܭ	ݐ݊݅

 Examples
 Componentwise inequality: 

ݔ ≺ோశ
೙ 		ݕ ⟺ ௜ݕ ൒ ௜ݔ

 Matrix inequality
ܺ శࡿ≻

೙ ܻ		 ⟺ ܻ െ ܦܵܲ	ݏ݅	ܺ

12
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Dual Cones

 Dual cone of a cone K: ܭ∗ ൌ 	ݕ ݔ்ݕ	 ൒ ݔ	݈݈ܽ	ݎ݋݂	0 ∈ ሽܭ
ݔ ≼௄ 		ݕ ⟺ ݕ െ ݔ ∈ ܭ
ݔ ≺௄ 		ݕ ⟺ ݕ െ ݔ ∈ ሻܭ	݂݋	ݎ݋݅ݎ݁ݐሺ݅݊	ܭ	ݐ݊݅

 Examples
 ܭ ൌ ܴା

௡:   ܭ∗ ൌ ܴା
௡

 ܭ ൌ ାࡿ
௡:   ܭ∗ ൌ ାࡿ

௡, 		 ሺݎݐሺܻܺሻ ൒ 0ሻ
 K ൌ ,ݔ ݐ 	 	 ݔ ଶ ൑ =∗ܭ   :	ሽݐ ,ݔ ݐ 	 	 ݔ ଶ ൑ ሽݐ
 K ൌ ,ݔ ݐ 	 	 ݔ ଵ ൑ =∗ܭ   :	ሽݐ ,ݔ ݐ 	 	 ݔ ஶ ൑ ሽݐ
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Convex Functions

 Definition: function ݂ሺݔሻ:	Թ௡ → Թ is convex if the graph of the function lies 
between the line segment joining any two points of the graph.

 Formally: ݂ሺݔሻ: 	Թ௡ → Թ is convex if dom(f) is convex and 
݂ሺݔߠ ൅ 1 െ ߠ ሻݕ ൑ ሻݔሺ݂ߠ ൅ 1 െ ߠ ݂ሺݕሻ

 Examples in Թ:
 affine, exponential, powers (ݔఈ, ߙ ൑ ߙ	ݎ݋	0 ൒ 1), power of absolute 

value ( ݔ ఈ, ߙ ൒ 1)
 Example on Թ௡

 Norm ݔ ఈ ൌ ሺ∑ ௜ݔ ఈ
௡
௜ୀଵ ሻଵ/ఈ, ߙ ൒ 1

 Example on Թ௡ൈ௠

 Affine function tr ்ܺܣ ൅ ܾ ൌ ∑ ∑ ௜௝ܣ ௜ܺ௝
௡
௝ିଵ

௠
௜ୀଵ ൅ ܾ

14
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Convex Functions (verification tricks)

 ݂ሺݔሻ:	ܴ௡ → ܴ is convex if and only if the following function of one variable 
is convex in ݐ for any ݔ ∈ ݉݋݀ ݂ ݒ	&	 ∈ Թ௡: 

݃ ݐ : ܴ → ܴ: ݃ ݐ ൌ ݂ ݔ ൅ ݒݐ , dom g ൌ t	 x ൅ tv ∈ ݉݋݀ ݂ ሽ

 First order condition: Differentiable ݂ with convex domain is convex if and 
only if

݂ ݕ ൒ ݂ሺݔሻ ൅ ሻ்ݔሺ݂ߘ ݕ െ ݔ

 Second order condition: twice differentiable function f with convex domain 
is convex if and only if

ଶ݂ߘ ݔ ≽ 	ݔ	݈݈ܽ	ݎ݋݂	0 ∈ ሺ݂ሻ݉݋݀
 Example: quadratic function 1/2ݔ்ܲݔ ൅ ݔ்ݍ ൅ ݎ is convex if P is PSD
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Operations that preserve convexity:

 Nonnegative weighted sum
 ∑ ௜ߙ ௜݂ሺݔሻ

௡
௜ୀଵ is convex if ௜݂ ݔ , ݅ ൌ 1,2, . . ݊ are convex

 Jensen’s inequality:  fሺॱሺݔሻሻ ൑ ॱ݂ሺݔሻ

 Composition with affine function 
 ݂ሺݔܣ ൅ ܾሻ is convex if f(x) is convex
 Examples: ݂ ݔ ൌ െ∑ log	ሺܾ௜ െ ܽ௜்ݔሻ

