

An Introduction to Optimization with Application to Machine Learning

Hamed Valizadegan

University of Pittsburgh

Motivation: Machine Learning

Linear Regression

minimize
$$\sum_{i=1}^{n} ||w^{t}x_{i} + b - y_{i}||^{2}$$

SVM

$$\begin{aligned} & \underset{w,b}{\text{minimize}} & & \|w\|^2 + C \sum_{i=1}^n \varepsilon_i \\ & subject \ to & \ y_i(w^T x_i + b) \geq 1 - \varepsilon_i \ i = 1, \dots n \\ & \ \varepsilon_i \geq 0 \ i = 1, \dots, n \end{aligned}$$

PGDM metric learning

minimize
$$\sum_{(x_i, x_j) \in S} ||x_i - x_j||_P$$

subject to $\sum_{(x_i, x_j) \in D} ||x_i - x_j||_P \ge 1$
 $P \ge 0$

Optimization Problem

```
minimize f_0(x)

subject to f_i(x) \le 0 i = 1, ..., m

h_i(x) = 0 i = 1, ..., p
```

- $x \in \mathbb{R}^n$ is the variable to find
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is called the objective (cost or utility) function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ... m$ are the inequality constraints (defines a set)
- $h_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ... p$ are the equality constraints (defines a set)
- Solution: $p^* = \inf\{f_0(x)|f_i(x) \le 0 \ i = 1, ... m, h_i(x) = 0 \ i = 1, ..., p\}$
- Constrained vs. unconstrained problems: whether you have the constrains or not.
- A feasible point x is optimal if $f_0(x) = p^*$; X_{OPT} is the set of optimal points.

Feasibility

- An optimization problem is feasible
 - if $x \in dom f_0$ (implicit constraints) and it satisfies all the (explicit) constraints $f_i(x) \le 0$ i = 1, ..., m & $h_i(x) = 0$ i = 1, ..., p.
- For infeasible problems, we say $p^* = +\infty$
- Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

Equivalent to the following optimization problem

minimize 0
subject to
$$f_i(x) \le 0$$
 $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

Locally Optimal Points

For the following problem

minimize
$$f_0(x)$$

 $s.t.$ $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

x is locally optimum if there is an R > 0 such that x is optimal for the following problem

minimize
$$f_0(z)$$

 $s.t. \ f_i(z) \le 0 \ i = 1, ... m$
 $h_i(z) = 0 \ i = 1, ..., p$
 $\|z - x\|_2 \le R$

Regularization

- A form of limiting the feasible search space of an optimization problem
- Can be considered as the prior information that the solution is located in the neighborhood of point x

- \blacktriangleright Leads to sparse solution for x =0 and small p
- I will get back to this.

Convexity

- ▶ An optimization problem is convex if
 - $f_0: \mathbb{R}^n \to \mathbb{R}$ is a convex function
 - Constrains $f_i(x) \le 0$ $i = 1, ..., m \& h_i(x) = 0$ i = 1, ..., p are convex sets.
 - $f_0: \mathbb{R}^n \to \mathbb{R}, f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m, h_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., p \text{ can be linear or nonlinear}$
- Importance
 - Any local optimum is a global optimum
 - Local optimality can be verified. No general tractable global optimum test
 - So, for convex problems, it is easy to check if a point is a global optimum.
- Feasible set of a convex optimization problem is convex.
- Convex set and convex function??

Affine and Convex Sets

- Affine sets: the line through any two disjoint points
 - $x = \theta x_1 + (1 \theta) x_2, \quad \theta \in \mathbb{R}$
 - Or equivalently, solution set of linear equation $\{x | Ax = b\}$
- Line segment: line segment between two points
 - $x = \theta x_1 + (1 \theta) x_2, \quad 0 \le \theta \le 1$
- Convex Sets: a set that contains the line segment of any two points of the set
 - $x_1, x_2 \in S, 0 \le \theta \le 1 \implies \theta x_1 + (1 \theta)x_2 \in S$

Convex Sets (examples)

- Convex hull of set $S = \{x_1, x_2, ..., x_k\}$: Set of all convex combinations of points in S

