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Accidental Discovery

• In 2004, Candes accidentally discovered the fact that
L1-minimization helps to fill in the blanks on an undersampled
picture effectively.

• The recovered picture is not just slightly better than the
original, rather, the picture looks sharp and perfect in every
detail.
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What will this technology bring to us

Being able to recover from incomplete data is very important:

• Less time spent on MRI or other sensing technologies

• Relieves storage requirement, because we only need
incomplete data to recover all that we need

• Conserves energy
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A very hot topic. . .

• I did a grep at http://dsp.rice.edu/cs, about 700 papers
are published on CS during these 7 years.

• It is applied to many fields (of course including Machine
Learning)

• Prof. Candes was rewarded with Waterman Prize1.

1http://en.wikipedia.org/wiki/Alan_T._Waterman_Award

http://dsp.rice.edu/cs
http://en.wikipedia.org/wiki/Alan_T._Waterman_Award
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Abstract Definition

Definition

Compressed Sensing or Compressive Sensing(CS) is about acquiring
and recovering a sparse signal in the most efficient way possible
(subsampling) with the help of an incoherent projecting basis.2

1. The signal needs to be sparse

2. The technique acquires as few samples as possible

3. Later, the original sparse signal can be recovered

4. This done with the help of an incoherent projecting basis

2found it this definition here:
https://sites.google.com/site/igorcarron2/cs

https://sites.google.com/site/igorcarron2/cs
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The big picture

Note that there is no compression step in the framework. The
compression is done when sensing, that why this technique got the
name Compressed Sensing.
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Lp Norms

Compressed Sensing’s algorithm makes use of L1 norm’s properties.
So Let’s have a review of it.

Definition

Lp norm of a vector x = (x1, x2, . . . , xn)T is defined as:

||x||p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p (1)
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Lp norms that are used in Compressed Sensing

In particular

Definition

L0 norm of x, ||x||0, is the number of non-zero entries in x.

Definition

L1 norm of x:
||x|| = |x1|+ |x2|+ . . .+ |xn| (2)

Definition

L2 norm of x:

||x||2 =
(
|x1|2 + |x2|2 + . . .+ |xn|2

) 1
2

(3)



Introduction How it works Theory behind Compressed Sensing

Lp balls

Here are the illustrations of L1 and L2 balls in 2-D space:
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Recovering f from an underdetermined linear system
Consider the scenario below:

We want to recover f from the given y and Φ.
Is that even possible?

• There could be an infinite number of solutions for f
• But what if we already know that f is sparse 3?
3being sparse means having only a few non-zero values among all f ’s

dimensions
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Consider recovering x from projection from the given y
and Φ

• The possible solutions for x lie in
the yellow colored hyperplane.

• To limit the solution to be just one
single point, we want to pick the
sparsest x from that region.

• How do we define sparsity?



Introduction How it works Theory behind Compressed Sensing

Comparison between L1 and L2

• Norms will help us here. We hope:
smaller norm ⇒ sparser

• But which norm should we choose?
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L1 prefers sparsity

• Here minimizing L1 provides a better result because in its
solution x̂ , most of the dimensions are zero.

• Minimizing L2 results in small values in some dimensions, but
not necessarily zero.
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But L1 isn’t always better

• Consider the graph on the left, when we
try to find a solution for y = Φx for the
given y and Φ

• The original sparse vector x0 which
generates y from the linear
transformation Φ is shown in the graph

• When we solve the equation y = Φx , we
get the hyperplane indicated by h.

• If we choose to minimize the L1-norm on
h, then we will get a totally wrong result,
which lies on a different axis than x0’s.

In Compressed Sensing, people develop conditions to ensure that
this never happens.
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The algorithm’s Context

• The linear system is underdetermined

• We want f to be sparse
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The algorithm to find the proper f

• When no noise:

min
f ∈Rn

||f ||1 s.t. y = Φf

• When there is noise:

min
f ∈Rn

||f ||1 s.t. ||y − Φf ||2 ≤ ε

The whole literature is trying to show that: in most cases, this is
going to find a very good solution.
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Questions at this point

• When do we need to solve such underdetermined linear system
problems? Is that really important?

• If it is important, how did people deal with this before CS was
discovered?

• Why does CS always find a good solution?
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When? And how did people handle that?

• The sound data, colored in red, is quite complicated. It is a
time domain representation because the x-axis is time.

• Luckily, it also has another representation in frequency
domain, colored in blue. This representation has the benefit
that most of the important information is at low frequencies.
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A review of Fourier Transform
This is a demonstration of how data in time domain(lower graph)
also can be constructed using a superposition of periodic
signals(upper graph), each of which has a different frequency.
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Formulas for Fourier Transform

To go between the time domain and the frequency domain, we use
Fourier Transforms:

Hn =
N−1∑
k=0

hke
2πikn
N (4)

hn =
1

N

N−1∑
n=0

Hne−
2πikn
N (5)

Here H is the frequency domain representation, and h is the time
domain signal.
Note that the transformations are linear.
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Shannon-Nyquist Sampling Theorem

Theorem
If a function x(t) contains no frequencies higher than B hertz, it is
completely determined by giving its ordinates at a series of points
spaced 1

2B seconds apart.