௡
௜ୀଵ

 Minimization
 ݃ ݔ ൌ min

௬∈஼
݂ሺݔ, ሻݕ is convex if ݂ሺݔ, ሻݕ is convex in ሺݔ, ሻݕ and C is a convex set

 Examples: ݀݅ݐݏ ,ݔ ܵ ൌ min
௬∈ௌ

ݔ െ ݕ is convex if S is convex

 Perspective ݃ ,ݔ ݐ ൌ ݂ݐ ௫

௧
, ݐ ൐ 0

 Example:  ݃ ,ݔ ݐ ൌ ௫೅௫

௧
, ݐ ൐ 0

 Pointwise maximum and suprimum
 Piecewise linear function: ݂ ݔ ൌ max

௜ୀଵ,…,௡
ܽ௜்ݔ ൅ ܾ௜

 ݃ ݔ ൌ sup
௬∈஺

݂ሺݔ, ሻݕ is convex  if ݂ሺݔ, ሻݕ is convex in ݔ for each ݕ ∈ ܣ

 Example: max eigenvalue of a symmetric function ߣ௠௔௫ ܺ ൌ sup
௬ ୀଵ

ݕ்ܺݕ

16
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Conjugate function:

 The conjugate function of ݂ is defined as
݂∗ ݕ ൌ sup

௫∈ௗ௢௠ሺ௙ሻ
ሺݔ்ݕ െ ݂ሺݔሻሻ

 The conjugate function of ݂∗ is the max cap between the linear function 
ݔ்ݕ and ݂ሺݔሻ. For differentiable functions, this occurs at a point x where 
y ൌ ሻݔሺ݂ߘ

 ݂∗ is convex even if ݂ is not. Because it is a pointwise suprimum of a 
family of affine functions

 Also known as Lengendre-Fenchel Transformation or Fenchel
Transformation

 Examples
 ݂ ݔ ൌ −log(x) → ݂∗ ݕ =−1−log(−y), y ൏ 0
 ݂ ݔ ൌ exp(x) → ݂∗ ݕ =ylog(y)−y, y ൐ 0
 ݂ ݔ ൌ xlog(x) → ݂∗ ݕ =exp(y−1), y ് 0
 ݂ ݔ ൌ 1/x → ݂∗ ݕ =−2ሺെݕሻଵ/ଶ, y ൑ 0
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Slack variables

 Converting inequality constraints to equality constrains
minimize

௫
					 ଴݂ ݔ  minimize

௫,௕೔
				 ଴݂ ݔ

.ݏ .ݐ 												 ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉ .ݏ .ݐ 											 ௜݂ ݔ ൅ ܾ௜ ൌ 0		݅ ൌ 1,…݉
																		ܾ௜ ൒ 0		݅ ൌ 1,…݉

 Introducing equality constraints
minimize

௫
					 ଴݂ ݔ଴ܣ ൅ ܾ଴  minimize

௫,௕೔
				 ଴݂ ଴ݕ

.ݏ .ݐ 												 ௜݂ ݔ௜ܣ ൅ ܾ௜ ൑ 0		݅ ൌ 1,…݉ .ݏ .ݐ 											 ௜݂ ௜ݕ ൑ 0		݅ ൌ 1,…݉
ݔ௜ܣ ൅ ܾ௜ ൌ ݅				௜ݕ ൌ 0,…݉

 Converting an infeasible problem to feasible by relaxing the constraints
minimize

௫
					 ଴݂ ݔ  minimize

௫,௕೔
				 ଴݂ ݔ ൅ ܥ ∑ ܾ௜

௠
௜ୀଵ

.ݏ .ݐ 												 ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉ .ݏ .ݐ 											 ௜݂ ݔ െ ܾ௜ ൑ 0		݅ ൌ 1,…݉
																		ܾ௜ ൒ 0		݅ ൌ 1,…݉
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Duality

