Kernel Methods

Quang Nguyen
University of Pittsburgh
CS 3750, Fall 2011

Outline

Motivation

— Examples

Kernels

— Definitions

— Kernel trick

— Basic properties

— Mercer condition
Constructing feature space

— Hilbert space

— Reproducing kernel Hilbert space (RKHS)
Constructing kernels

Representer theorem

Kernel examples

Choosing feature space and kernel
Summary

Motivation

* Machine learning theory and algorithms are
well developed for linear case
— Support Vector Machines (SVM)
— Ridge regression
— PCA
— And more

* Real world data analysis problems: often non-
linear

e Solution ?

Motivation (cont’d)

* |dea: map data from original input space into a
(usually high-dimensional) feature space where
linear relations exist among data and apply a linear
algorithm in this space

Feature space g

Input space

Motivation (cont’d)

* Challenge: computation in high-dimensional
space is difficult

* Key idea: if we choose the mapping wisely we
can do computation in the feature space
implicitly while keep working in the original
input space !

Learning

* Given:input/output sets X, Y
(X,¥1) oo Xp¥) EXXY
* Goal: generalization on unseen data
— Given new input x € X, find the corresponding y
— (x,y) should be similar to (x,,y;) ... (X, V)
e Similarity measure

— For outputs: loss function (e.g. for Y ={1,-1}, zero-one
loss)

— For inputs: kernel

Kernels

* kernel function k
k:X xX >R, (x,x") » k(x,x")

* Kernel is symmetric: k(x,x") = k(x’,x)

* Akernel that can be constructed by defining a
mapping @: X = H, from the input space X to a
feature space H, suchthatV x,x’ € X :

k(e x") = (p(x), p(x"))
* Why do we want this?

— Allow us to apply many ML algorithms in dot product
(feature) spaces

— Gives us freedom to choose ¢ => design a large variety of
models to solve a given problem

Kernel Trick

* We map patterns from input space X into a
high-dimensional feature space H and
compare them using dot product

* Choose mapping such that the dot product
can be evaluated directly using a non-linear
function in X

= Avoid computation in H
= Kernel Trick

Kernel Example

* Assume X = [xq,x,]" and a feature mapping that maps the
input in a quadratic feature set

x = @(x) = [x12, %%, V2x1 x5, V21, V23,5, 1]
¢ Kernel function for the feature space:
k(x',x) = p(x) o (x)
=202 2202 x5+ 20000 X 1%y 22,1 +2x0% 5 + 1
= (xyx'y + x0x'y + 1)?
=(1+ (x"x"))?

= Computation in the higher dimensional space is performed
implicitly in the original input space

Kernel Example: Support Vector Machines

* Solution of the dual problem gives us:
W = Z aiyX,;

« The decision boundary:

A T A
WoOX+w,=) iy (XIX)+w,
* The decisiop: "ESAV
y = sign Zaiyi(xfx)+w0

ie SV
* Mapping to a feature space, we have the decision:

y = sign {Z o y[(@(x) d(x))+ wo}

ie SV

kernel k

SVM with Gaussian Kernel

k(x,x") = exp(=Ilx — x'||?)

Mercer’s Condition

* Question: whether a prospective kernel k is good,
e.g. being a dot product in some feature space ?

* Mercer’s condition (Vapnik 1995): there exists a
mapping @ and an expansion

k@) = D 0000
i
<=>Vg(x) such that L, norm [g(x)2d(x) is finite, then

mewmmmwamawzo

Positive Definite Kernels

* It can be shown that the admissible class of
kernels coincides with the class of positive
definite (pd) kernels

* Definition: k: Xx X = Ris called a pd kernel if
— k symmetric: k(x,x’) = k(x’,x)

—V Xy, X, EXand V cy,...,c, ER
Yii=1CiCiKi; = 0, where Ky = (k(x,x)));
K is called Gram matrix or kernel matrix

Basic properties of PD kernels

1. Kernels from feature maps

If @ maps X into a dot product space H then (¢ (x), ¢ (x"))
is a pd kernel on X x X

2. Positivity on the diagonal
k(x,x)>20VxeX
3. Cauchy-Schwarz inequality
k(x,x)? < k(x, x)k(x’,x"
4. Vanishing diagonals
k(x,x) =0 Vx€eX-k(x,x')=0Vx,x' €X

From Kernels to Feature Spaces

* Question: given a pd kernel in the input space,
how can we construct a feature space such
that the kernel computes dot product in that
space ?

—i.e. how to construct mapping ¢ and space H,
@:X — H,suchthatV x,x' € X
k(x,x") = (p(x), p(x))

Constructing Feature Space

1. Define a feature map
@:X > RY, xek(,x)
@(x) = Kk(.,x) denotes the function that assigns the value k(x’,x) to x’ € R

e.g. for the Gaussian kernel ﬂm

X X 9(x) o(x")
2. Turn it into a linear space

Add linear combinations to the space
m

m
FO=) akCxd, g0 =) BkC)

i=1 =1
wherem,m' €N, a;, 8; € R and x;,x'; € X

I

Constructing Feature Space (Cont’d)

3. Add dot product to the space
(f.9) = T ST, @ik, x' ;)
=2t a;g9(x) (independent of f)
= Z;-”zll Bif(x';) (independent of g)
= (k(,x),g) = g(x) and (f, k(.,x")) = f(x)
In addition, we have difined @ (x) = Kk(.,x)
= (k(,x),k(.,x")) =k(x,x") = (p(x), p(x"))
= ks called a reproducing kernel

