
1

Kernel Methods

Quang Nguyen

University of Pittsburgh

CS 3750, Fall 2011

Outline
• Motivation

– Examples

• Kernels
– Definitions

– Kernel trick

– Basic properties

– Mercer condition

• Constructing feature space
– Hilbert space

– Reproducing kernel Hilbert space (RKHS)

• Constructing kernels

• Representer theorem

• Kernel examples

• Choosing feature space and kernel

• Summary

2

Motivation

• Machine learning theory and algorithms are
well developed for linear case

– Support Vector Machines (SVM)

– Ridge regression

– PCA

– And more

• Real world data analysis problems: often non-
linear

• Solution ?

Motivation (cont’d)

• Idea: map data from original input space into a

(usually high-dimensional) feature space where

linear relations exist among data and apply a linear

algorithm in this space

3

Motivation (cont’d)

• Challenge: computation in high-dimensional

space is difficult

• Key idea: if we choose the mapping wisely we

can do computation in the feature space

implicitly while keep working in the original

input space !

Learning

• Given: input/output sets X, Y

(x1,y1) … (xm,ym) ∈ X x Y

• Goal: generalization on unseen data

– Given new input x ∈ X, find the corresponding y

– (x,y) should be similar to (x1,y1) … (xm,ym)

• Similarity measure

– For outputs: loss function (e.g. for Y = {1,-1}, zero-one
loss)

– For inputs: kernel

4

Kernels

• kernel function k

�: �	 × �	 → �, 	
,
� ↦ �(
,
�)
• Kernel is symmetric: 	�(
,
’) 	= 	�(
’,
)
• A kernel	that	can	be	constructed		by	defining	a	mapping	&: X → H, from the input space X to a

feature space H, such that	∀	
,
� ∈ � ∶	
�
,
� =	 &
 ,&
′

• Why do we want this?

– Allow us to apply many ML algorithms in dot product
(feature) spaces

– Gives us freedom to choose & => design a large variety of
models to solve a given problem

Kernel Trick

• We map patterns from input space X into a

high-dimensional feature space H and

compare them using dot product

• Choose mapping such that the dot product

can be evaluated directly using a non-linear

function in X

⇒ Avoid computation in H

⇒ Kernel Trick

5

Kernel Example

• Assume , = [
.,
/]T and a feature mapping that maps the

input in a quadratic feature set

,	 → & , =
./,
//, 2
.
/, 2
., 2
/, 1 T

• Kernel function for the feature space:

� ,′, , = & ,� 3& ,
=
./
′./+
//
′// + 2
.
/
′.
′/ +2
.
′. +2
/
′/ + 1
= (
.
�. +
.
′/ + 1)2

=	(1 + (,3,�))/
⇒Computation in the higher dimensional space is performed

implicitly in the original input space

Kernel Example: Support Vector Machines

• Solution of the dual problem gives us:

• The decision boundary:

• The decision:

• Mapping to a feature space, we have the decision:

∑
∈

∧∧

+=+
SVi

T

iii

T

wyw 00)(xxxw α









+= ∑

∈

∧∧

SVi

T

iii wyy 0)(sign xxα

∑
=

∧∧

=
n

i

iii y
1

xw α









+⋅= ∑

∈

∧∧

SVi

iii wyy 0))()((sign xx φφα

kernel k

6

SVM with Gaussian Kernel

�
,
� = exp	(−
 −
′ /)

Mercer’s Condition

• Question: whether a prospective kernel k is good,
e.g. being a dot product in some feature space ?

