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Common Problems

• Supervised learning:

• How to choose a model?

• How to fit a model to data?

Solutions

• Parametric approaches

• Polynomials

• Neural networks

• Support Vector Machines

• Non-parametric approaches

• k-NN

• Gaussian processes



Gaussian_Process

Gaussian Process

• Definition   A collection of random variables, any 
finite number of which have (consistent) Gaussian 
distribution.

• A generalization of a multivariate Gaussian distribution 
to infinitely many variables.

• A Gaussian process defines a distribution over 
functions.

• infinite long vector ≃ function



GD and GP

• vs. Gaussian Distribution

mean: μ
covariance: Σ

X ~ G(µ,Σ)

f = (f1, ... fn)T ~ GP(m(x),k(x,x’))

mean function: m(x)
covariance function: k(x,x’)

mean: μ
covariance: Σ

covariance: Σ

GD and GP

• A GD is a distribution over variables.

• It is fully specified by a mean vector and a covariance 
matrix: x ~ G(µ, Σ).

• The position i of xi is the index in x.

• A GP is a distribution over functions.

• It is fully specified by a mean function and a covariance 
function: f ~ GP(m,k).

• The argument x is the index of f(x).



Handling Infinite Dimensionality

• A GP is an infinite dimensional object.

• However, it turns out that we only need to deal with 
finite dimensional objects.

• The marginalization property:

• Recall:    p(x) = ∫p(x,y)dy

• For Gaussians:

p(x,y) = G                             ⇒   p(x) = G(a,A)

Prior



Defining a GP

• Definition   P(f) is a Gaussian process if for any 
finite subset {x1,...,xn} ⊂ X, the marginal distribution 
over that finite subset P(f) has a multivariate 
Gaussian distribution.

• Let f = (f(x1),...,f(xn)) be an N-dimensional vector of 
function values evaluated at N points xi ∈ X.

• Again, f(xi) is now a random variable and each xi is 
the index (cf. in GD, xi is a random variable and i is 
the index).

Defining a GP

• How to define a GP?

• Choose a form for the mean function.

• Choose a form for the covariance function.

• Recall: a GP is fully specified by a mean function 
and a covariance function: f ~ GP( m, k ).



Mean and Covariance Fn

• Any functions can be a mean function and a 
covariance* function. (*will be revisited)

• Usually,

• The mean function is usually defined to be zero.

• Several covariance functions have been used in the 
literature, but the predominant choice is a squared 
exponential (SE).

Mean and Covariance Fn

• Squared Exponential (SE)

• k(xi,xj) =                                                         ,

    where xim is the m-th element of xi.

• SE depends on hyperparameters v0, v1, v2, and lm.

• lm: characteristic length-scale.

• v0: overall vertical scale of variation of the latent value.

• v1: overall bias of the latent values.

• v2: latent noise variance.



Meaning of the Covariance Fn

• The covariance function defines how smoothly the 
(latent) function f varies from a given x.

• The data points “anchor” the function f at specific x 
locations.

Properties of the Covariance Fn

• Only restriction is that it must be positive semi-
definite (PSD).

• Theorem  If k, k1, and k2 are PSD, then the following 
are also PSD:

1. αk(x,y)   α ≥ 0

2. k1(x,y) + k2(x,y)

3. k1(x,y)k2(x,y)

4. P(k(x,y)),  where P(x) with non-negative coefficients



Properties of the Covariance Fn

• Only restriction is that it must be positive semi-
definite (PSD).

• Theorem  If k, k1, and k2 are PSD, then the following 
are also PSD:

5. exp( k(x,y) )

6. f(x)k(x,y)f(y)

7. k(ψ(x), ψ(y))

Covariance Fn Examples

• Matérn Covariance Function

•  

where Kv is the modified Bessel function of second 
kind of order v.



Covariance Fn Examples

• Periodic, smooth functions

• kperiodic(x,x’) = exp( -2 sin2(π(x-x’))/l2) 

Covariance Fn Examples

• Rational Quadratic

•  



Bayesian Regression
• Then, what can we do with Gaussian processes?

• A GP can be a prior of a Bayesian regression 
problems.

• A GP prior actually offers rather simpler solution!

Posterior



Conditional Distribution P(y2|y1)

• Let say we have the covariance matrix K and the value of y1. 
Then the posterior distribution P(y2|y1) is also a Gaussian.

