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Motivation

• Machine learning theory and algorithms are 
well developed for linear case

– Support Vector Machines (SVM)

– Ridge regression

– PCA

– And more

• Real world data analysis problems: often non-
linear

• Solution ?

Motivation (cont’d)

• Idea: map data from original input space into a 

(usually high-dimensional) feature space where 

linear relations exist among data and apply a linear 

algorithm in this space
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Motivation (cont’d)

• Challenge: computation in high-dimensional 

space is difficult

• Key idea: if we choose the mapping wisely we 

can do computation in the feature space 

implicitly while keep working in the original 

input space !

Learning

• Given: input/output sets X, Y

(x1,y1) … (xm,ym) ∈ X x Y

• Goal: generalization on unseen data

– Given new input x ∈ X, find the corresponding y

– (x,y) should be similar to (x1,y1) … (xm,ym)

• Similarity measure

– For outputs: loss function (e.g. for Y = {1,-1}, zero-one 
loss)

– For inputs: kernel
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Kernels

• kernel function k

�: �	 × �	 → �, 	 
, 
� ↦ �(
, 
�)
• Kernel is symmetric: 	�(
, 
’) 	= 	�(
’, 
)
• A kernel	that	can	be	constructed		by	defining	a	mapping	&: X → H, from the input space X to a  

feature space H, such that	∀	
, 
� ∈ � ∶	
� 
, 
� =	 & 
 ,& 
′

• Why do we want this?

– Allow us to apply many ML algorithms in dot product 
(feature) spaces 

– Gives us freedom to choose & => design a large variety of 
models to solve a given problem

Kernel Trick

• We map patterns from input space X into a 

high-dimensional feature space H and 

compare them using dot product

• Choose mapping such that the dot product 

can be evaluated directly using a non-linear 

function in X

⇒ Avoid computation in H

⇒ Kernel Trick
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Kernel Example

• Assume , = [
., 
/]T and a feature mapping that maps the 

input in a quadratic feature set

,	 → & , = 
./, 
//, 2
.
/, 2
., 2
/, 1 T

• Kernel function for the feature space:

� ,′, , = & ,� 3& ,
= 
./
′./+
//
′// + 2
.
/
′.
′/ +2
.
′. +2
/
′/ + 1
= (
.
�. + 
.
′/ + 1)2

=	(1 + (,3,�))/
⇒Computation in the higher dimensional space is performed 

implicitly in the original input space

Kernel Example: Support Vector Machines

• Solution of the dual problem gives us:

• The decision boundary:

• The decision:

• Mapping to a feature space, we have the decision:
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SVM with Gaussian Kernel

� 
, 
� = exp	(− 
 − 
′ /)

Mercer’s Condition

• Question: whether a prospective kernel k is good, 
e.g. being a dot product in some feature space ?

• Mercer’s condition (Vapnik 1995): there exists a 
mapping & and an expansion

� 
, 7 = 8& 
 9& 7 9
9

<=> ∀:(
) such that L2 norm ;: 
 /<(
) is finite, then

=� 
, 7 : 
 : 7 < 
 < 7 ≥ 0
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Positive Definite Kernels

• It can be shown that the admissible class of 
kernels coincides with the class of positive 
definite (pd) kernels

• Definition: k: X x X → R is called a pd kernel if

– k symmetric: k(x,x’) = k(x’,x)

– ∀ x1,…,xm ∈ X and ∀ c1,…,cm ∈ R

∑ A9ABC9B ≥ 0D9,BE. , where Kij = (k(xi,xj))ij

K is called Gram matrix or kernel matrix

Basic properties of PD kernels

1. Kernels from feature maps

If & maps X into a dot product space H then & 
 ,& 
′
is a pd kernel on X x X

2. Positivity on the diagonal

� 
, 
 ≥ 0	∀
 ∈ �
3. Cauchy-Schwarz inequality

�(
, 
�)/ ≤ � 
, 
 �(
�, 
�)
4. Vanishing diagonals

� 
, 
 = 0		∀
 ∈ � → � 
, 
� = 0	∀
, 
′ ∈ �
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From Kernels to Feature Spaces

• Question: given a pd kernel in the input space, 

how can we construct a feature space such 

that the kernel computes dot product in that 

space ? 

– i.e. how to construct mapping & and space H, 

&: � → G,	such that ∀	
, 
� ∈ �
� 
, 
� =	 & 
 ,& 
′

Constructing Feature Space

1. Define a feature map

&: �	 → �H, 
 ↦ �(. , 
)
& 
 = k(. , x) denotes the function that assigns the value k(x’,x) to x’ ∈ R

e.g. for the Gaussian kernel

2. Turn it into a linear space
Add linear combinations to the space

J . = 8K9�(. , 
9),
D

9E.
														:(. ) =8LB�(. , 
′B)

DM

BE.
where N,N� ∈ O,	K9 , LB ∈ �	PQ<	
9 , 
′B ∈ �

. .


 
’ & 
 																		&(
�)

&
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Constructing Feature Space (Cont’d)

3. Add dot product to the space

J, : = ∑ ∑ K9LB�(
9	, 
�B )DM
BE.D9E.

