Gaussian Processes in Machine Learning

November 17, 2011 CharmGil Hong

Agenda

- Motivation
- GP: How does it make sense?
- Prior: Defining a GP
 - More about Mean and Covariance Functions
- **Posterior**: Conditioning with Observations
 - Regression / Classification with GP
- & More: Real World Applications

Common Problems

• Supervised learning:

- How to choose a model?
- How to fit a model to data?

Solutions

- Parametric approaches
 - Polynomials
 - Neural networks
 - Support Vector Machines
- Non-parametric approaches
 - k-NN
 - Gaussian processes

Gaussian Process

Gaussian Process

- <u>Definition</u> A collection of random variables, any finite number of which have (consistent) Gaussian distribution.
 - A generalization of a multivariate Gaussian distribution to infinitely many variables.
 - A Gaussian process defines a distribution over functions.
 - infinite long vector = function

GD and **GP**

vs. Gaussian Distribution

$$f = (f_1, \dots f_n)^T \sim \mathcal{GP}(m(x), k(x, x'))$$

GD and **GP**

- A GD is a distribution over variables.
 - It is fully specified by a mean vector and a covariance matrix: $x \sim \mathcal{G}(\mu, \Sigma)$.
 - The position i of x_i is the index in x.
- A GP is a distribution over **functions**.
 - It is fully specified by a mean function and a covariance function: $f \sim \mathcal{GP}(m,k)$.
 - The argument x is the index of f(x).

Handling Infinite Dimensionality

- A GP is an infinite dimensional object.
- However, it turns out that we only need to deal with finite dimensional objects.
 - The marginalization property:
 - Recall: $p(x) = \int p(x,y)dy$
 - For Gaussians:

$$p(x,y) = \mathcal{G}\left(\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}\right) \implies p(x) = \mathcal{G}(a,A)$$

Prior

Defining a GP

- <u>Definition</u> P(f) is a Gaussian process if for any finite subset $\{x_1,...,x_n\} \subset X$, the marginal distribution over that finite subset P(f) has a multivariate Gaussian distribution.
- Let $f = (f(x_1),...,f(x_n))$ be an N-dimensional vector of function values evaluated at N points $x_i \in X$.
- Again, $f(x_i)$ is now a random variable and each x_i is the index (cf. in GD, x_i is a random variable and i is the index).

Defining a GP

- How to define a GP?
 - Choose a form for the mean function.
 - Choose a form for the covariance function.
- Recall: a GP is fully specified by a mean function and a covariance function: $f \sim GP(m, k)$.

Mean and Covariance Fn

- Any functions can be a mean function and a covariance* function. (*will be revisited)
- Usually,
 - The mean function is usually defined to be zero.
 - Several covariance functions have been used in the literature, but the predominant choice is a squared exponential (SE).

Mean and Covariance Fn

- Squared Exponential (SE)
 - $k(x_i,x_j) = v_0 exp \left\{ -\frac{1}{2} \sum_{m=1}^d I_m (x_i^m x_j^m)^2 \right\} + v_1 + v_2 \delta_{ij}$

where x_i^m is the m-th element of x_i .

- SE depends on hyperparameters v_0 , v_1 , v_2 , and l_m .
 - l_m : characteristic length-scale.
 - v_o : overall vertical scale of variation of the latent value.
 - v_i : overall bias of the latent values.
 - v_2 : latent noise variance.

Meaning of the Covariance Fn

- The covariance function defines how smoothly the (latent) function f varies from a given x.
- The data points "anchor" the function f at specific x locations.

Properties of the Covariance Fn

- Only restriction is that it must be positive semidefinite (PSD).
 - <u>Theorem</u> If k, k_1 , and k_2 are PSD, then the following are also PSD:
 - 1. $\alpha k(x,y)$ $\alpha \ge 0$
 - 2. $k_1(x,y) + k_2(x,y)$
 - 3. $k_1(x,y)k_2(x,y)$
 - 4. P(k(x,y)), where P(x) with non-negative coefficients

Properties of the Covariance Fn

- Only restriction is that it must be positive semidefinite (PSD).
 - <u>Theorem</u> If k, k_1 , and k_2 are PSD, then the following are also PSD:
 - 5. exp(k(x,y))
 - 6. f(x)k(x,y)f(y)
 - 7. $k(\psi(x), \psi(y))$

Covariance Fn Examples

Matérn Covariance Function

•
$$k(\mathbf{x}, \mathbf{x}') = \frac{1}{\Gamma(\mathbf{v})2^{\mathbf{v}-1}} \left[\frac{\sqrt{2\mathbf{v}}}{\ell} |\mathbf{x} - \mathbf{x}'| \right]^{\mathbf{v}} K_{\mathbf{v}} \left(\frac{\sqrt{2\mathbf{v}}}{\ell} |\mathbf{x} - \mathbf{x}'| \right),$$

where Kv is the modified *Bessel* function of second kind of order v.