 The following optimization problem
minimize

௫
				 ଴݂ ݔ

			݋ݐ	ݐ݆ܾܿ݁ݑݏ ௜݂ ݔ ൑ 0		݅ ൌ 1,…݉
݄௜ ݔ ൌ 0		݅ ൌ 1,… , ݌

 Can be written in the Lagrangian form
L x, λ, ߥ ൌ ଴݂ ݔ ൅ ∑ ௜ߣ

௠
௜ୀଵ ௜݂ ݔ ൅ ∑ ௜݄௜ߥ ݔ

௣
௜ୀଵ

 ,௜ߣ ݅ ൌ 1,… ,݉ are called the Lagrange multipliers associated with the 
inequalities and ߥ௜, ݅ ൌ 1,… ,݉ are called the Lagrange multipliers associated 
with the equalities. They are also called the dual variables.

 The Lagrange dual function is defined as
g λ, ߥ ൌ inf	

	௫
L x, λ, ߥ ൌ inf	

	௫ ଴݂ ݔ ൅ ∑ ௜ߣ
௠
௜ୀଵ ௜݂ ݔ ൅ ∑ ௜݄௜ߥ ݔ

௣
௜ୀଵ

 g λ, ߥ is the lower bound for the optimal value of original problem
 g λ, ߥ ൑ ܲ∗

19
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The dual problem

 The following optimization problem is called the dual problem (original 
problem is called primal)

maximize
஛,ఔ

		g λ, ߥ

λ		݋ݐ	ݐ݆ܾܿ݁ݑݏ ≽ 0

 Finds the best lower bound on ݌∗

 A convex optimization problem with optimal value denoted by ݀∗

 L λ, ߥ 	is concave since it is pointwise infimum of a family of affine 
functions 

g λ, ߥ ൌ inf	
	௫
L x, λ, ߥ ൌ inf	

	௫ ଴݂ ݔ ൅෍ߣ௜

௠

௜ୀଵ

௜݂ ݔ ൅෍ߥ௜݄௜ ݔ

௣

௜ୀଵ

 This automatically gives a procedure to optimize the non-convex 
problems.

20
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Solving dual problems

 Solve the dual problem which is convex 
 Question: how good it is?

 The duality gap ݌∗ െ ݀∗ is a measure of how good it is
 Not usually easy to show that the gap is small

 Strong duality ݌∗ െ ݀∗=0
 Usually (but not always) holds for convex problems
 Non-convex problem can have strong duality as well so you can get 

lucky if you use the dual

 If the strong duality holds and x, λ, ߥ are optimal, then they must 
satisfy the following conditions, called KKT conditions
 Primal constraints: ௜݂ ݔ ൑ 0, ݅ ൌ 1,…݉
 Dual constraints: λ௜ ൐ 0, ݅ ൌ 1,…݉
 Complementary slackness: λ௜ ௜݂ ݔ =0 , ݅ ൌ 1,…݉
 Gradient of Lagrangian vanishes: ߘ ଴݂ ݔ ൅ ∑ ௜ߣ

௠
௜ୀଵ ߘ ௜݂ ݔ ൅ ∑ ௜݄ߘ௜ߥ ݔ

௣
௜ୀଵ
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Linear Program (LP) 

 Convex problem with affine objective and constraints functions
minimize

௫
ݔ்ܿ				 ൅ ݀

.ݏ .ݐ ݔܩ		 ൑ ݄
ݔܣ ൌ ܾ

 Feasible set is a polyhedron
 linprog command in MATLAB

22
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Quadratic Program (QP) 

 Convex problem with quadratic convex objective and affine 
constraints functions (P is PSD)

minimize
௫

ݔ்ܲݔ1/2				 ൅ ݔ்ݍ ൅ ݎ

.ݏ .ݐ ݔܩ		 ൑ ݄
ݔܣ ൌ ܾ

 Minimizes a convex quadratic over a polyhedron
 Quadprog command in matlab
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SVM: a QP Example

 Many linear classifiers separating two separable set of examples

 Pick the one with maximum margin
minimize

௪,௕
			 ݓ ଶ

௜ݔ்ݓ௜ሺݕ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൅ ܾሻ ൒ 1, ݅ ൌ 1,…݊

 If the examples are not separable, the feasible set of this problem is 
empty (infeasible problem)

