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Motivation: Machine Learning

 Linear Regression
minimize

,
			∑

 SVM
minimize

,
			 ∑

	 			 1 		 1, …
0		 1, … ,

 PGDM metric learning
minimize 			∑ ,	 ∈

	 	 ∑ ,	 ∈ 1

≽ 0
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Optimization Problem

minimize				
	 			 0		 1, …

0		 1, … ,

 ∈ is the variable to find
 : → is called the objective (cost or utility) function
 : → , 1,… are the inequality constraints (defines a set)
 : → , 1,… are the equality constraints (defines a set)

 Solution: ∗ inf	 | 0		 1, … 	, 0		 1, … , }
 Constrained vs. unconstrained problems: whether you have the constrains 

or not.

 A feasible point x is optimal if ∗; is the set of optimal points.
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Feasibility

 An optimization problem is feasible 
 if ∈ 	 (implicit constraints) and it satisfies all the (explicit) 

constraints 0		 1, … & 0		 1, … , . 
 For infeasible problems, we say ∗ ∞

 Feasibility problem
																

	 			 0		 1, …
0		 1, … ,

 Equivalent to the following optimization problem
		0

	 			 0		 1, …
0		 1, … ,
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Locally Optimal Points 

 For the following problem
minimize				

. . 		 0		 1, …
0		 1, … ,

 x is locally optimum if there is an R > 0 such that x is optimal for the 
following problem

minimize				

. . 		 0		 1, …
0		 1, … ,
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Regularization 

 A form of limiting the feasible search space of an optimization problem
 Can be considered as the prior information that the solution is located 

in the neighborhood of point x

minimize				  minimize				

. . 		 0		 1, … . . 		 0		 1, …

0		 1, … , 0		 1, … ,

 Leads to sparse solution for x =0 and small p
 I will get back to this.
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Convexity

 An optimization problem is convex if
 : → is a convex function 
 Constrains 0		 1, … & 0		 1, … , are convex sets.
 : → , : → , 1,… , : → , 1,… can be linear or 

nonlinear 

 Importance
 Any local optimum is a global optimum
 Local optimality can be verified. No general tractable global optimum 

test
 So, for convex problems, it is easy to check if a point is a global 

optimum.

 Feasible set of a convex optimization problem is convex.
 Convex set and convex function??
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Affine and Convex Sets

 Affine sets: the line through any two disjoint points 
 1 , 				 ∈
 Or equivalently, solution set of linear equation |

 Line segment: line segment between two points 
 1 , 				0 1

 Convex Sets: a set that contains the line segment of any two points of the 
set
 , ∈ , 0 1		 ⟹ 	 1 	∈ 	

8
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Convex Sets (examples)

 Convex hull of set , , … , :  Set of all convex combinations of points in 
S
 ∑ ,	 ∑ 1, 0

 Conic combination of two points
 , 				0 ,

 Convex cone of set S: a set that contains all conic combinations of points in S

 Hyperplanes ( 0, linear equality)
 Halfspaces ( 0, linear inequality)

 Euclidean balls and Ellipsoids: |	 1 (P ∈ , i.e. P is 
positive-definite P)

 Norm ball: 
 Norm cone: C= , ∈

 Euclidean norm cone ( ) is called second order cone
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Operations that preserve convexity

 Intersection of convex sets 

 The image of a convex set under affine (linear) function
 : 	 → : F(x)=Ax+b
 scaling (aS), translation(S+a), projection

 Perspective function 
 : 	 → : F(x,t)=x/t,   dom(F)={(x,t)|t>0)
 Image and inverse image of convex sets under perspective 

are convex

 Linear-fractional functions: 

 : 	 → : F(x,t)= ,   dom(F)={x| >0)

 Image and inverse image of convex sets under linear-
fractional functions are convex
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Convexity preserving operations (cont.)

 Intersection of convex sets is convex.