- Convex cone of set S: a set that contains all conic combinations of points in S
- $\qquad \qquad \text{Hyperplanes } (a^T x + b = 0, \text{ linear equality})$
- ► Halfspaces $(a^T x + b \le 0$, linear inequality)
- Euclidean balls and Ellipsoids: $\{x | (x x_c)^T P^{-1} (x x_c) \le 1\}$ ($P \in S^n_{++}$, i.e. P is positive-definite P)
- Norm ball: $\{x | ||x x_c|| \le r\}$
- Norm cone: $C = \{(x, t) | ||x|| \le t\} \in \mathbb{R}^{n+1}$
 - Euclidean norm cone ($||x||_2$) is called second order cone

Operations that preserve convexity

- Intersection of convex sets
- ▶ The image of a convex set under affine (linear) function
 - $F: \mathbb{R}^n \to \mathbb{R}^m: F(x)=Ax+b$
 - scaling (aS), translation(S+a), projection
- Perspective function
 - $F: \mathbb{R}^{n+1} \to \mathbb{R}^n: F(x,t)=x/t, \quad \text{dom}(F)=\{(x,t) \mid t>0\}$
 - Image and inverse image of convex sets under perspective are convex
- ▶ Linear-fractional functions:
 - $F: \mathbb{R}^n \to \mathbb{R}^m: F(\mathbf{x}, \mathbf{t}) = \frac{Ax + b}{c^T x + d}, \quad \text{dom}(F) = \{\mathbf{x} \mid c^T x + d > 0\}$
 - ▶ Image and inverse image of convex sets under linearfractional functions are convex

Convexity preserving operations (cont.)

- Intersection of convex sets is convex.
- Polyhedra is convex
 - Intersection of finite number of halfspaces and hyperplanes

- Positive semidefinite (PSD) cone: Set of all PSD matrices is convex
 - Intersection of infinite number of halfspaces and hyperspaces passing through origin $(\bigcap_{z\neq 0} \{X \in S^n \mid z^T X z \geq 0\})$
 - We denote it by S^n_+

Generalized Inequalities

- Definition: A cone $K \subseteq \mathbb{R}^n$ is a proper cone if
 - K is convex
 - K is closed
 - K is solid: it has nonempty interior
 - K is pointed: it contains no line
- Generalized inequalities: defined by a proper cone K, is a partial ordering

$$x \leq_K y \iff y - x \in K$$

 $x <_K y \iff y - x \in int \ K \ (interior \ of \ K)$

- Examples
 - Componentwise inequality:

$$x \prec_{R_+} n y \iff y_i \ge x_i$$

Matrix inequality

$$X \prec_{S_+}^n Y \iff Y - X \text{ is PSD}$$

Dual Cones

- Dual cone of a cone K: $K^* = \{y \mid y^T x \ge 0 \text{ for all } x \in K\}$ $x \le_K y \iff y - x \in K$ $x <_K y \iff y - x \in int K \text{ (interior of } K\text{)}$
- Examples
 - $K = R_{+}^{n}$: $K^* = R_{+}^{n}$
 - $K = S_{+}^{n}$: $K^* = S_{+}^{n}$, $(tr(XY) \ge 0)$
 - $K = \{(x,t) \mid ||x||_2 \le t\}: K^* = \{(x,t) \mid ||x||_2 \le t\}$
 - $K = \{(x,t) \mid ||x||_1 \le t\} : K^* = \{(x,t) \mid ||x||_\infty \le t\}$

Convex Functions

Definition: function f(x): $\mathbb{R}^n \to \mathbb{R}$ is convex if the graph of the function lies between the line segment joining any two points of the graph.

- Formally: f(x): $\mathbb{R}^n \to \mathbb{R}$ is convex if dom(f) is convex and $f(\theta x + (1 \theta)y) \le \theta f(x) + (1 \theta)f(y)$
- \blacktriangleright Examples in \mathbb{R} :
 - affine, exponential, powers $(x^{\alpha}, \alpha \leq 0 \text{ or } \alpha \geq 1)$, power of absolute value $(|x|^{\alpha}, \alpha \geq 1)$
- Example on \mathbb{R}^n
 - Norm $||x||_{\alpha} = (\sum_{i=1}^{n} |x_i|^{\alpha})^{1/\alpha}, \alpha \ge 1$
- Example on $\mathbb{R}^{n \times m}$
 - Affine function $\operatorname{tr}(A^TX) + b = \sum_{i=1}^m \sum_{j=1}^n A_{ij} X_{ij} + b$