Covariance Fn Examples

- Periodic, smooth functions
 - $k_{periodic}(x,x') = exp(-2 \sin^2(\pi(x-x'))/l^2)$

Covariance Fn Examples

- Rational Quadratic
 - $k_{\text{RQ}}(r) = \left(1 + \frac{r^2}{2\alpha\ell^2}\right)^{-\alpha}$

Bayesian Regression

- Then, what can we do with Gaussian processes?
 - A GP can be a prior of a Bayesian regression problems.
 - A GP prior actually offers rather simpler solution!

Posterior

Conditional Distribution $P(y_2|y_1)$

- Let say we have the covariance matrix K and the value of y_1 . Then the posterior distribution $P(y_2|y_1)$ is also a Gaussian.
- Our goal is to determine the mean and the corresponding variance of y_2 given y_1 .

Conditional Distribution $P(y_2|y_1)$

•
$$P(y_2|y_1,K) = \frac{P(y_1,y_2|K)}{P(y_1|K)}$$
 (1)

$$\propto \exp -\frac{1}{2} \left\{ \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \right\}$$
 (2)

$$= exp - \frac{1}{2} \left\{ y_1^2 a + 2y_1 y_2 b + y_2^2 c \right\}$$
 (3)

$$\propto \exp{-\frac{1}{2}\left\{2y_1y_2b + y_2^2c\right\}}$$
 (4)

$$= \exp -\frac{1}{2} \left\{ (y_2^2 + 2y_2y_1\frac{b}{c})c \right\}$$
 (5)

$$\propto exp - \frac{1}{2} \left\{ (y_2^2 + 2y_2y_1\frac{b}{c} + y_1^2\frac{b^2}{c^2})c \right\}$$
 (6)

$$= \exp -\frac{1}{2} \left\{ ((y_2 + y_1 \frac{b}{c})^2)c \right\}$$
 (7)

$$= exp - \frac{1}{2} \left\{ \frac{(y_2 - (-y_1 \frac{b}{c}))^2}{1/c} \right\}$$
 (8)

Conditional Distribution $P(y_2|y_1)$

• Let $K = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$ and $y_1 = 1.0$, then we get $K^{-1} = \begin{pmatrix} 5.26 & -4.74 \\ -4.74 & 5.26 \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$.

Now we are able to obtain $y_2 = N(0.9, 0.19)$

Expending to Vectors

$$P(y_{2}|y_{1},K) = \frac{P(y_{1},y_{2}|K)}{P(y_{1}|K)}$$

$$\propto \exp\left[-\frac{1}{2}\left\{(y_{1}^{T} \quad y_{2}^{T})\begin{pmatrix}A & B\\B^{T} & C\end{pmatrix}\begin{pmatrix}y_{1}\\y_{2}\end{pmatrix}\right\} \right]$$

$$= \exp\left[-\frac{1}{2}\left\{y_{1}^{T}Ay_{1} + y_{2}^{T}B^{T}y_{1} + y_{1}TBy_{2} + y_{2}^{T}Cy_{2}\right\} \right]$$

$$\propto \exp\left[-\frac{1}{2}\left\{y_{2}^{T}Cy_{2} + y_{2}^{T}B^{T}y_{1} + y_{1}^{T}By_{2}\right\} \right]$$

$$\propto \exp\left[-\frac{1}{2}\left\{y_{2}^{T}Cy_{2} + y_{2}^{T}B^{T}y_{1} + y_{1}^{T}By_{2} + y_{1}^{T}BC^{-1}B^{T}y_{1}\right\} \right]$$

$$= \exp\left[-\frac{1}{2}\left\{(y_{2}^{T}C + y_{1}^{T}B)(y_{2} + C^{-1}B^{T}y_{1})\right\} \right]$$

$$= \exp\left[-\frac{1}{2}\left\{(y_{2}^{T} + y_{1}^{T}BC^{-1})C(y_{2} + C^{-1}B^{T}y_{1})\right\} \right]$$

$$= \exp\left[-\frac{1}{2}\left\{(y_{2}^{T} - C^{-1}B^{T}y_{1})C(y_{2} - C^{-1}B^{T}y_{1})\right\} \right]$$

$$= \exp\left[-\frac{1}{2}\left\{(y_{2} - (-C^{-1}B^{T}y_{1}))C(y_{2} - (-C^{-1}B^{T}y_{1}))\right\} \right]$$