• Mercer’s condition (Vapnik 1995): there exists a
mapping & and an expansion

�
, 7 = 8&
 9& 7 9
9

<=> ∀:(
) such that L2 norm ;:
 /<(
) is finite, then

=�
, 7 :
 : 7 <
 < 7 ≥ 0

7

Positive Definite Kernels

• It can be shown that the admissible class of
kernels coincides with the class of positive
definite (pd) kernels

• Definition: k: X x X → R is called a pd kernel if

– k symmetric: k(x,x’) = k(x’,x)

– ∀ x1,…,xm ∈ X and ∀ c1,…,cm ∈ R

∑ A9ABC9B ≥ 0D9,BE. , where Kij = (k(xi,xj))ij

K is called Gram matrix or kernel matrix

Basic properties of PD kernels

1. Kernels from feature maps

If & maps X into a dot product space H then &
 ,&
′
is a pd kernel on X x X

2. Positivity on the diagonal

�
,
 ≥ 0	∀
 ∈ �
3. Cauchy-Schwarz inequality

�(
,
�)/ ≤ �
,
 �(
�,
�)
4. Vanishing diagonals

�
,
 = 0		∀
 ∈ � → �
,
� = 0	∀
,
′ ∈ �

8

From Kernels to Feature Spaces

• Question: given a pd kernel in the input space,

how can we construct a feature space such

that the kernel computes dot product in that

space ?

– i.e. how to construct mapping & and space H,

&: � → G,	such that ∀	
,
� ∈ �
�
,
� =	 &
 ,&
′

Constructing Feature Space

1. Define a feature map

&: �	 → �H,
 ↦ �(. ,
)
&
 = k(. , x) denotes the function that assigns the value k(x’,x) to x’ ∈ R

e.g. for the Gaussian kernel

2. Turn it into a linear space
Add linear combinations to the space

J . = 8K9�(. ,
9),
D

9E.
														:(.) =8LB�(. ,
′B)

DM

BE.
where N,N� ∈ O,	K9 , LB ∈ �	PQ<	
9 ,
′B ∈ �

. .

’ &
 																		&(
�)

&

9

Constructing Feature Space (Cont’d)

3. Add dot product to the space

J, : = ∑ ∑ K9LB�(
9	,
�B)DM
BE.D9E.

= ∑ K9:(
9)D9E. (independent of f)

= ∑ LBJ(
′B)DM
BE. (independent of g)

⇒ � . ,
 , : = :
 	PQ<	 J, �(. ,
�) = J(
′)
In addition, we have difined &
 = k(. , x)
⇒ � . ,
 , �(. ,
�) = �
,
� = &
 , &(
�)
⇒ k is called a reproducing kernel

(Hofman et al. 2008) proved that operator . , . is in fact a dot product and a
pd kernel (symmetric, positive definite by definition)

4. Complete the space with a norm to get a reproducing kernel
Hilbert Space (RKHS)

Hilbert Spaces

• Hilbert Space: a complete vector space with dot product and a

norm

• Definition: dot product on a vector space

– A real function <x,y>: V x V � R that ∀ x, y, z ∈V and ∀ c ∈	R
• <x,y> = <y,x>

• <cx,y> = c<x,y>

• <x+y,z> = <x,z> + <y,z>

• <x,x> > 0 when x ≠ 0
• Complete space

– All Cauchy sequences {xn} in the space converge:

∀S > 0	∃Q	V	O:	∀N, � > Q:	
D −
W < S
– Completeness induces (by Riesz repsentation theorem) that ∀x’ ∈ X

and ∀J ∈ G, ∃ a unique function of x, called k(x,x’) s.t.

J
� = J, (�(. ,
�)

10

Constructing Kernels

k1, k2 are valid (symmetric, positive definite) kernels

⇒ The following are valid kernels:

1. k(u,v) = Kk1(u,v) + Lk2(u,v), for K, L ≥ 0
2. k(u,v) = k1(u,v) k2(u,v)

3. k(u,v) = k1(f(u),f(v)), where f: X → X

4. k(u,v) = g(u)g(v), for g: X →	R
5. k(u,v) = f(k1(u,v)), where f is a polynomial with positive

coefficients

6. k(u,v) = exp(k1(u,v))

7. k(u,v) = exp
Y ZY[\

]\

Representer Theorem

Denote by Ω ∶	 [0,∞] → R a strictly monotonic increasing

function, by X a set, and by c : (X x R2)n → R ∪ {∞} an arbitrary

cost function. Then each minimizer f ∈ H of the regularized risk

functional

c((x1, y1, f(x1)) … (xn, yn, f(xn)) + Ω (J /
a)

admits a representation of the form

J
 =8K9�(
9 ,
)
b

9E.

