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Common Problems

e Supervised learning:

Regression Classification
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e How to choose a model?

e How to fit a model to data?

Solutions

e Parametric approaches
¢ Polynomials
¢ Neural networks
e Support Vector Machines
e Non-parametric approaches
e k-NN

e Gaussian processes




Gaussian Process

Gaussian Process

e Definition A collection of random variables, any
finite number of which have (consistent) Gaussian
distribution.

¢ A generalization of a multivariate Gaussian distribution
to infinitely many variables.

e A Gaussian process defines a distribution over
functions.

¢ infinite long vector = function




GD and GP

e vs. Gaussian Distribution

Gaussian Process

mean function: m(x)
covariance function: k(x,x’)

Gaussian Distribution

mean: [ p(y\
covariance: 2
Gaussian Distribution ..
X ~ Q(,u,Z) mean: 4 ry\ _ _
covariance: > ion

"+ M covariance: 2 d

=0 - T ~ GP(m(x),k(x,x)

GD and GP

e A GD is a distribution over variables.

e It is fully specified by a mean vector and a covariance
matrix: x ~ G(u, 2).

e The position 1 of x; is the index in x.

e A GP is a distribution over functions.

e |t is fully specified by a mean function and a covariance
function: f ~ GP(m,k).

e The argument x is the index of f(x).




Handling Infinite Dimensionality

e A GP is an infinite dimensional object.

e However, it turns out that we only need to deal with
finite dimensional objects.

e The marginalization property:
* Recall: p(x) = [pxy)dy
e For Gaussians:

ply) = Q(H : [;T gD = p(x) = G(a,A)

Prior




Defining a GP

e Definition P(f)is a Gaussian process if for any
finite subset {x,...,xn} C X, the marginal distribution

over that finite subset P(f) has a multivariate
Gaussian distribution.

e Letf=(f(x1),....f(;n)) be an N-dimensional vector of
function values evaluated at N points x; € X.

e Again, f(xi) is now a random variable and each x; is
the index (cf. in GD, x; is a random variable and 1 is
the index).

Defining a GP

e How to define a GP?
e Choose a form for the mean function.
e Choose a form for the covariance function.

e Recall: a GP is fully specified by a mean function
and a covariance function: f ~ GP(m, k).




Mean and Covariance Fn

e Any functions can be a mean function and a
covariance* function. (*will be revisited)

e Usually,

e The mean function is usually defined to be zero.

e Several covariance functions have been used in the
literature, but the predominant choice is a squared
exponential (SE).

Mean and Covariance Fn

e Squared Exponential (SE)

d
o k(xi,xj) = voexp {—% > (X" - xJ’.”)Z} + vy + Vi
m=1

where xi™ is the m-th element of x;.

e SE depends on hyperparameters vo, vi, U2, and bn.

Im: characteristic length-scale.
Vo: overall vertical scale of variation of the latent value.
v:: overall bias of the latent values.

U-: latent noise variance.




Meaning of the Covariance Fn

e The covariance function defines how smoothly the
(latent) function f varies from a given x.

e The data points “anchor” the function f at specific x
locations.

output, f(x)
output, f(x)

Properties of the Covariance Fn
e Only restriction is that it must be positive semi-
definite (PSD).

e Theorem If k, k;, and k. are PSD, then the following
are also PSD:

1. ak(x,y) a=o0

2. kilx,y) + ko(x,y)

3. ki(ey)k=(x,y)

4. P(k(x,y)), where P(x) with non-negative coefficients




Properties of the Covariance Fn
e Only restriction is that it must be positive semi-
definite (PSD).

e Theorem If k, k;, and k. are PSD, then the following
are also PSD:

5. exp(k(x,y) )
6. f(Ik(,y)f(y)
7. k(w(), w(y))

Covariance Fn Examples

e Matérn Covariance Function
N1 V2v
P kxx)= r(v)2v—1[ ¢

where Kv is the modified Bessel function of second
kind of order v.
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Covariance Fn Examples

e Periodic, smooth functions

® Lkperiodic(x,X’) = exp( -2 sin?(nt(x-x)))/12)
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Covariance Fn Examples

e Rational Quadratic
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Bayesian Regression

e Then, what can we do with Gaussian processes?

e A GP can be a prior of a Bayesian regression
problems.

e A GP prior actually offers rather simpler solution!

