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Motivation: Machine Learning

» Linear Regression
minimize > wtx; + b — y;|2

» SVM
minv‘i/'rlr)lize wll? +CYX™, ¢
subjectto y;(wlx;+b)=>1—¢ i=1,..n
&=0i1=1,..,n

» PGDM metric learning
minipmize 2ix;, xj)ES”xi - xj”P
subject to Xy, xj)ED”xi — xj||P =1

P*>0
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Optimization Problem

minimize f,(x)
X

subjectto fi(x)<0i=1,..m
hi(X) =01i= 1,...,p

P x € R™is the variable to find

» fo:R™ — R is called the objective (cost or utility) function

» fi:R™ > R,i=1,..m are the inequality constraints (defines a set)
» h;:R™ > R,i =1,..p are the equality constraints (defines a set)

»  Solution: p* = inf{f,(X)|f;(x) <0i=1,.m,hi(x)=0i=1,..,p}

» Constrained vs. unconstrained problems: whether you have the constrains
or not.

» A feasible point x is optimal if f(x) = p*; Xppr 1s the set of optimal points.
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Feasibility

» An optimization problem is feasible

» if x € dom f, (implicit constraints) and it satisfies all the (explicit)
constraints f;(x) <0i=1,.m& h;(x)=0i=1,..,p.

» For infeasible problems, we say p* = 4+

» Feasibility problem
find X
subjectto fi(x)<0i=1,..m
hi(x)=0i=1,..,p

» Equivalent to the following optimization problem
minimize 0
subjectto fi(x)<0i=1,..m
hi(x)=0i=1,..,p
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Locally Optimal Points

» For the following problem
minimize fy(x)
X

s.t. fi(x)<0i=1,..m
hi(X)=O l=1,,p

» x1s locally optimum if there is an R > 0 such that x is optimal for the
following problem

minimize f,(z)
Z
s.t. fi(z)<0i=1,.m
hi(Z) =0i=1, ey P
lz—x|l, <R
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Regularization

A form of limiting the feasible search space of an optimization problem

Can be considered as the prior information that the solution is located
in the neighborhood of point x

minimize f;(x) > minimize f,(2)
X Z
s.t. filx)<0i=1,..m s.t. fi(z)<0i=1,..m
hi(x)=0i=1,..,p h;(z)=0i=1,..,p
lz—xll, <R

Leads to sparse solution for x =0 and small p
I will get back to this.
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Convexity

» An optimization problem is convex if
» fo:R™ > R is a convex function
» Constrains f;(x) <0i=1,.m&h;(x) =0 1i=1,..,p are convex sets.

» fo:R" >R, fi:R*">R,i=1,..m, h:R" > R,i =1, ...p can be linear or
nonlinear

» Importance
» Any local optimum is a global optimum

» Local optimality can be verified. No general tractable global optimum
test

P So, for convex problems, it is easy to check if a point is a global
optimum.

» Feasible set of a convex optimization problem is convex.
» Convex set and convex function??
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Affine and Convex Sets

» Affine sets: the line through any two disjoint points
} x:0x1+(1_9)x2, feR
» Or equivalently, solution set of linear equation {x|Ax = b}

» Line segment: line segment between two points
P x=0x;+(1-0)x,, 0<06<1

» Convex Sets: a set that contains the line segment of any two points of the
set

P x,x, €50<60<1 = 0x;+(1—-0)x, €S

Convex Non-Convex

Non-convex
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Convex Sets (examples)

» Convex hull of set S = {x{, x5, ..., x,} : Set of all convex combinations of points in

S
} {X|Z£{=1 Hl'xil Zéczl Qi = 1, Hi > 0}

» Conic combination of two points “/ b
2 X = Hlxl + 62x2: o< 61,82 o =
0"
» Convex cone of set S: a set that contains all conic combinations of points in S
» Hyperplanes (a’x + b = 0, linear equality)
P Halfspaces (a’x + b < 0, linear inequality)
» Euclidean balls and Ellipsoids: {x| (x —x.)"P~'(x —x,) <1} (P € S",,,i.e. Pis

positive-definite P)

1

v

Norm ball: {x|||lx — x.|| < r}
> Norm cone: C={(x, t)|llx|| <t} € R**1
» Euclidean norm cone (||x]|,) is called second order cone 0 g

xo —1 —1

0.5

0
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Operations that preserve convexity

» Intersection of convex sets

» The image of a convex set under affine (linear) function
» F: R" - R™: F(x)=Ax+b
» scaling (aS), translation(S+a), projection

» Perspective function
» F: R*"! = R"™: F(x,t)=x/t, dom(F)={(x,t)|t>0)
» Image and inverse image of convex sets under perspective
are convex

» Linear-fractional functions:
> F: R" > R™ Fx,t)=—, dom(F)={x|c"x + d>0)

» Image and inverse image of convex sets under linear-
fractional functions are convex
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Convexity preserving operations (cont.)