- Goal: Predict the real-values output y^* for anew input value x^* .
- Given: Training data $D = \{(\mathbf{x}_i, y_i), i=1,...,N\}$.
- Model: $y_i = f(\mathbf{x}_i) + \varepsilon_i$.
 - Prior: $f \sim \mathcal{GP}(\cdot|m,k)$
 - Noise: $\varepsilon_i \sim \mathcal{G}(\cdot|o,\sigma^2)$

GP for Regression

- Model: $y_i = f(\mathbf{x}_i) + \varepsilon_i$.
 - Prior: $f \sim \mathcal{GP}(\cdot|m,k)$, Noise: $\varepsilon_i \sim \mathcal{G}(\cdot|o,\sigma^2)$
- The covariance function k depends on a set of hyperparameters w.
 - Recall: $k(x_i, x_j) = v_0 exp \left\{ -\frac{1}{2} \sum_{m=1}^d I_m (x_i^m x_j^m)^2 \right\} + v_1 + v_2 \delta_{ij}$
- The problem of learning with GP is exactly the problem of learning the hyperparameters.
 - Once the hyperparameters are learned, inference can be performed.

- Maximum likelihood (method 1)
 - Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M) \propto \prod_{i} \exp(-\frac{1}{2}(y_i - f(x_i))^2 / \sigma_{\text{noise}}^2)$$

Maximize the likelihood:

$$\mathbf{w}_{\mathrm{ML}} = \underset{\mathbf{w}}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M)$$

Make predictions, by plugging in the ML estimate:

$$p(y^*|x^*, \mathbf{w}_{\mathrm{ML}}, M)$$

GP for Regression

- Bayesian Inference (method 2)
 - Gaussian likelihood:

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M) \propto \prod_{i} \exp(-\frac{1}{2}(y_i - f(x_i))^2 / \sigma_{\text{noise}}^2)$$

• Parameter prior:

$$p(\mathbf{w}|M)$$

Posterior by Bayes rule:

$$p(\mathbf{w}|\mathbf{x},\mathbf{y},M) = \frac{p(\mathbf{w}|M)p(\mathbf{y}|\mathbf{x},\mathbf{w},M)}{p(\mathbf{y}|\mathbf{x},M)}$$

• Make predictions:

$$p(y^*|x^*, \mathbf{x}, \mathbf{y}, M) = \int p(y^*|\mathbf{w}, x^*, M) p(\mathbf{w}|\mathbf{x}, \mathbf{y}, M) d\mathbf{w}$$

- Non-parametric GP models (method 3)
 - In this method, the "parameters" is the function itself!
 - Gaussian likelihood: $p(\mathbf{y}|\mathbf{x}, \mathbf{w}, M) \sim \mathcal{N}(\mathbf{f}, \sigma_{\text{noise}}^2 I)$
 - Gaussian process prior:

$$p(f(x)|M) \sim \mathfrak{GP}(m(x) \equiv 0, k(x, x'))$$

Gaussian process posterior:

$$p(f(x)|\mathbf{x}, \mathbf{y}, M)$$

$$\sim \mathfrak{GP}(m_{\text{post}}(x) = k(x, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}\mathbf{y},$$

$$k_{\text{post}}(x, x') = k(x, x') - k(x, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{\text{noise}}^2 I]^{-1}k(\mathbf{x}, x'))$$

GP for Regression

- Non-parametric GP models (method 3)
 - Gaussian predictive distribution:

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{x}, \mathbf{y}, M)$$

$$\sim \mathcal{N}(\mathbf{k}(\mathbf{x}^*, \mathbf{x})^{\top} [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{y},$$

$$k(\mathbf{x}^*, \mathbf{x}^*) + \sigma_{\text{noise}}^2 - \mathbf{k}(\mathbf{x}^*, \mathbf{x})^{\top} [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{k}(\mathbf{x}^*, \mathbf{x}))$$