• Our goal is to determine the mean and the corresponding 
variance of y2 given y1.

• P(y2|y1,K)

                  

Conditional Distribution P(y2|y1)



Conditional Distribution P(y2|y1)

• Let K =                   and  y1 = 1.0,

then we get K-1 =                            =            .

Now we are able to obtain y2 = N(0.9, 0.19)

• P(y2|y1,K)

                  

Expending to Vectors



GP for Regression

• Goal: Predict the real-values output y* for anew 
input value x*.

• Given: Training data D = {(xi,yi), i=1,...,N}.

• Model: yi = f(xi) + εi.

• Prior: f ~ GP(·|m,k)

• Noise: εi ~ G(·|0,σ2)

GP for Regression

• Model: yi = f(xi) + εi.

• Prior: f ~ GP(·|m,k),  Noise: εi ~ G(·|0,σ2)

• The covariance function k depends on a set of 
hyperparameters w.

• Recall:  k(xi,xj) =

• The problem of learning with GP is exactly the 
problem of learning the hyperparameters.

• Once the hyperparameters are learned, inference can 
be performed.



GP for Regression

• Maximum likelihood (method 1)

• Gaussian likelihood:

• Maximize the likelihood:

• Make predictions, by plugging in the ML estimate:

GP for Regression

• Bayesian Inference (method 2)

• Gaussian likelihood:

• Parameter prior:

• Posterior by Bayes rule:

• Make predictions:



GP for Regression

• Non-parametric GP models (method 3)

• In this method, the “parameters” is the function itself!

• Gaussian likelihood:

• Gaussian process prior:

• Gaussian process posterior:

GP for Regression

• Non-parametric GP models (method 3)

• Gaussian predictive distribution:



GP for Regression

• Predictive Distribution:

GP for Classification

• Goal: Predict the label y* of a new input value x*.

• y ∈ {-1, 1}.

• Lprediction = p(yi|xi) = σ(f(xi)), where σ is a sigmoid 
transformation (e.g., logistic function or cumulative 
distribution function of standard normal distribution).

• Marginal likelihood:

• P(f|D,w) = ∫σ(f(xi))P(f|X,w)df.

• This integral is a product of sigmoids (likelihood) 
multiplied by a Gaussian (prior), and is therefore 
intractable.



Tractability of the Posterior

• In regression, a Gaussian likelihood and the 
Gaussian process prior result in a tractable 
posterior.

• In classification, however, the posterior P(f|D,θ) is 
intractable, since it involves an integral that is the 
product of a Gaussian and a product of sigmoids.

• Approximation is required.

• e.g. Laplace approximation, Expectation-Propagation, 
Variational method, MCMC sampling.

&_More



Applications

• CO2 prediction problem

• Build a covariance function:

Applications



• CO2 predictions

Applications

• Long-/medium-/mean predictions

Applications



• Mean Seasonal predictions

Applications

• Molecule movement modeling (using Matérn 
Covariance Function)

Applications



• Molecule movement modeling (using Matérn 
Covariance Function)

Applications

• Molecule movement modeling (using Matérn 
Covariance Function)

• X(t) - X(t’) ~ G(0, t-t’)

• X(t) ~ GP(0, min(t,t’))

Applications



• More Applications

• Handwriting recognition

• Determining trustworthiness of bank clients

• Generating music playlists

• Articulated body tracking

Applications

Summary

• Gaussian processes are non-parametric.

• A Gaussian process is fully specified by a mean 
function and covariance function.

• The problem of learning with Gaussian processes is 
exactly the problem of learning the 
hyperparameters of the covariance function.

• Basic rules of multivariate Gaussian distribution 
govern manipulation of the Gaussian process after 
a finite number of data points is observed.



Summary

• GPs offer a more general approach than standard 
logistic regression.

• GPs can be used in a Bayesian setting where the 
GP is a prior on the function.

• GPs can handle the case in which data is available 
in (multiple) different forms, as long as we can 
define an appropriate covariance function for each 
data type.

Drawbacks

• The basic complexity of Gaussian process is O(N3) 
where N is the number of data points, due to the 
inversion of an N x N matrix.

• Practical limit is said to be N ≈ 1000 or fewer.

• Classification results intractable posteriors.

• Approximation must be employed.
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