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Motivation: Machine Learning

Linear Regression

minMi)Illgize Y ollwtx; + b — y;lI?

minMi)rlrjlize wll2+CYX™~, &
subjectto y;(wTx;+b)=>1—¢g i=1,..n
g=20i=1,..,n

PGDM metric learning

miniPmiZe Z(Xi, Xj)ES”xi - x]”p
subject to Z(xi,xj)ED”xl- - xj”P >1
P>0
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Optimization Problem

minimize fy(x)
X

subjectto fi(x)<0i=1,..m
hi(x)=0i=1,..,p

x € R™ is the variable to find

fo:R™ = R is called the objective (cost or utility) function

fi:R™ > R,i = 1,..m are the inequality constraints (defines a set)
hi:R™ - R,i = 1,...p are the equality constraints (defines a set)

v v v Vv

Solution: p* = inf{fy(X)|fi(x) <0 i=1,..m,hx)=0i=1,..,p}
Constrained vs. unconstrained problems: whether you have the constrains
or not.

v v

» A feasible point x is optimal if f(x) = p*; Xppr 1s the set of optimal points.
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Feasibility

» An optimization problem is feasible

» if x € dom f;, (implicit constraints) and it satisfies all the (explicit)
constraints fi(x) <0i=1,.m&hx)=0i=1,..,p.
» For infeasible problems, we say p* = +oo

» Feasibility problem
find x
subjectto fi(x)<0i=1,..m
hix)=0i=1,..,p

» Equivalent to the following optimization problem
minimize 0
subjectto fi(x)<0i=1,..m
hi(x)=0i=1,..,p
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Locally Optimal Points

» For the following problem
minimize fy(x)
X

s.it. fix)<0i=1,..m
hi(x)=0i=1,..,p

» xis locally optimum if there is an R > 0 such that x is optimal for the
following problem

minimize f,(2)
z
s.it. filz)<0i=1,..m
hi(z)=0i=1,..,p
lz—xll, <R
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Regularization

» A form of limiting the feasible search space of an optimization problem

» Can be considered as the prior information that the solution is located
in the neighborhood of point x

minimize f,(x) > minimize f,(z)
X z
s.t. fix)<0i=1,..m s.t. fi(2)<0i=1,..m
hix)=0i=1,..,p hi(z)=0i=1,..,p

llz—xll, <R
» Leads to sparse solution for x =0 and small p
» I will get back to this.
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Convexity

» An optimization problem is convex if
» fo:R™ = R is a convex function
» Constrains fj(x) <0i=1,.m & h;(x) =0 i =1,..,p are convex sets.
> fo:R" >R, fi:R" > R,i=1,.m, hi:R" > R,i =1,..p can be linear or
nonlinear

» Importance
» Any local optimum is a global optimum

» Local optimality can be verified. No general tractable global optimum
test

» So, for convex problems, it is easy to check if a point is a global
optimum.

> Feasible set of a convex optimization problem is convex.
» Convex set and convex function??
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Affine and Convex Sets

» Affine sets: the line through any two disjoint points
> x=0x,+(1—-0)x,, O€ER
» Or equivalently, solution set of linear equation {x|4Ax = b}

» Line segment: line segment between two points
P x=0x;+(1—-0)x, 0<6<1

» Convex Sets: a set that contains the line segment of any two points of the
set

> x,x,€5,0<0<1 = Ox;+(1—-6)x, €S

)
\¥ L

. A /

Convex Non-Convex

Non-convex
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Convex Sets (examples)

» Convex hull of set S = {xq, x5, ..., x;} : Set of all convex combinations of points in

S
» {x|ZE 0%, X5, 6, =106, > 0}

» Conic combination of two points
P x=0.;x,+0,x,, 0=<6,,0,

Convex cone of set S: a set that contains all conic combinations of points in S

Hyperplanes (a"x + b = 0, linear equality)
Halfspaces (a”x + b < 0, linear inequality)

v v v W

Euclidean balls and Ellipsoids: {x| (x —x.)"P™*(x —x,) <1} (P € §", ,,ie. Pis
positive-definite P)

v

Norm ball: {xlllx — x| < r}
» Norm cone: C={(x, t)|lIx|| < t} € R**? )
» Euclidean norm cone (||x]|,) is called second order cone
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Operations that preserve convexity

» Intersection of convex sets

» The image of a convex set under affine (linear) function
» F: R" » R™: F(x)=Ax+b
» scaling (aS), translation(S+a), projection

» Perspective function
» F: R*1 5 R™ F(x,t)=x/t, dom(F)={(x,t)|t>0)
» Image and inverse image of convex sets under perspective
are convex

» Linear-fractional functions:
b F:R" > R™ F(x,t)= =, dom(F)={x|c"x + d>0)

» Image and inverse image of convex sets under linear-
fractional functions are convex
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Convexity preserving operations (cont.)

ag

» Intersection of convex sets is convex.