Convex Functions (verification tricks)

f(*x*): R^n → R is convex if and only if the following function of one variable is convex in t for any $x \in dom(f) \& v \in \mathbb{R}^n$:

$$g(t): R \to R: g(t) = f(x + tv), \operatorname{dom}(g) = \{t \mid x + tv \in \operatorname{dom}(f)\}\$$

First order condition: Differentiable f with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

 $f(x) + \nabla f(x)^{T} (y - x)$

Second order condition: twice differentiable function f with convex domain is convex if and only if

$$\nabla^2 f(x) \ge 0$$
 for all $x \in dom(f)$

Example: quadratic function $1/2x^TPx + q^Tx + r$ is convex if P is PSD

Operations that preserve convexity:

- Nonnegative weighted sum
 - $\sum_{i=1}^{n} \alpha_i f_i(x)$ is convex if $f_i(x)$, i = 1,2,...n are convex Jensen's inequality: $f(\mathbb{E}(x)) \leq \mathbb{E}f(x)$
- Composition with affine function
 - f(Ax + b) is convex if f(x) is convex
 - Examples: $f(x) = -\sum_{i=1}^{n} \log(b_i a_i^T x)$
- **Minimization**
 - $g(x) = \min_{y \in C} f(x, y)$ is convex if f(x, y) is convex in (x, y) and C is a convex set
 - Examples: $dist(x, S) = \min_{y \in S} ||x y||$ is convex if S is convex
- Perspective $g(x,t) = tf\left(\frac{x}{t}\right), t > 0$
 - Example: $g(x,t) = \frac{x^T x}{t}, t > 0$
- Pointwise maximum and suprimum

 - Piecewise linear function: $f(x) = \max_{i=1,\dots,n} a_i^T x + b_i$ $g(x) = \sup_{x \in A} f(x,y)$ is convex if f(x,y) is convex in x for each $y \in A$
 - Example: max eigenvalue of a symmetric function $\lambda_{max}(X) = \sup_{\|y\|=1} y^T X y$

Conjugate function:

The conjugate function of f is defined as

$$f^*(y) = \sup_{x \in dom(f)} (y^T x - f(x))$$

- The conjugate function of f^* is the max cap between the linear function y^Tx and f(x). For differentiable functions, this occurs at a point x where $y = \nabla f(x)$
- f^* is convex even if f is not. Because it is a pointwise suprimum of a family of affine functions
- Also known as Lengendre-Fenchel Transformation or Fenchel Transformation
- Examples
 - $f(x) = -\log(x) \to f^*(y) = -1 \log(-y), y < 0$
 - $f(x) = \exp(x) \to f^*(y) = y\log(y) y, y > 0$
 - $f(x) = x\log(x) \to f^*(y) = \exp(y-1), y \neq 0$
 - $f(x) = 1/x \rightarrow f^*(y) = -2(-y)^{1/2}, y \le 0$

Slack variables

Converting inequality constraints to equality constrains

minimize
$$f_0(x)$$
 \rightarrow minimize $f_0(x)$
 $s.t.$ $f_i(x) \le 0$ $i = 1, ... m$ $s.t.$ $f_i(x) + b_i = 0$ $i = 1, ... m$
 $b_i \ge 0$ $i = 1, ... m$

Introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$
 \rightarrow minimize $f_0(y_0)$
 $s.t.$ $f_i(A_ix + b_i) \le 0$ $i = 1, ... m$ $s.t.$ $f_i(y_i) \le 0$ $i = 1, ... m$
 $A_ix + b_i = y_i$ $i = 0, ... m$

Converting an infeasible problem to feasible by relaxing the constraints

minimize
$$f_0(x)$$
 \rightarrow minimize $f_0(x) + C \sum_{i=1}^m b_i$
 $s.t.$ $f_i(x) \le 0$ $i = 1, ... m$ $s.t.$ $f_i(x) - b_i \le 0$ $i = 1, ... m$
 $b_i \ge 0$ $i = 1, ... m$

Duality

The following optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$
 $h_i(x) = 0$ $i = 1, ..., p$

Can be written in the Lagrangian form

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- λ_i , i=1,...,m are called the Lagrange multipliers associated with the inequalities and ν_i , i=1,...,m are called the Lagrange multipliers associated with the equalities. They are also called the dual variables.
- ▶ The Lagrange dual function is defined as

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \inf_{x} f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- $\mathbf{g}(\lambda, \nu)$ is the lower bound for the optimal value of original problem
 - $g(\lambda, \nu) \leq P^*$

The dual problem

The following optimization problem is called the dual problem (original problem is called primal)

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \ge 0$

- Finds the best lower bound on p^*
 - A convex optimization problem with optimal value denoted by d^*
 - L(λ , ν) is concave since it is pointwise infimum of a family of affine functions

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \inf_{x} f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

▶ This automatically gives a procedure to optimize the non-convex problems.