('L]_‘ g
» Intersection of convex sets is convex.
» Polyhedra is convex P
as
P Intersection of finite number of halfspaces and fa

hyperplanes

(14'

» Positive semidefinite (PSD) cone: Set of all PSD matrices
1S convex

» Intersection of infinite number of halfspaces and
hyperspaces passing through origin
( QO{X €S| zTXz > 0))
Z

» We denote it by $™
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Generalized Inequalities

» Definition: A cone K € R" is a proper cone if
P K is convex
P K is closed
P K is solid: it has nonempty interior
P K is pointed: it contains no line

P Generalized inequalities: defined by a proper cone K, is a
partial ordering

X%Ky @y—XEK
x<gy ©y—x€intK (interior of K)

» Examples
» Componentwise inequality:
X<R+n_’y S Y = X
P Matrix inequality
X <g,nY &Y —XisPSD
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Dual Cones

» Dual cone of a cone K: K* = {y | yTx = 0 for all x € K}
.X'%Ky @y—XEK
xX<gy ©y-—xe€intK (interior of K)

» Examples
» K=R,™ K*=R,"
» K=8." K*=8," (tr(XY)=0)
P K={CO)|llxllz =t}: K'={(x,O)|llx|l; =t}
P K={C0O)[llxlly =t}: K*={Cc,t) | llxlleo <t}
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Convex Functions

» Definition: function f(x): R™ — R is convex if the graph of the function lies
between the line segment joining any two points of the graph.

(v, f(v))
(x, f(x))*

» Formally: f(x): R®™ - R is convex if dom(f) is convex and
fx+ (1 —-0)y) <0f(x)+ (1 —-06)f(y)
» Examples in R:

» affine, exponential, powers (x% a < 0 or « = 1), power of absolute
value (|x|*,a = 1)

» Example on R" / \ F

uy

» Normllx|l, = Xyl )Y a =1 kJ L
» Example on R™™

q=05 g=1 qg=2 g=4

» Affine function tr(A"X) + b = X2, X7 A;jX;j + b
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Convex Functions (verification tricks)

» f(x): R™ = R is convex if and only if the following function of one variable
1s convex in t for any x € dom(f) & v € R™:

g(t):R > R:g(t) = f(x + tv),dom(g) = {t |x + tv € dom(f)}

» First order condition: Differentiable f with convex domain is convex if and
only if f(y)

fO)=fE)+V ) (v —x) F(@) + V() (y - 2)
“(x, f(x))

» Second order condition: twice differentiable function f with convex domain
1s convex if and only if

V2f(x) 0 for all x € dom(f)
» Example: quadratic function 1/2x"Px + q"x + r is convex if P is PSD

Hamed Valizadegan 15



Operations that preserve convexity:

4 Nonnegative weighted sum
4 Yl @ ﬁ (x) is convex if f;(x),i = 1,2,..n are convex
Jensen’s inequality: f(E(x)) < Ef(x)

P Composition with affine function
P F(Ax + b) is convex if f(x) is convex
P Examples: f(x) = — X%, log(h; — a;Tx)

»  Minimization
P gx) = min f(x,y) is convex if f(x,y) is convex in (x,y) and C is a convex set
yE

4 Examples dist(x,S) = m1n||x — y|| is convex if S is convex

4 Perspective g(x,t) = tf (%) ,t >0
T
P Example: g(x,t) = %,t >0

P  Pointwise maximum and suprimum
P Piecewise linear function: flx) =  max a;Tx + b;

P g(x) =supf(x,y) is convex if f (x y) is convex in x for each y€EA
YEA
4 Example: max eigenvalue of a symmetric function A,,,,(X) = sup y'Xy
lyll=1
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Conjugate function: |

[ zy

» The conjugate function of f is defined as /
ffO) = sup (y'x—f(x)
xedom(f) -

0= £ ()