Posterior




Conditional Distribution P(y:|y.)

e | et say we have the covariance matrix K and the value of y..
Then the posterior distribution P(y-|y.) is also a Gaussian.

e Qur goal is to determine the mean and the corresponding

variance of y- given y;.
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Conditional Distribution P(y:|y.)
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Conditional Distribution P(y:|y.)

1 0.9
o LetK= (0_9 1 ) and y1 =1.0,
ponwo g1 = (525, 357) = (3)

Now we are able to obtain y> = N(0.9, 0.19)
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Expending to Vectors

P(y1, yo|K
* P(y:|y;,K) = %

X exp— % {(Y1T sz) (BAT ?) (ﬁ)}

= exp— %{leAﬂ +Y2TBTY1+V1TBy2+y2TCy2}

x exp— % {Y2TC}’2 +Y2TBTyl+y1TBy2}

x exp— % {YzTC}Q +y; BTy1+y{ By +y1TBC_lBTy1}
= exp— % {(Y2TC +y1 B)(y2 + C_IBTyl)}

= exp— % {(Y2T +y BCTH)C(y2 + C_lBTyl)}

= oo {0n— (-CTBTI)Cn — (-C BT}




GP for Regression

e (Goal: Predict the real-values output y* for anew
input value x™.

e Given: Training data D = {(x;,yi), 1=1,...,N}.
e Model: yi = f(xi) + &i.
e Prior: f~ GP(-|m,k)

e Noise: & ~ G(-|0,02)

GP for Regression

e Model: yi = f(xi) + &i.
e Prior: f~ GP(-|m,k), Noise: i ~ G(-|0,02)

e The covariance function k depends on a set of
hyperparameters w.

d
1 ‘
e Recall: k(xi,Xxj) = Voexp {—5 D (X"~ XJ””)Z} + vy + Vi
m=1

e The problem of learning with GP is exactly the
problem of learning the hyperparameters.

¢ Once the hyperparameters are learned, inference can
be performed.




GP for Regression

e Maximum likelihood (method 1)

e Gaussian likelihood:
plylx,w M) oc | [exp(—3(yi —F(x;))*/0h0ise)

e Maximize the likelihood:
wMmL = argmax p(ylx, w, M)

w

e Make predictions, by plugging in the ML estimate:
p(y*x™, wmr, M)

GP for Regression

e Bayesian Inference (method 2)

e Gaussian likelihood:
p(Y|X1 W, M) X 1 “exp(—%(y,- o f(xi))z/crzloise)

e Parameter prior:
p(wiM)

e Posterior by Bayes rule:
p(wiM)p(ylx, w, M)

p(ylx, M)

p(wix,y, M) =
o Make predictions:

p(y*x" x,y. M) — jp(y*|w,x*,M)p(w|x,y,M)dw




GP for Regression

e Non-parametric GP models (method 3)
¢ In this method, the “parameters” is the function itself!

e Gaussian likelihood: p(yx, w, M) ~ N(f, o2.])

e (Gaussian process prior:
p(f(x)M) ~ GP(m(x) =0, k(x,x"))

e (Gaussian process posterior:

p(f(x)lx,y, M)
~ GP(mpost(x) = k(x, x)[K(x,x) + o217y,
kpost(x, %) = R(x, x") — k(% X)[K(x, %) + 0% [) T k(x, 7))