11

Representer Theorem (cont’d)

• Significance: although the optimization

problem seems to be in an infinite-

dimensional space H, the solution only lies in

the span of m particular kernels centered on

m training points

– Note that we need to solve only for K9 , c = 1. . N

Examples: Kernels on vectors

• Polynomial

�
,
� = (A +
,
�)d, p ∈ O, A ≥ 0
• Gaussian

�
,
� = exp	 −
 −
′ /

2e/
• Radial basis

�
,
� = exp	 − 12
 −
′ /

12

Example: String Kernel

• We want to compare 2 strings, e.g. “distance” between 2 strings

• Given index sequence I = (i1,….i|u|) with 1 ≤ i1<…< i|u| ≤ |s|, define

subsequence u of string s: u = s(I) = s(i1)…s(i|u|)

• f(g) = i|u| - i1 + 1 length of subsequence in s

• Feature map: [&b h]Z= ∑ λj(g)g:k g EZ , 0<λ<1 is a decay parameter

• Example: substring u= asd, strings s1 = Nasdaq, s2 = lass das

⇒	 [&b h.]Z= λ3, [&b h/]Z= 2λ5

• Kernel

�b h, m = 8[&b h]Z[&b m]Z=
Z

8 8 λj(g)λj(g)
g,n:k g Eo n EZZ

• Applications: document analysis, spam filtering, annotation of DNA

sequences etc

Examples: kernels on other structures

• Tree kernels

• Graph kernels

• Kernels on sets and subspaces

• And more …

13

How to choose the best feature space

• The problem of choosing the optimal feature

space for a given problem is non-trivial

• Since we only know the feature space by the

kernel that we use, this problem reduces to

choosing the best kernel for learning

• Performance of the kernel algorithm is highly

dependent on the kernel

• The best kernel depends on the specific problem

Choosing the best kernel

• We can use prior knowledge about the problem
to significantly improve performance

– Shape of the solution

• If kernel is not appropriate for problem, one
needs to tune the kernel (performance is
problem-dependent, so no universally good
algorithm exists)

• Bad news: we need prior knowledge

Good news: some knowledge can be extracted
from the data

14

Approaches to choosing the best kernel

• Approach 1: Tune the hyper-parameter of a given

family of functions

– E.g. With the Gaussian kernel ,

set the kernel width e
• However, for non-vectorial data (e.g. strings), this

approach does not work well for popular kernels

– People have devised their own kernel for problems such as

protein classification

)2/'exp()',(
22

σxxxxk −−=

Approaches to choosing the best kernel

(cont’d)

• Approach 2: Learn the kernel matrix directly from the

data

• This approach is more promising

• Goals of this approach

– Not restricted to one family of kernels that may not be

appropriate for the given problem

– Stop tuning hyper-parameters and instead derive a way to

learn the kernel matrix with the setting of parameters

15

Learning the kernel matrix

• Problems with learning the kernel matrix

– It is not clear what is the best criterion to optimize

– Difficult to solve the optimization

– Choice of the class of kernel matrices to be

considered is important

• Implementation issue

– It may not be possible to store the entire kernel

matrix for large data sets

Summary

• Kernels make it possible to look for linear
relations in high-dimensional spaces at low
computational cost

– Inner products of the inputs in the feature space can
be calculated in the original space

• Can be applied to non-vectorial data

– Strings, trees, graphs etc

• Finding the best feature space and kernel is non-
trivial

16

References

• Hoffman, Scholkopf, Smola. Kernel methods in machine
learning. Annals of Statistics, Volume 36, Number 3 (2008), 1171-
1220.

• Scholkopf, Smola. A short introduction to kernel methods. Advanced
lectures on machine learning, LNAI 2600, pp. 41-64, 2003

• Hal Daume III. From zero to reproducing kernel hilbert spaces in
twelve pages or less. Unpublished

• Vapnik V. The nature of statistical learning theory. Springer, New
York, 1995

• Barlett P. Lectures from statistical learning theory course. Spring
2008

• Some slides/pictures from Milos Hauskrecht and David Krebs