 Utilizing slack variables to relax the constraints and make a feasible 
problem

minimize
௪,௕

			 ݓ ଶ ൅ ܥ ∑ ௜ߝ
௡
௜ୀଵ

௜ݔ்ݓ௜ሺݕ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ൅ ܾሻ ൒ 1 െ ݅		௜ߝ ൌ 1,…݊
௜ߝ ൒ 0		݅ ൌ 1,… , ݊
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SVM: dual formulation

 Define the Lagrangian:

,ሺwܮ b, λ, ሻߥ ൌ 			 ݓ ଶ ൅ ෍ܥ ௜ߝ
௡

௜ୀଵ
െ෍ߙ௜

௠

௜ୀଵ

௜ݔ்ݓ௜ሺݕ ൅ ܾ െ 1 ൅ ௜ሻߝ െ෍ߤ௜ߝ௜

௡

௜ୀଵ

 Finding ܮ λ, ߥ ൌ inf	
	௪,௕

L w, b, λ, ߥ

߲L w, b, λ, ߥ
ݓ߲

ൌ 0 → ݓ ൌ෍ߙ௜

௡

௜ୀଵ

௜ݔ௜ݕ

߲L w, b, λ, ߥ
߲ܾ

ൌ 0 →෍ߙ௜

௡

௜ୀଵ

௜ݕ ൌ 0

߲L w, b, λ, ߥ
௜ߝ߲

ൌ 0 → ௜ߙ ൌ ܥ െ ௜ߤ

 KKT conditions: 1) ߙ௜ ൒ 0,	 ௜ݔ்ݓ௜ሺݕ (2 ൅ ܾሻ െ 1 ൅ ௜ߝ ൒ 0, 3) 
∑ ௜ߙ
௠
௜ୀଵ ௜ݔ்ݓ௜ሺݕ ൅ ܾ െ 1 ൅ ௜ሻߝ ൌ ௜ߤ (4 ,0 ൒ 0, ௜ߝ (5 ൒ 0,	

௜ߝ௜ߤ (6 ൌ 0
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SVM: dual formulation

 Using these results, we obtain the dual problem

maximize
஛,ఔ

		෍ߙ௜

௡

௜ୀଵ

െ 1/2෍෍ߙ௜ߙ௝ݕ௜ݕ௝ݔ௜ݔ௝

௡

௝ୀଵ

௡

௜ୀଵ

0		݋ݐ	ݐ݆ܾܿ݁ݑݏ ൑ ௜ߙ ൑ ܥ

 Useful form for using the kernel trick

maximize
஛,ఔ

		෍ߙ௜

௡

௜ୀଵ

െ 1/2෍෍ߙ௜ߙ௝ݕ௜ݕ௝ܭሺݔ௜, ௝ሻݔ

௡

௝ୀଵ

௡

௜ୀଵ

0		݋ݐ	ݐ݆ܾܿ݁ݑݏ ൑ ௜ߙ ൑ ܥ
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SVM^Rank: a QP Example

 Ranking problem: 
 ݊ queries ݍ௜, ݅ ൌ 1, . . , ݊

 for query ݍ௜, a list of items ௝݀
௜ , ݆ ൌ 1, . . , ݉௜ (feature vector) with their 

respect relevancy ݎ௝௜, ݆ ൌ 1, . . , ݉௜ to the query.

 Assume also that ݎ௝௜ are discrete ሾ1. . ݇ሿ

 Objective: obtain a linear classifier that respects ordering information
 Suppose W is such a classifier

 Construct a set on pair of examples S ൌ ,ݔ ݖ ݔ	 ൌ ௝݀
௜,	ݖ ൌ ݀௞

௜, ݎ௞௜ െ {௝௜=1ݎ

 Find W that maximizes the margin between each two items
minimize

௪,௕
			 ݓ ଶ ൅ ܥ ∑ ௜௝௥೔ି௥ೕୀଵߝ

்ݓ			݋ݐ	ݐ݆ܾܿ݁ݑݏ ௝ݔ െ ௜ݔ ൒ 1 െ ,௜௝ߝ 	 ሺݔ௜, ௝ሻݔ ∈ ܵ

௜௝ߝ ൒ 0		݅ ൌ 1,… , ݊
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Multi-Task Learning