Predictive Distribution:

$$p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{x}, \mathbf{y}, M)$$

$$\sim \mathcal{N}(\mathbf{k}(\mathbf{x}^*, \mathbf{x})^{\top} [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{y},$$

$$k(\mathbf{x}^*, \mathbf{x}^*) + \sigma_{\text{noise}}^2 - \mathbf{k}(\mathbf{x}^*, \mathbf{x})^{\top} [K + \sigma_{\text{noise}}^2 I]^{-1} \mathbf{k}(\mathbf{x}^*, \mathbf{x}))$$

GP for Classification

- Goal: Predict the label y^* of a new input value x^* .
 - $y \in \{-1, 1\}$.
- L_{prediction} = $p(y_i|x_i) = \sigma(f(x_i))$, where σ is a sigmoid transformation (e.g., logistic function or cumulative distribution function of standard normal distribution).
- Marginal likelihood:
 - $P(f|D,w) = \int \sigma(f(x_i))P(f|X,w)df$.
 - This integral is a product of sigmoids (likelihood) multiplied by a Gaussian (prior), and is therefore intractable.

Tractability of the Posterior

- In regression, a Gaussian likelihood and the Gaussian process prior result in a tractable posterior.
- In classification, however, the posterior $P(f|D,\theta)$ is intractable, since it involves an integral that is the product of a Gaussian and a product of sigmoids.
 - Approximation is required.
 - e.g. Laplace approximation, Expectation-Propagation, Variational method, MCMC sampling.

& More

• CO₂ prediction problem

Applications

- Build a covariance function:
 - long-term smooth trend (squared exponential) $k_1(x, x') = \theta_1^2 \exp(-(x x')^2/\theta_2^2)$,
 - seasonal trend (quasi-periodic smooth)

$$k_2(x,x') = \theta_3^2 \exp\left(-2\sin^2(\pi(x-x'))/\theta_5^2\right) \times \exp\left(-\frac{1}{2}(x-x')^2/\theta_4^2\right),$$

• short- and medium-term anomaly (rational quadratic)

$$k_3(x,x') = \theta_6^2 \left(1 + \frac{(x-x')^2}{2\theta_8\theta_7^2}\right)^{-\theta_8}$$

• noise (independent Gaussian, and dependent) $k_4(x, x') = \theta_9^2 \exp\left(-\frac{(x-x')^2}{2\theta_{10}^2}\right) + \theta_{11}^2 \delta_{xx'}$.

$$k(x,x') = k_1(x,x') + k_2(x,x') + k_3(x,x') + k_4(x,x')$$

• CO₂ predictions

Applications

Long-/medium-/mean predictions

• Mean Seasonal predictions

Applications

 Molecule movement modeling (using Matérn Covariance Function)

 Molecule movement modeling (using Matérn Covariance Function)

Applications

- Molecule movement modeling (using Matérn Covariance Function)
 - X(t) X(t') ~ $\mathcal{G}(o, t$ -t')
 - $X(t) \sim \mathcal{GP}(o, \min(t, t'))$

- More Applications
 - Handwriting recognition
 - Determining trustworthiness of bank clients
 - Generating music playlists
 - Articulated body tracking

Summary

- Gaussian processes are non-parametric.
- A Gaussian process is fully specified by a mean function and covariance function.
- The problem of learning with Gaussian processes is exactly the problem of learning the hyperparameters of the covariance function.
- Basic rules of multivariate Gaussian distribution govern manipulation of the Gaussian process after a finite number of data points is observed.

Summary

- GPs offer a more general approach than standard logistic regression.
- GPs can be used in a Bayesian setting where the GP is a prior on the function.
- GPs can handle the case in which data is available in (multiple) different forms, as long as we can define an appropriate covariance function for each data type.

Drawbacks

- The basic complexity of Gaussian process is $O(N^3)$ where N is the number of data points, due to the inversion of an $N \times N$ matrix.
 - Practical limit is said to be $N \approx 1000$ or fewer.
- Classification results intractable posteriors.
 - Approximation must be employed.

References

Papers

- C. Rasmussen, "Gaussian Processes in Machine Learning," 2003.
- E. Ebden, "Gaussian Processes for Regression: A Quick Introduction," 2008.
- E. Ebden, "Gaussian Processes for Classification: A Quick Introduction," 2008.

Slides

- D. Williams, "Gaussian Process," 2006.
- A. Geiger, "An introduction to Gaussian Processes, (scaled) GPLVMs, (balanced) GPDMs and their applications to 3D people tracking," 2007.
- C. Rasmussen, "Learning with Gaussian Processes," 2008.