This basically says:

• x ’s frequency domain representation is sparse in the sense that
all dimensions higher than B are zero.

• No information loss if we sample at 2 times the highest
frequency.

• To do this, use Fourier transform.
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The mapping to the underdetermined linear system

Here is the mapping between the equation above and the
Shannon-Nyquist scenario:

• f is the low frequency signal. Higher dimensions are all zero.

• Φ is the inverse Fourier Transform

• y is our samples in the time basis
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What’s different in CS

• Rather than trying to recover all information on low
frequencies, CS recovers those with high amplitudes.

• With the assumption that only a few frequencies have high
amplitudes, CS requires much less samples to recover them
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How is that possible?

It sounds quite appealing. But how do we do it?

• How do we pick the measurements so that the peaks’
information is preserved?

• Don’t we need to know how the data look like beforehand?

The big findings in CS:

• We only need the measurements to be incoherent to the
sparse basis.

• Several randomly generated measurements are incoherent to
every basis.
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The Uniform Uncertainty Principle

Definition

Φ obeys a UUP for sets of size K if

0.8 · M

N
· ||f ||22 ≤ ||Φf ||22 ≤ 1.2 · M

N
· ||f ||22

for every K -sparse vector f . Here M and N are the numbers of
dimensions for x and f , correspondingly.

Example

Φ obeys UUP for K ·M/ log N when

• Φ = random Gaussian

• Φ = random binary

• Φ = randomly selected Fourier samples (extra log factors
apply)

We call these types of measurements incoherent
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Sparse Recovery

• UUP basically means preserving the L2 norms.

• UUP for sets of size 2K ⇒4 there is only one K -sparse
explanation for y .

• Therefore, say f0 is K -sparse, and we measure y = Φf0: If we
search for the sparsest vector that explains y , we will find f0

min
f

#{t : f (t) 6= 0} s.t. Φf = y

Note that here we need to minimize L0-norm, which is hard. Can
we make it a convex optimization problem?

4This basically means preserving L2 distances.
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Using L1 norm

UUP for sets of size 4K ⇒

min
f
||f ||1 s.t. Φf = y

will recover f0 exactly
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Coherence

Definition

The coherence between the sensing basis Φ and the representation
basis Ψ is

µ(Φ,Ψ) =
√

n × max
1≤k,j≤n

|〈φk , ψj〉|

Here sensing basis is used for sensing the object f , and the
representation basis is used to represent f .

Note that: µ(Φ,Ψ) ∈ [1,
√

n]

Example

• Time-frequency pair: µ(Φ,Ψ) = 1

• When Φ = Ψ, µ(Φ,Ψ) =
√

n
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Sample Size VS Coherence5

min
x̃∈Rn

||x̃ ||1 s.t. yk = 〈φk ,Ψx̃ ,∀k ∈ M〉 (6)

Theorem
Fix f ∈ Rn and suppose that the coefficient sequence x of x in the basis
Ψ is S-sparse. Select m measurements in the Φ domain uniformly at
random. Then if

m ≥ C · µ2(Φ,Ψ) · S · log n

for some positive constant C , the solution to (6) is exact with
overwhelming probability.

• In the randomly generated matrices, if we choose the sensing
basis uniformly at random, the coherence is likely to be√

2 log n

• This means: m ≈ log2 n × S

5This was developed by Candes and Romberg in 2007.
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RIP(Restricted Isometry Property) aka UUP

Definition

For each integer S = 1, 2, . . ., define the isometry constant δS of a
matrix A as the smallest number such that

(1− δS) ||x ||22 ≤ ||Ax ||22 ≤ (1 + δS) ||x ||22

holds for all S-sparse vector x .
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RIP implies accurate reconstruction

If the RIP holds, then the following linear program gives an
accurate reconstruction:

min
x̃∈Rn

||x̃ ||1 s.t. Ax̃ = y(= Ax) (7)

Theorem
Assume that δ2S <

√
2− 1. Then the solution x∗ to (7) obeys

||x∗ − x ||2 ≤
C0√

S
||x − xS ||1

and
||x∗ − x ||1 ≤ C0 ||x − xS ||1

for some constant C0, where xS is the vector x with all but the
largest S components set to 0.
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RIP implies robustness

min
x̃∈Rn

||x̃ ||1 s.t. ||Ax̃ − y ||2 ≤ ε (8)

Theorem
Assume that δ2S <

√
2− 1. Then the solution x∗ to (8) obeys

||x∗ − x ||2 ≤
C0√

S
||x − xS ||1 + C1ε

for some constants C0 and C1.
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How do we find such A’s

• The relations between m and S are missing in theorems (13)
and (14).

• δ2S provides the notion of incoherency. What kind of A and m
support such a property? The answer is:

• A can be m rows of random numbers, where
m ≈ C × S log(n/S)

• You can’t do much better than this.
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