 Problem setup
 T classification problems, each with different set of training examples.
 Task t has ݊௧ training examples ݔ௜௧, ௜௧ݕ , ݅ ൌ 1, . . , ݊௧
 Feature vector of all task are in the same space
 Tasks are related (digits recognition, medical domains, etc)

 Objective: to learn linear classifiers ݓ௧, ݐ ൌ 1,… , ܶ for tasks by 
considering that the tasks are similar

 Solution: assume all tasks are similar to a central unknown task ߤ
minimize

௪,௕,ఓ
			∑ ௧ݓ ଶ்

௧ୀଵ ൅ ∑ ௧ݓ െ ߤ ଶ்
௧ୀଵ ൅ ܥ ∑ ∑ ௜௧ߝ

௡
௜ୀଵ

்
௧ୀଵ

௜ݕ		݋ݐ	ݐ݆ܾܿ݁ݑݏ ௜௧ݔ௧்ݓ ൅ ܾ௧ ൒ 1 െ ,௜௧ߝ ݅ ൌ 1,…݊, ݐ ൌ 1, … , ܶ

௜௧ߝ ൒ 0		݅ ൌ 1, … , ݊, ݐ ൌ 1,… , ܶ
 How to write the dual of this problem? (Next lecture)
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Quadratically Constrained QP (QCQP) 

 Convex problem with quadratic convex objective and constraints 
functions ( ௜ܲ are SDP)

minimize
௫

்ݔ1/2				 ଴ܲݔ ൅ ଴ݍ
ݔ் ൅ ଴ݎ

.ݏ .ݐ ்ݔ1/2			 ௜ܲݔ ൅ ௜ݍ
ݔ் ൅ ௜ݎ ൑ 0

ݔܣ ൌ ܾ

 Objective and constrains are convex quadratic
 Can be solved with standard toolbox
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Semidefinite Programming 

 Convex problem with quadratic convex objective and constraints 
functions

minimize
௫

ݔ்ܿ			 ൅ ݀

.ݏ .ݐ ଵݔ		 ଵܲ ൅ ⋯൅ ௡ݔ ௡ܲ ൅ ܳ ≼ 0 (Linear Matrix Inequality)

ݔܩ ≼ ܾ (General inequalities)
ݔܣ ൌ ܾ

 Or 
minimize

௫
ሻܺܥሺݎݐ			

.ݏ .ݐ ݎݐ		 ௜ܺܣ ൌ ܾ௜
ܺ ≽ 0

 If ଵܲ, … , ௡ܲ	ܽ݊݀	ܳ are all diagonal, the SDP programming reduces to 
linear programming

 SeDuMi is a good tool to model this type of problems
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Local and Global Consistency SSL

 Local and global Consistency, minimize 

 Question: convex or non-convex?

 How to solve such problems? (Next lecture)
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PGDM metric learning

 PGDM metric learning
minimize

௉
			∑ ௜ݔ െ ௝ݔ ௉ሺ௫೔,	௫ೕሻ∈ௌ

	݋ݐ	ݐ݆ܾܿ݁ݑݏ ∑ ௜ݔ െ ௝ݔ ௉ሺ௫೔,	௫ೕሻ∈஽ ൒ 1

ܲ ≽ 0
 Question: convex or non-convex?
 How should we solve such problems? (next lecture)
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LMNN metric learning

 LMNN metric learning
minimize

஺
			∑ ௜ݔ െ ௝ݔ ௉ሺ௫೔,	௫ೕሻ∈ௌ

.ݏ 		ݐ ௜ݔ െ ௞ݔ ௉ െ ௜ݔ െ ௝ݔ ௉
൒ 1, ሺݔ௜, ,௝ݔ ௞ሻݔ ∈ ܴ

ܲ ≽ 0
 ݅݊	ሺݔ௜, ,௝ݔ ௞ሻݔ ∈ ܴ ,௜ݔ , ௝ݔ are of the same class and neighbor 

according to Euclidean distance. ݔ௜, ௞ݔ are from two different 
classes.

 Question: convex or non-convex?
 How should we solve such problems? (next lecture)
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