» Polyhedra is convex
s,
» Intersection of finite number of halfspaces and

hyperplanes

) Positive semidefinite (PSD) cone: Set of all PSD matrices
is convex

» Intersection of infinite number of halfspaces and
hyperspaces passing through origin
( QO{X €S™|zTXz > 0})
V4

» We denote it by §™

Hamed Valizadegan
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Generalized Inequalities

» Definition: A cone K € R" is a proper cone if
> K is convex
» K is closed
P K is solid: it has nonempty interior
» K is pointed: it contains no line

»  Generalized inequalities: defined by a proper cone K, is a
partial ordering

X<xky ©y—x€K
X <xy ©y-—x€intK (interior of K)

» Examples
» Componentwise inequality:
X<pnY SYi2X

» Matrix inequality
X <s,m Y ©Y—-XisPSD

Hamed Valizadegan
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Dual Cones

» Dual cone of a cone K: K* = {y | y"x = 0 for all x € K}
X<ky ©y—x€K
X <xy ©y—x€intK (interior of K)

» Examples
» K=R," K'=R,"
» K=S," K*=58," (tr(XY)=0)
P K={x O llxllz =} K={(,0) [lIxll2 <t}
P K={xO|llxllh <6} K={Ce,0) | lIxlleo <t}
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Convex Functions

» Definition: function f(x): R™ = R is convex if the graph of the function lies
between the line segment joining any two points of the graph.

(. flw))
(z, flx))~

»  Formally: f(x): R"® - R is convex if dom(f) is convex and
fEx+ A —-60)y) <0f(x)+ (1 -6)f()
» Examplesin R:
» affine, exponential, powers (x%, a < 0 or a = 1), power of absolute
value (|x|% a = 1) , , )
» Example on R" ‘ ] ‘ ‘

> Normlixlle = B9V az1 [ 1 ‘ ‘
» Example on R™™ uus it
» Affine function tr(A"X) + b = X2, X7 A;;X;; + b
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Convex Functions (verification tricks)

»  f(x): R™ - R is convex if and only if the following function of one variable
is convex in t for any x € dom(f) & v € R™:

g):R -» R:g(t) = f(x + tv),dom(g) = {t|x + tv € dom(f)}

» First order condition: Differentiable f with convex domain is convex if and
only if flu)

fO) 2 fG) +PfOT(r =) Ho) +94(e) (5-)
(x, f(2)

» Second order condition: twice differentiable function f with convex domain
is convex if and only if

V2f(x) = 0 for allx € dom(f)
» Example: quadratic function 1/2x7Px + qTx + 7 is convex if P is PSD
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Operations that preserve convexity:

> Nonnegative weighted sum
> Y aifi(x) is convex if f;(x),i = 1,2,..n are convex
Jensen’s inequality: f(E(x)) < Ef(x)

> Composition with affine function
D f(Ax + b) is convex if f(x) is convex
) Examples: f(x) = — Y%, log(h; — a;"x)

) Minimization
glx) = mEIEI f(x,y) is convex if f(x,y) is convex in (x,y) and C is a convex set
y

» Examples: dist(x,S) = mei?llx — || is convex if S is convex
v

D Perspective g(x,t) = tf G),t >0
xTx

» Example: g(x,t) = T't >0

) Pointwise maximum and suprimum
Piecewise linear function: f(x) = ,max a;Tx + b;
t=1,..,n
P g(x) = sup f(x,y) is convex if f(x,y) is convex in x for each y € 4
YEA

) Example: max eigenvalue of a symmetric function Ay (X) = sup y'Xy
llyll=1
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fix)
Conjugate function:
» The conjugate function of f is defined as :
fro) = xesll,ﬁ’(f)(yrx -f() 01

» The conjugate function of f* is the max cap between the linear function
yTx and f(x). For differentiable functions, this occurs at a point x where

y=Vfx)