Solving dual problems

- Solve the dual problem which is convex
- Question: how good it is?
 - ▶ The duality gap $p^* d^*$ is a measure of how good it is
 - Not usually easy to show that the gap is small
- Strong duality $p^* d^* = 0$
 - Usually (but not always) holds for convex problems
 - Non-convex problem can have strong duality as well so you can get lucky if you use the dual
- If the strong duality holds and x, λ , ν are optimal, then they must satisfy the following conditions, called KKT conditions
 - Primal constraints: $f_i(x) \le 0$, i = 1, ... m
 - Dual constraints: $\lambda_i > 0$, i = 1, ... m
 - Complementary slackness: $\lambda_i f_i(x) = 0$, i = 1, ... m
 - Gradient of Lagrangian vanishes: $\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x)$

Linear Program (LP)

Convex problem with affine objective and constraints functions

minimize
$$c^T x + d$$

 $s.t. Gx \le h$
 $Ax = b$

- Feasible set is a polyhedron
- linprog command in MATLAB

Quadratic Program (QP)

Convex problem with quadratic convex objective and affine constraints functions (P is PSD)

minimize
$$1/2x^TPx + q^Tx + r$$

 $s.t. Gx \le h$
 $Ax = b$

Quadprog command in matlab

SVM: a QP Example

- Many linear classifiers separating two separable set of examples
- Pick the one with maximum margin

$$\label{eq:subject_to_problem} \begin{split} & \underset{w,b}{\text{minimize}} & \|w\|^2 \\ & subject \ to \ \ y_i(w^Tx_i+b) \geq 1, \ i=1, \dots n \end{split}$$

- If the examples are not separable, the feasible set of this problem is empty (infeasible problem)
- Utilizing slack variables to relax the constraints and make a feasible problem

$$\begin{aligned} & \underset{w,b}{\text{minimize}} & & \|w\|^2 + C \sum_{i=1}^n \varepsilon_i \\ & subject \ to & \ y_i(w^T x_i + b) \geq 1 - \varepsilon_i \ i = 1, \dots n \\ & \ \varepsilon_i \geq 0 \ i = 1, \dots, n \end{aligned}$$

SVM: dual formulation

Define the Lagrangian:

$$L(\mathbf{w}, \mathbf{b}, \lambda, \nu) = \|\mathbf{w}\|^2 + C \sum_{i=1}^n \varepsilon_i - \sum_{i=1}^m \alpha_i (y_i(\mathbf{w}^T x_i + b) - 1 + \varepsilon_i) - \sum_{i=1}^n \mu_i \varepsilon_i$$

Finding $L(\lambda, \nu) = \inf_{w,b} L(w, b, \lambda, \nu)$

$$\frac{\partial L(w, b, \lambda, \nu)}{\partial w} = 0 \to w = \sum_{i=1}^{n} \alpha_i y_i x_i$$
$$\frac{\partial L(w, b, \lambda, \nu)}{\partial b} = 0 \to \sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L(w, b, \lambda, \nu)}{\partial \varepsilon_i} = 0 \to \alpha_i = C - \mu_i$$

KKT conditions: 1)
$$\alpha_i \ge 0$$
, $\Sigma_{i=1}^m \alpha_i (y_i(w^T x_i + b) - 1 + \varepsilon_i) = 0$, 6) $\mu_i \varepsilon_i = 0$

KKT conditions: 1)
$$\alpha_i \ge 0$$
, 2) $y_i(w^T x_i + b) - 1 + \varepsilon_i \ge 0$, 3) $\sum_{i=1}^m \alpha_i (y_i(w^T x_i + b) - 1 + \varepsilon_i) = 0$, 4) $\mu_i \ge 0$, 5) $\varepsilon_i \ge 0$,

SVM: dual formulation

Using these results, we obtain the dual problem

maximize
$$\sum_{i=1}^{n} \alpha_{i} - 1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$
subject to $0 \le \alpha_{i} \le C$