» The conjugate function of f* is the max cap between the linear function
yTx and f(x). For differentiable functions, this occurs at a point x where

y=Vf(x)

P f*isconvex even if f is not. Because it is a pointwise suprimum of a

family of affine functions

» Also known as Lengendre-Fenchel Transformation or Fenchel
Transformation

» Examples
P f(x) =-log(x) - f*(y)=—1-log(-y), y < 0
P f(x) = exp(x) - f*(y)=ylogy)-y,y >0
P f(x) =xlog(x) » f*(y)=exp(y—1),y # 0
P f(x) =1x - fF)=2(-y)"2, y <0
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Slack variables

» Converting inequality constraints to equality constrains
minimize f,(x) > minignize fo(x)
X x,b;

s.t. fix)<0i=1,.m s.t. fix)+b;=0i=1,..m
bLZO i=1,...m

» Introducing equality constraints
minimize fy(Aox + by) > minimize f,(yy)
x X b

S.t. fi(Aix+b;))<0i=1,..m s.t. fiy)<0i=1,..m
Aix+bi=yl- i=0,...m

» Converting an infeasible problem to feasible by relaxing the constraints
minimize fy(x) > minignize fo(x) +CY™, b
X X,0i

s.t. fix)<0i=1,.m s.t. fitx)—b;<0i=1,..m
bLZO i=1,...m
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Duality

» The following optimization problem
minimize fy(x)
X
subjectto fi(x)<0i=1,..m
hi(x)=0i=1,..,p

» Can be written in the Lagrangian form
LA v) = fo(x) + 2721 4 fi(o) + 27, vihy (x)

P A;,i =1,..,m are called the Lagrange multipliers associated with the
inequalities and v;,i = 1, ..., m are called the Lagrange multipliers associated
with the equalities. They are also called the dual variables.

» The Lagrange dual function is defined as

g4, v) = infL(x A, v) = inf fo (x) + YA fi(x) + 2P vihi(x)

P g(A,v) is the lower bound for the optimal value of original problem

» g(A,v) < P*
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The dual problem

» The following optimization problem is called the dual problem (original
problem is called primal)

maximize g(A,v)
AV
subjectto A = 0
» Finds the best lower bound on p*

» A convex optimization problem with optimal value denoted by d*

» L(A, v)is concave since it is pointwise infimum of a family of affine
functions

m p
g(Av) = irka(x, ALY) = ir;cffo (x) + z A fi(x) + z vih; (x)
i=1 i=1

» This automatically gives a procedure to optimize the non-convex
problems.
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Solving dual problems

» Solve the dual problem which 1s convex

P  Question: how good it 1s?
» The duality gap p* — d* is a measure of how good it 1s
» Not usually easy to show that the gap is small

» Strong duality p* — d*=0
» Usually (but not always) holds for convex problems

» Non-convex problem can have strong duality as well so you can get
lucky if you use the dual

» If the strong duality holds and x, A, v are optimal, then they must
satisfy the following conditions, called KKT conditions

» Primal constraints: f;(x) <0, i=1,..m

» Dual constraints: A; >0, i =1,..m

» Complementary slackness: A;f;(x)=0, i =1,..m

» Gradient of Lagrangian vanishes: Vf(x) + X% 4; Vfi(x) + Zle v;Vh;(x)
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Linear Program (LLP)

» Convex problem with affine objective and constraints functions
minimize c’x +d
X

s.t. Gx<h
Ax=0>b

» Feasible set is a polyhedron
» linprog command in MATLAB
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Quadratic Program (QP)

» Convex problem with quadratic convex objective and

constraints functions (P 1s PSD)

minimize 1/2xTPx +q'x +7r
X

s.t. Gx <h
Ax=0b

Minimizes a convex quadratic over a polyhedron
Quadprog command 1in matlab

affine

—V fo(a*)

By
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SVM: a QP Example

» Many linear classifiers separating two separable set of examples

» Pick the one with maximum margin
minimize ||w||?
w,b

subjectto y;(wix; +b)>1,i=1,..n

» If the examples are not separable, the feasible set of this problem 1is
empty (infeasible problem)

» Utilizing slack variables to relax the constraints and make a feasible
problem

minMi/rglize Wl +CYX™, ¢
subjectto y;(wlx; +b)=>1—¢ i=1,..n
&=0i=1,..,n
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SVM: dual formulation