» f*isconvex even if f is not. Because it is a pointwise suprimum of a
family of affine functions

» Also known as Lengendre-Fenchel Transformation or Fenchel
Transformation

> Examples
P f(x) =-logx) - f*(y)=—1-log(-y),y < 0
> f(x) = exp(x) = f*(¥)=ylog(y)-y,y >0
> f(x) = xlog(x) = f*(¥)=exp(y—1), y # 0
P fe) =1x- fro)=2(-N"%y<0
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Slack variables

» Converting inequality constraints to equality constrains
minimize fj(x) > miniinize fo(x)
x X,0i

s.t. fito<0i=1,..m s.t. fit)+b;=0i=1,.m
bi20i=1,...m

» Introducing equality constraints
minimize  fy(Ayx + bg) > miniinize foo)
X XD
s.t. filAix+b)<0i=1,.m s.t fib)<0i=1,.m
Aix+bl- =Y i= O,m

» Converting an infeasible problem to feasible by relaxing the constraints
minimize  fy(x) > miniinize fo(x)+CX b;
x X0

s.t. filx)<0i=1,..m s.t. fix)—b;<0i=1,..m
bLZOl=1,m

Hamed Valizadegan 18
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Duality

» The following optimization problem
minimize f;(x)
X
subjectto fi(x)<0i=1,..m
h(x)=0i=1,..,p

» Can be written in the Lagrangian form

LG A V) = fo() + B2y 4 f;(0) + iy vihi ()

» A;,i=1,..,mare called the Lagrange multipliers associated with the
inequalities and v;,i = 1, ..., m are called the Lagrange multipliers associated
with the equalities. They are also called the dual variables.

» The Lagrange dual function is defined as

g ) = infLOGAY) = inf fo() + B2 A fi00) + ED vihi ()

» g(Av) is the lower bound for the optimal value of original problem
> gAv) < P*
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The dual problem

» The following optimization problem is called the dual problem (original
problem is called primal)

maximize g(A,v)
AV
subjectto A =0

» Finds the best lower bound on p*
» A convex optimization problem with optimal value denoted by d*

» L(A,v) is concave since it is pointwise infimum of a family of affine
functions

m P
gL ) = infLGx A v) = inf fo(x) + Z A fi00 + Z vihi ()
i=1 i=1

» This automatically gives a procedure to optimize the non-convex
problems.
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Solving dual problems

» Solve the dual problem which is convex

»  Question: how good it is?
» The duality gap p* — d* is a measure of how good it is
» Not usually easy to show that the gap is small

» Strong duality p* — d*=0
» Usually (but not always) holds for convex problems

» Non-convex problem can have strong duality as well so you can get
lucky if you use the dual

» If the strong duality holds and x, A, v are optimal, then they must
satisfy the following conditions, called KKT conditions

» Primal constraints: f;(x) <0, i=1,..m

» Dual constraints: A; >0, i =1,..m

» Complementary slackness: A;f;(x)=0, i =1,..m

» Gradient of Lagrangian vanishes: Vfy(x) + X2, A; Vf;(x) + Zle v;iVh;(x)
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Linear Program (LLP)

» Convex problem with affine objective and constraints functions
minimize cTx +d
X

s.t. Gx<h
Ax=b ) e
» e
» Feasible set is a polyhedron
» linprog command in MATLAB
Hamed Valizadegan 22
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Quadratic Program (QP)

» Convex problem with quadratic convex objective and affine
constraints functions (P is PSD)

minimize 1/2xTPx +qTx +r v RED
X %,
s.t. Gx<h :
Ax=b 4
» Minimizes a convex quadratic over a polyhedron
» Quadprog command in matlab
Hamed Valizadegan 23

SVM: a QP Example

» Many linear classifiers separating two separable set of examples

» Pick the one with maximum margin e f LF

minimize ||w||? / gk
w,b Y

subject to y;(wTx;+b)=>1, i=1,..n |7

» If the examples are not separable, the feasible set of this problem is
empty (infeasible problem)

» Utilizing slack variables to relax the constraints and make a feasible

problem
minMi/’rlr?lize Wl +CY™, &
subjectto yy(wTx;+b)>1—¢ i=1,..n
g=20i=1,..,n
Hamed Valizadegan 24
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SVM: dual formulation