 Polyhedra is convex
 Intersection of finite number of halfspaces and 

hyperplanes

 Positive semidefinite (PSD) cone: Set of all PSD matrices 
is convex
 Intersection of infinite number of halfspaces and 

hyperspaces passing through origin 
( ∩ ∈ 	 	 0 )

 We denote it by 
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Generalized Inequalities

 Definition: A cone ⊆ is a proper cone if
 is convex
 is closed
 is solid: it has nonempty interior
 is pointed: it contains no line

 Generalized inequalities: defined by a proper cone K, is a 
partial ordering

≼ 		 ⟺ ∈
≺ 		 ⟺ ∈ 	 	 	 	

 Examples
 Componentwise inequality: 

≺ 		 ⟺

 Matrix inequality
≺ 		 ⟺ 	 	
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Dual Cones

 Dual cone of a cone K: ∗ 	 	 0	 	 	 ∈
≼ 		 ⟺ ∈
≺ 		 ⟺ ∈ 	 	 	 	

 Examples
 :   ∗

 :   ∗ , 		 0
 K , 	 	 	:   ∗= , 	 	
 K , 	 	 	:   ∗= , 	 	
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Convex Functions

 Definition: function : 	 → is convex if the graph of the function lies 
between the line segment joining any two points of the graph.

 Formally: : 	 → is convex if dom(f) is convex and 
1 1

 Examples in :
 affine, exponential, powers ( , 0	 	 1), power of absolute 

value ( , 1)
 Example on

 Norm ∑ / , 1
 Example on 

 Affine function tr ∑ ∑

14



1/3/2012

8

Hamed Valizadegan 

Convex Functions (verification tricks)

 : 	 → is convex if and only if the following function of one variable 
is convex in for any ∈ 	&	 ∈ : 

: → : , dom g t	 x tv ∈

 First order condition: Differentiable with convex domain is convex if and 
only if

 Second order condition: twice differentiable function f with convex domain 
is convex if and only if

≽ 0	 	 	 	 ∈
 Example: quadratic function 1/2 is convex if P is PSD
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Operations that preserve convexity:

 Nonnegative weighted sum
 ∑ is convex if , 1,2, . . are convex
 Jensen’s inequality:  f

 Composition with affine function 
 is convex if f(x) is convex
 Examples: ∑ log	

 Minimization
 min

∈
, is convex if , is convex in , and C is a convex set

 Examples: , min
∈

is convex if S is convex

 Perspective , , 0

 Example:  , , 0

 Pointwise maximum and suprimum
 Piecewise linear function: max

,…,
 sup

∈
, is convex  if , is convex in for each ∈

 Example: max eigenvalue of a symmetric function sup
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Conjugate function:

 The conjugate function of is defined as
∗ sup

∈

 The conjugate function of ∗ is the max cap between the linear function 
and . For differentiable functions, this occurs at a point x where 

y

 ∗ is convex even if is not. Because it is a pointwise suprimum of a 
family of affine functions

 Also known as Lengendre-Fenchel Transformation or Fenchel
Transformation

 Examples
 −log(x) → ∗ =−1−log(−y), y 0
 exp(x) → ∗ =ylog(y)−y, y 0
 xlog(x) → ∗ =exp(y−1), y 0
 1/x → ∗ =−2 / , y 0
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Slack variables

 Converting inequality constraints to equality constrains
minimize					  minimize

,
				

. . 												 0		 1, … . . 											 0		 1, …
																		 0		 1, …

 Introducing equality constraints
minimize					  minimize

,
				

. . 												 0		 1, … . . 											 0		 1,…
				 0, …

 Converting an infeasible problem to feasible by relaxing the constraints
minimize					  minimize

,
				 ∑

. . 												 0		 1, … . . 											 0		 1, …
																		 0		 1, …
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Duality

 The following optimization problem
minimize				

	 			 0		 1, …
0		 1,… ,

 Can be written in the Lagrangian form
L x, λ, ∑ ∑

 , 1, … , are called the Lagrange multipliers associated with the 
inequalities and , 1, … , are called the Lagrange multipliers associated 
with the equalities. They are also called the dual variables.

 The Lagrange dual function is defined as
g λ, inf	

	
L x, λ, inf	

	
∑ ∑

 g λ, is the lower bound for the optimal value of original problem
 g λ, ∗
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The dual problem

 The following optimization problem is called the dual problem (original 
problem is called primal)

maximize
,

		g λ,

	 		λ ≽ 0

 Finds the best lower bound on ∗

 A convex optimization problem with optimal value denoted by ∗

 L λ, 	is concave since it is pointwise infimum of a family of affine 
functions 

g λ, inf	
	
L x, λ, inf	

	

 This automatically gives a procedure to optimize the non-convex 
problems.
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Solving dual problems

 Solve the dual problem which is convex 
 Question: how good it is?