» Define the Lagrangian:

m n
n
L(w,bAv) = [lwl|*+ Cz & — Z a; yiw'x; +b) —1+¢&) — Zﬂiei
i=1 4 :
1=1 =1

» Finding L(A,v) = ingL(w, b,A,v)
w,

n
dL(w,b,A,v)
aw =0—’W=Z“i3’ixi
0=l
oL(w,b,A,v)
b =0- z a;y; =0
i=1
dL(w,b,A,v)
e =0-a=C—u
l
» KKT conditions: 1) a; = 0, 2) yiwlx; +b) —1+¢ =0, 3)
Yiia; (yiw'x; +b) —1+¢&) =0, 4) u; = 0, 5) & =0,
6) uig; =0
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SVM: dual formulation

» Using these results, we obtain the dual problem

ma>§\i,5nize z a; — 1/222 ;Y ViXiX;

i=1j=
Sub]ect to 0<a;<C

» Useful form for using the kernel trick

ma%&ilgnize Z a; — 1/222 a;a;y;yiK(x;, x;)

i=1j=
Sub]ect to 0<a;<C
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SVM~"Rank: a QP Example

» Ranking problem:

P nqueriesq;,i=1,..,n
» for query q;, a list of items d]-i, j =1,..,m; (feature vector) with their
respect relevancy rji, j=1,..,m; to the query.

P Assume also that 7;' are discrete [1..k]

» Objective: obtain a linear classifier that respects ordering information

» Suppose W is such a classifier
» Construct a set on pair of examples S = {(x,2)| x = dji, zZ = dki, Tt — rji=1}
» Find W that maximizes the margin between each two items
minMi/‘rlglize lw||? + CXri—rj=18ij
subject to wT(xj —x;) =1—¢;, (x,%)€ES
g;=201i=1,..,n
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Multi-Task Learning

» Problem setup
P T classification problems, each with different set of training examples.
» Task t has n, training examples (x;%,y;9),i = 1,..,n;
» Feature vector of all task are in the same space
P Tasks are related (digits recognition, medical domains, etc)

» Objective: to learn linear classifiers wt,t = 1, ..., T for tasks by
considering that the tasks are similar

» Solution: assume all tasks are similar to a central unknown task u
minimize ez llwtl? + X llwt — pll> + C X Xl &F

subject to y; (Wthit + bt) >1-gti=1.nt=1,.,T

gt>0i=1,.,n,t=1,...,T
» How to write the dual of this problem? (Next lecture)
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Quadratically Constrained QP (QCQP)

» Convex problem with quadratic convex objective and constraints
functions (P; are SDP)

minimize 1/2xTPyx + qo7x + 19
X

s.t. 1/2xTPix+q;"x+1, <0
Ax =b

» Objective and constrains are convex quadratic
» Can be solved with standard toolbox
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Semidefinite Programming

» Convex problem with quadratic convex objective and constraints
functions
minimize c¢’x +d
X
s.t. x4P; + -+ x,P, + Q < 0 (Linear Matrix Inequality)
Gx < b (General inequalities)

Ax =0b

minimize tr(CX)
X

S.t. tT'(AiX) — bi
X*#0

» IfP,, .., B, and Q are all diagonal, the SDP programming reduces to
linear programming

» SeDuMi is a good tool to model this type of problems
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Local and Global Consistency SSL

» Local and global Consistency, minimize

1 N o j ‘ r
Q(F):;ZH{: ,"' ‘ _}
= n
Smaﬂﬂmess Fi ”””g

» Question: convex or non-convex?
11

Q(F}: FD 2LD 2 F _},

Fm‘mg

» How to solve such problems? (Next lecture)
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PGDM metric learning

» PGDM metric learning
minipmize 2(x;, xj)ES”xi — xj||1D
subject to Xy, xj)ED”xi — xj”P =1
P=0

» Question: convex or non-convex?
» How should we solve such problems? (next lecture)
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LMNN metric learning

» LMNN metric learning
minimize 2(x;, xj)ES”xi — xj”p
s.t lx; = xiellp — || — xj”P >1,(x;, x5, xx) ER
P*=0
> in(x;, x5, x) ER, (xl-, xj) are of the same class and neighbor

according to Euclidean distance. (x;, x;) are from two different
classes.

» Question: convex or non-convex?
» How should we solve such problems? (next lecture)
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