» Define the Lagrangian:

m
n
Lwb A = WP +C) =) a Giwx+b) = 1+e) Zulel
i:l

i=1

» Finding LA, v) = inf L(w,b,2,v)

BL(W b, A, v)
aw 0 W= Z lylxl

dL(w,b,A,v)

- 0- Z a;y; =0

dL(w, b, A, v)
0£i

i=1

=0-a=C—yy
» KKT conditions: 1) a; > 0, 2) yiwlx; +b)—1+¢ =0,

YR i(wTxi+b)—1+¢) =0, 4) p; =0,
6) uigg =0

3)
5) & = 0,

Hamed Valizadegan
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SVM: dual formulation

» Using these results, we obtain the dual problem

ma%\iﬂr’nize Z a;—1/2 Z Z QY YiXiX;

i=1j=
sub]ect to0<aq;<C

» Useful form for using the kernel trlck

ma)g\l'rvmze Z a;—1/2 Z Z a;a;y; VK (x;, x;)

i=1j=
sub]ect to 0<aq; =C

Hamed Valizadegan
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SVM”Rank: a QP Example

» Ranking problem:
» nqueries q;,i =1,..,n
» for query g;, a list of items dji, j =1,..,m; (feature vector) with their
respect relevancy 7', j = 1,..,m; to the query.

> Assume also that rji are discrete [1..k]

» Objective: obtain a linear classifier that respects ordering information

» Suppose W is such a classifier
» Construct a set on pair of examples S = {(x,2)| x = dji, z= dki, nt— r,-i=1}
» Find W that maximizes the margin between each two items

minimize |W||* + C X,y =1 &;

w,b L
subject to wT(xj —x;) =2 1—g;, (x,x) €S
&j = 0i=1,..,n
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Multi-Task Learning

» Problem setup
» T classification problems, each with different set of training examples.
» Task t has n; training examples (x;%,y;),i = 1,..,n;
) Feature vector of all task are in the same space
) Tasks are related (digits recognition, medical domains, etc)

» Objective: to learn linear classifiers wt,t = 1, ..., T for tasks by
considering that the tasks are similar

» Solution: assume all tasks are similar to a central unknown task u
minimize Yialwtll? + Ziogllwt — ull® + € Xi- i &t
subject to y; (thxit + bt) >1-gbi=1.nt=1,.,T

gt=20i=1,...n,t=1,..,T
» How to write the dual of this problem? (Next lecture)
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Quadratically Constrained QP (QCQP)

» Convex problem with quadratic convex objective and constraints
functions (P; are SDP)
minimize 1/2xTPyx + qTx + 74
X
s.t. 1/2xTPx+qTx+1;, <0
Ax=b

» Objective and constrains are convex quadratic
» Can be solved with standard toolbox
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Semidefinite Programming

» Convex problem with quadratic convex objective and constraints

functions
minimize cTx+d
s.t. x;P; + -+ x,P, + Q < 0 (Linear Matrix Inequality)
Gx < b (General inequalities)
Ax=b
» Or

minixmize tr(CX)
s.t. tr(4;X) = b;
X=0
» If P, .., B, and Q are all diagonal, the SDP programming reduces to
linear programming
» SeDuMi is a good tool to model this type of problems
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Local and Global Consistency SSL

» Local and global Consistency, minimize

2 ¥
+uy
i=1

F
\‘i D, A

Fj

2
L F-¥,

1 N
0F) =23,

“ij=1

v
Fitting

v
Smoothness

» Question: convex or non-convex?

2

F -y,

1 1 N
OF)= FDZLDZF +uY,
=

v
Fitting

» How to solve such problems? (Next lecture)
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PGDM metric learning

» PGDM metric learning
minipmize Xix, xj)ES”xi - xj”P
subject to Z(xbx},)ED”xi - xj”P >1
Px0
» Question: convex or non-convex?
» How should we solve such problems? (next lecture)

Hamed Valizadegan
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LMNN metric learning

» LMNN metric learning
minimize Xx;, xj)ES”xi - xj||P
s.tllx — xgellp — ”xi - xj”P =1,(x;, xj, xx) ER
P=0
» in(x;, x, xx) ER, (xl-, xj) are of the same class and neighbor

according to Euclidean distance. (x;, x;) are from two different
classes.

» Question: convex or non-convex?
» How should we solve such problems? (next lecture)
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