GP for Regression

e Non-parametric GP models (method 3)

e Gaussian predictive distribution:
p(y*lx* x,y, M)
~ N(k(x*, %) T[K + 0poice]] 'y,
R(x*, x*) 4 0ngise — k(x*, %) TIK + 050 ] Tk (x*, %))




GP for Regression

output, f(x)
output, f(x)

input, x

e Predictive Distribution:
p(y*lx*, x,y, M)
~ N(k(x*, %) "[K + 05l "y,
R(x*, x*) + 0pgise — k(x*, %) T[K + 05036117 Tk (2%, X))

GP for Classification

e Goal: Predict the label y* of a new input value x*.
o ye{-1,1}.

e Lprediction =p(yi|xl') = O'(f(Xi)), Where ) |S a SlngId
transformation (e.g., logistic function or cumulative
distribution function of standard normal distribution).

e Marginal likelihood:
* P(fID,w) = [o(fCx))P(f1 X, w)df.

e This integral is a product of sigmoids (likelihood)
multiplied by a Gaussian (prior), and is therefore
intractable.




Tractability of the Posterior

e |Inregression, a Gaussian likelihood and the
Gaussian process prior result in a tractable
posterior.

¢ |n classification, however, the posterior P(f|D,0) is
intractable, since it involves an integral that is the
product of a Gaussian and a product of sigmoids.

e Approximation is required.

® e.g. Laplace approximation, Expectation-Propagation,
Variational method, MCMC sampling.

& More




Applications

e CO: prediction problem
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Applications

e Build a covariance function:

* long-term smooth trend (squared exponential)

kilx,x') = 67 exp(—(x —x')?/63),
* seasonal trend (quasi-periodic smooth)

ka(x,x') = 0%exp (— 2 sin?(7(x — x’))/G%) X exp (— Tlx— x’)z/Gﬁ),
e short- and medium-term anomaly (rational quadratic)

x—x' 2\ —0s

ka(x.x) = 62(1+ G558)

* noise (independent Gaussian, and dependent)

Ra(x,x") = 03exp (— (xz_e’%;)z) + 07, 8y

k(x,x") = ki(x,x") +ka(x,x") + k3(x,x") + ka(x,x")




Applications

e COq predictions
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Applications

e Long-/medium-/mean predictions

4001

380

360

concentration, ppm
concentration, ppm

o 340} 1-0.5

C
CO

320/ ..-""

1960 1970 1980 1990 2000 2010 2020
year




Applications

e Mean Seasonal predictions
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Applications

¢ Molecule movement modeling (using Matérn
Covariance Function)

(R Brownian Motion SRR

DALY

{y

B Pritchard ¢ 12009 SR
ACUEMcAley ElBrisane [RENEIN




Applications

¢ Molecule movement modeling (using Matérn
Covariance Function)

s's AM n@Powm
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Applications

¢ Molecule movement modeling (using Matérn
Covariance Function)

o X(t)-X()~ d(o,t-t)
e X(t) ~ GP(o, min(t,t))




Applications

e More Applications
e Handwriting recognition
e Determining trustworthiness of bank clients
e Generating music playlists

¢ Articulated body tracking

Summary

e (Gaussian processes are non-parametric.

e A Gaussian process is fully specified by a mean
function and covariance function.

e The problem of learning with Gaussian processes is
exactly the problem of learning the
hyperparameters of the covariance function.

e Basic rules of multivariate Gaussian distribution
govern manipulation of the Gaussian process after
a finite number of data points is observed.




Summary

e GPs offer a more general approach than standard
logistic regression.

e GPs can be used in a Bayesian setting where the
GP is a prior on the function.

e GPs can handle the case in which data is available
in (multiple) different forms, as long as we can
define an appropriate covariance function for each
data type.

Drawbacks

e The basic complexity of Gaussian process is O(IN3)
where N is the number of data points, due to the
inversion of an N x N matrix.

e Practical limit is said to be N = 1000 or fewer.

e Classification results intractable posteriors.

e Approximation must be employed.
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