= ∑ K9:(
9)D9E. (independent of  f)

= ∑ LBJ(
′B)DM
BE. (independent of  g)

⇒ � . , 
 , : = : 
 	PQ<	 J, �(. , 
�) = J(
′)
In addition, we have difined & 
 = k(. , x)
⇒ � . , 
 , �(. , 
�) = � 
, 
� = & 
 , &(
�)
⇒ k is called a reproducing kernel

(Hofman et al. 2008) proved that operator . , . is in fact a dot product and a 
pd kernel (symmetric, positive definite by definition)

4. Complete the space with a norm to get a reproducing kernel 
Hilbert Space (RKHS)

Hilbert Spaces

• Hilbert Space: a complete vector space with dot product and a 

norm

• Definition: dot product on a vector space

– A real function <x,y>: V x V � R that ∀ x, y, z ∈V and ∀ c ∈	R
• <x,y> = <y,x>

• <cx,y> = c<x,y>

• <x+y,z> = <x,z> + <y,z>

• <x,x> > 0 when x ≠ 0
• Complete space

– All Cauchy sequences {xn} in the space converge: 

∀S > 0	∃Q	V	O:	∀N, � > Q:	 
D − 
W < S
– Completeness induces (by Riesz repsentation theorem) that ∀x’ ∈ X 

and ∀J ∈ G, ∃ a unique function of x, called k(x,x’) s.t.

J 
� = J, (�(. , 
�)
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Constructing Kernels

k1, k2 are valid (symmetric, positive definite) kernels 

⇒ The following are valid kernels:

1. k(u,v) = Kk1(u,v) + Lk2(u,v), for K, L ≥ 0
2. k(u,v) = k1(u,v) k2(u,v)

3. k(u,v) = k1(f(u),f(v)), where f: X → X

4. k(u,v) = g(u)g(v), for g: X →	R
5. k(u,v) = f(k1(u,v)), where f is a polynomial with positive 

coefficients

6. k(u,v) = exp(k1(u,v))

7. k(u,v) = exp
Y ZY[ \

]\

Representer Theorem

Denote by Ω ∶	 [0,∞] → R a strictly monotonic increasing

function, by X a set, and by c : (X x R2)n → R ∪ {∞} an arbitrary

cost function. Then each minimizer f ∈ H of the regularized risk

functional

c( (x1, y1, f(x1)) … (xn, yn, f(xn) ) + Ω ( J /
a)

admits a representation of the form

J 
 =8K9�(
9 , 
)
b

9E.



11

Representer Theorem (cont’d)

• Significance: although the optimization 

problem seems to be in an infinite-

dimensional space H, the solution only lies in 

the span of m particular kernels centered on 

m training points

– Note that we need to solve only for K9 , c = 1. . N

Examples: Kernels on vectors

• Polynomial

� 
, 
� = (A + 
, 
� )d, p ∈ O, A ≥ 0
• Gaussian

� 
, 
� = exp	 − 
 − 
′ /

2e/
• Radial basis

� 
, 
� = exp	 − 12 
 − 
′ /



12

Example: String Kernel

• We want to compare 2 strings, e.g. “distance” between 2 strings

• Given index sequence I = (i1,….i|u|) with 1 ≤ i1<…< i|u| ≤ |s|, define 

subsequence u of string s: u = s(I) = s(i1)…s(i|u|)

• f(g) = i|u| - i1 + 1  length of subsequence in s

• Feature map:  [&b h ]Z= ∑ λj(g)g:k g EZ , 0<λ<1 is a decay parameter

• Example: substring u= asd, strings s1 = Nasdaq, s2 = lass das

⇒	 [&b h. ]Z= λ3, [&b h/ ]Z= 2λ5

• Kernel

�b h, m = 8[&b h ]Z[&b m ]Z=
Z

8 8 λj(g)λj(g)
g,n:k g Eo n EZZ

• Applications: document analysis, spam filtering, annotation of DNA 

sequences etc

Examples: kernels on other structures

• Tree kernels

• Graph kernels

• Kernels on sets and subspaces

• And more …
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How to choose the best feature space

• The problem of choosing the optimal feature 

space for a given problem is non-trivial

• Since we only know the feature space by the 

kernel that we use, this problem reduces to 

choosing the best kernel for learning

• Performance of the kernel algorithm is highly 

dependent on the kernel

• The best kernel depends on the specific problem

Choosing the best kernel

• We can use prior knowledge about the problem 
to significantly improve performance

– Shape of the solution

• If kernel is not appropriate for problem, one 
needs to tune the kernel (performance is 
problem-dependent, so no universally good 
algorithm exists)

• Bad news: we need prior knowledge

Good news: some knowledge can be extracted 
from the data
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Approaches to choosing the best kernel

• Approach 1: Tune the hyper-parameter of a given 

family of functions

– E.g. With the Gaussian kernel ,   

set the kernel width e
• However, for non-vectorial data (e.g. strings), this 

approach does not work well for popular kernels

– People have devised their own kernel for problems such as 

protein classification

)2/'exp()',(
22

σxxxxk −−=

Approaches to choosing the best kernel 

(cont’d)

• Approach 2: Learn the kernel matrix directly from the 

data

• This approach is more promising

• Goals of this approach

– Not restricted to one family of kernels that may not be 

appropriate for the given problem

– Stop tuning hyper-parameters and instead derive a way to 

learn the kernel matrix with the setting of parameters
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Learning the kernel matrix

• Problems with learning the kernel matrix

– It is not clear what is the best criterion to optimize

– Difficult to solve the optimization

– Choice of the class of kernel matrices to be 

considered is important

• Implementation issue

– It may not be possible to store the entire kernel 

matrix for large data sets

Summary

• Kernels make it possible to look for linear 
relations in high-dimensional spaces at low 
computational cost

– Inner products of the inputs in the feature space can 
be calculated in the original space

• Can be applied to non-vectorial data

– Strings, trees, graphs etc

• Finding the best feature space and kernel is non-
trivial
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