Useful form for using the kernel trick

maximize
$$\sum_{i=1}^{n} \alpha_i - 1/2 \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$
subject to $0 \le \alpha_i \le C$

SVM^Rank: a QP Example

- Ranking problem:
 - n queries q_i , i = 1, ..., n
 - for query q_i , a list of items d_j^i , $j = 1, ..., m_i$ (feature vector) with their respect relevancy r_i^i , $j = 1, ..., m_i$ to the query.
 - Assume also that r_j^i are discrete [1..k]
- Objective: obtain a linear classifier that respects ordering information
 - Suppose W is such a classifier
 - Construct a set on pair of examples $S = \{(x, z) | x = d_i^i, z = d_k^i, r_k^i r_j^i = 1\}$
 - Find W that maximizes the margin between each two items

minimize
$$||w||^2 + C \sum_{r_i - r_j = 1} \varepsilon_{ij}$$

subject to $w^T(x_j - x_i) \ge 1 - \varepsilon_{ij}$, $(x_i, x_j) \in S$
 $\varepsilon_{ij} \ge 0$ $i = 1, ..., n$

Multi-Task Learning

- Problem setup
 - T classification problems, each with different set of training examples.
 - ► Task t has n_t training examples (x_i^t, y_i^t) , $i = 1, ..., n_t$
 - Feature vector of all task are in the same space
 - Tasks are related (digits recognition, medical domains, etc)
- Objective: to learn linear classifiers w^t , t = 1, ..., T for tasks by considering that the tasks are similar
- \blacktriangleright Solution: assume all tasks are similar to a central unknown task μ

▶ How to write the dual of this problem? (Next lecture)

Quadratically Constrained QP (QCQP)

Convex problem with quadratic convex objective and constraints functions (P_i are SDP)

minimize
$$1/2x^{T}P_{0}x + q_{0}^{T}x + r_{0}$$
s. t.
$$1/2x^{T}P_{i}x + q_{i}^{T}x + r_{i} \le 0$$

$$Ax = b$$

- Objective and constrains are convex quadratic
- Can be solved with standard toolbox

Semidefinite Programming

Convex problem with quadratic convex objective and constraints functions

minimize
$$c^Tx + d$$

 $s.t.$ $x_1P_1 + \cdots + x_nP_n + Q \le 0$ (Linear Matrix Inequality)
 $Gx \le b$ (General inequalities)
 $Ax = b$

Or

minimize
$$tr(CX)$$

 $s.t.$ $tr(A_iX) = b_i$
 $X \ge 0$

- If $P_1, ..., P_n$ and Q are all diagonal, the SDP programming reduces to linear programming
- ▶ SeDuMi is a good tool to model this type of problems

Local and Global Consistency SSL

Local and global Consistency, minimize

$$Q(F) = \underbrace{\frac{1}{2} \sum_{i,j=1}^{N} W_{ij} \left\| \frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}} \right\|^2}_{Smoothness} + \underbrace{\mu \sum_{i=1}^{N} \left\| F_i - Y_i \right\|^2}_{Fitting}$$

▶ Question: convex or non-convex?

$$Q(F) = F D^{-\frac{1}{2}} L D^{-\frac{1}{2}} F + \underbrace{\mu \sum_{i=1}^{N} \|F_i - Y_i\|^2}_{Fitting}$$

▶ How to solve such problems? (Next lecture)

PGDM metric learning

PGDM metric learning

minimize
$$\sum_{(x_i, x_j) \in S} ||x_i - x_j||_P$$

subject to $\sum_{(x_i, x_j) \in D} ||x_i - x_j||_P \ge 1$
 $P \ge 0$

- Question: convex or non-convex?
- ▶ How should we solve such problems? (next lecture)

LMNN metric learning

▶ LMNN metric learning

minimize
$$\sum_{(x_i, x_j) \in S} ||x_i - x_j||_P$$

 $s.t ||x_i - x_k||_P - ||x_i - x_j||_P \ge 1, (x_i, x_j, x_k) \in R$
 $P \ge 0$

- in $(x_i, x_j, x_k) \in R$, (x_i, x_j) are of the same class and neighbor according to Euclidean distance. (x_i, x_k) are from two different classes.
- Question: convex or non-convex?
- ▶ How should we solve such problems? (next lecture)