 The duality gap ∗ ∗ is a measure of how good it is
 Not usually easy to show that the gap is small

 Strong duality ∗ ∗=0
 Usually (but not always) holds for convex problems
 Non-convex problem can have strong duality as well so you can get 

lucky if you use the dual

 If the strong duality holds and x, λ, are optimal, then they must 
satisfy the following conditions, called KKT conditions
 Primal constraints: 0, 1,…
 Dual constraints: λ 0, 1,…
 Complementary slackness: λ =0 , 1, …
 Gradient of Lagrangian vanishes: ∑ ∑

21

Hamed Valizadegan 

Linear Program (LP) 

 Convex problem with affine objective and constraints functions
minimize				

. . 		

 Feasible set is a polyhedron
 linprog command in MATLAB
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Quadratic Program (QP) 

 Convex problem with quadratic convex objective and affine 
constraints functions (P is PSD)

minimize				1/2

. . 		

 Minimizes a convex quadratic over a polyhedron
 Quadprog command in matlab
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SVM: a QP Example

 Many linear classifiers separating two separable set of examples

 Pick the one with maximum margin
minimize

,
			

	 			 1, 1, …

 If the examples are not separable, the feasible set of this problem is 
empty (infeasible problem)

 Utilizing slack variables to relax the constraints and make a feasible 
problem

minimize
,

			 ∑

	 			 1 		 1, …
0		 1, … ,
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SVM: dual formulation

 Define the Lagrangian:

w, b, λ, 			 1

 Finding λ, inf	
	 ,

L w, b, λ,

L w, b, λ,
0 →

L w, b, λ,
0 → 0

L w, b, λ,
0 →

 KKT conditions: 1) 0,	 2) 1 0, 3) 
∑ 1 0, 4) 0, 5) 0,	

6) 0
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SVM: dual formulation

 Using these results, we obtain the dual problem

maximize
,

		 1/2

	 		0

 Useful form for using the kernel trick

maximize
,

		 1/2 ,

	 		0
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SVM^Rank: a QP Example

 Ranking problem: 
 queries , 1, . . ,

 for query , a list of items , 1, . . , (feature vector) with their 
respect relevancy , 1, . . , to the query.

 Assume also that are discrete 1. .

 Objective: obtain a linear classifier that respects ordering information
 Suppose W is such a classifier

 Construct a set on pair of examples S , 	 ,	 , =1}

 Find W that maximizes the margin between each two items
minimize

,
			 ∑

	 			 1 , 	 , ∈

0		 1, … ,
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Multi-Task Learning

 Problem setup
 T classification problems, each with different set of training examples.
 Task t has training examples , , 1, . . ,
 Feature vector of all task are in the same space
 Tasks are related (digits recognition, medical domains, etc)

 Objective: to learn linear classifiers , 1, … , for tasks by 
considering that the tasks are similar

 Solution: assume all tasks are similar to a central unknown task 
minimize

, ,
			∑ ∑ ∑ ∑

	 		 1 , 1, … , 1, … ,

0		 1, … , , 1, … ,
 How to write the dual of this problem? (Next lecture)
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Quadratically Constrained QP (QCQP) 

 Convex problem with quadratic convex objective and constraints 
functions ( are SDP)

minimize				1/2

. . 			1/2 0

 Objective and constrains are convex quadratic
 Can be solved with standard toolbox
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Semidefinite Programming 

 Convex problem with quadratic convex objective and constraints 
functions

minimize			

. . 		 ⋯ ≼ 0 (Linear Matrix Inequality)

≼ (General inequalities)

 Or 
minimize			

. . 		
≽ 0

 If , … , 	 	 are all diagonal, the SDP programming reduces to 
linear programming

 SeDuMi is a good tool to model this type of problems
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Local and Global Consistency SSL

 Local and global Consistency, minimize 

 Question: convex or non-convex?

 How to solve such problems? (Next lecture)
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PGDM metric learning

 PGDM metric learning
minimize 			∑ ,	 ∈

	 	 ∑ ,	 ∈ 1

≽ 0
 Question: convex or non-convex?
 How should we solve such problems? (next lecture)

32



1/3/2012

17

Hamed Valizadegan 

LMNN metric learning

 LMNN metric learning
minimize 			∑ ,	 ∈

. 		 1, , , ∈

≽ 0
 	 , , ∈ , , are of the same class and neighbor 

according to Euclidean distance. , are from two different 
classes.

 Question: convex or non-convex?
 How should we solve such problems? (next lecture)
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