(Hofman et al. 2008) proved that operator (.,.) is in fact a dot product and a
pd kernel (symmetric, positive definite by definition)

4. Complete the space with a norm to get a reproducing kernel
Hilbert Space (RKHS)

Hilbert Spaces

* Hilbert Space: a complete vector space with dot product and a
norm

* Definition: dot product on a vector space
— Areal function <x,y>:VxV > RthatV x,y,z€VandV c €R
o <X,Y>=<yx>
o <CX,Y> = C<X, >
o <XHY,Z> = <X,Z> + <Y, 2>

* <xx>>0whenx# 0

* Complete space
— All Cauchy sequences {x,} in the space converge:
Ve>03neN: vimk > n: ||x, — x|l <&

— Completeness induces (by Riesz repsentation theorem) that Vx’ € X
and Vf € H,3 a unique function of x, called k(x,x’) s.t.

f&xD = A(f, (k(., x)

Constructing Kernels

k,, k, are valid (symmetric, positive definite) kernels

= The following are valid kernels:

1
2
3.
4
5

k(u,v) = f(k,(u,v)), where f is a polynomial with positive
coefficients

k(u,v) = exp(k,(u,v))

k(u,v) = EXp(_”L;—_zvnz)

Representer Theorem

Denote by Q:[0,0] = R a strictly monotonic increasing
function, by X a set, and by ¢ : (X x R%)" > R U {0} an arbitrary
cost function. Then each minimizer f € H of the regularized risk
functional

C((Xl/ yllf(xl)) (Xn/ yn/ f(Xn)) + ‘Q (”f”ZH)

admits a representation of the form

n

flx) = z a;k(x;, x)

i=1

10

Representer Theorem (cont’d)

* Significance: although the optimization
problem seems to be in an infinite-
dimensional space H, the solution only lies in
the span of m particular kernels centered on
m training points

— Note that we need to solve only for a;,i = 1..m

Examples: Kernels on vectors

e Polynomial
k(x,x")=(+{(x,x')P,pEN,c=0

e Gaussian
~ —lx — x'||
k(x,x") =exp| ————

202

e Radial basis

4 1 ma2
k(x,x") = exp —Ellx—x I

Example: String Kernel

* We want to compare 2 strings, e.g. “distance” between 2 strings

* Given index sequence I = (iy,....ij,|) with 1 < iij<..<ij, < [s], define
subsequence u of string s: u = s(1) = s(iy)...s(i})

« lI) =iy -i +1 length of subsequence in s
* Feature map: [@,(S)].= Z,:S(,)zu A, 0<A<1 is a decay parameter
* Example: substring u= asd, strings s, = Nasdag, s, = lass das

= [en(s)]u= A, [@n(s2)]u= 20

e Kernel

kn(5,8) =) [n@lulgn@lu= Y. Y AOND
u u Ll:is(D=t())=u

* Applications: document analysis, spam filtering, annotation of DNA
sequences etc

Examples: kernels on other structures

Tree kernels

Graph kernels

Kernels on sets and subspaces

And more ...

12

How to choose the best feature space

The problem of choosing the optimal feature
space for a given problem is non-trivial

Since we only know the feature space by the
kernel that we use, this problem reduces to
choosing the best kernel for learning

Performance of the kernel algorithm is highly
dependent on the kernel

The best kernel depends on the specific problem

Choosing the best kernel

* We can use prior knowledge about the problem
to significantly improve performance

— Shape of the solution
If kernel is not appropriate for problem, one

needs to tune the kernel (performance is

problem-dependent, so no universally good
algorithm exists)

Bad news: we need prior knowledge

Good news: some knowledge can be extracted
from the data

13

Approaches to choosing the best kernel

* Approach 1: Tune the hyper-parameter of a given
family of functions

— E.g. With the Gaussian kernel k(x,x') = exp(—||x—x‘||2 /206%),
set the kernel width o

* However, for non-vectorial data (e.g. strings), this
approach does not work well for popular kernels

— People have devised their own kernel for problems such as
protein classification

Approaches to choosing the best kernel
(cont’d)

* Approach 2: Learn the kernel matrix directly from the
data

* This approach is more promising
* Goals of this approach

— Not restricted to one family of kernels that may not be
appropriate for the given problem

— Stop tuning hyper-parameters and instead derive a way to
learn the kernel matrix with the setting of parameters

14

Learning the kernel matrix

* Problems with learning the kernel matrix
— It is not clear what is the best criterion to optimize
— Difficult to solve the optimization

— Choice of the class of kernel matrices to be
considered is important

* Implementation issue

— It may not be possible to store the entire kernel
matrix for large data sets

Summary

* Kernels make it possible to look for linear
relations in high-dimensional spaces at low
computational cost

— Inner products of the inputs in the feature space can
be calculated in the original space

* Can be applied to non-vectorial data
— Strings, trees, graphs etc

* Finding the best feature space and kernel is non-
trivial

15

References

Hoffman, Scholkopf, Smola. Kernel methods in machine
learning. Annals of Statistics, Volume 36, Number 3 (2008), 1171-
1220.

Scholkopf, Smola. A short introduction to kernel methods. Advanced
lectures on machine learning, LNAI 2600, pp. 41-64, 2003

Hal Daume Ill. From zero to reproducing kernel hilbert spaces in
twelve pages or less. Unpublished

Vapnik V. The nature of statistical learning theory. Springer, New
York, 1995

Barlett P. Lectures from statistical learning theory course. Spring
2008

Some slides/pictures from Milos Hauskrecht and David Krebs

16

