Kernel Methods

Quang Nguyen
University of Pittsburgh
CS 3750, Fall 2011

Outline

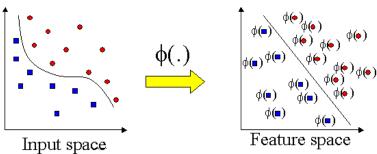
- Motivation
 - Examples
- Kernels
 - Definitions
 - Kernel trick
 - Basic properties
 - Mercer condition
- Constructing feature space
 - Hilbert space
 - Reproducing kernel Hilbert space (RKHS)
- · Constructing kernels
- · Representer theorem
- · Kernel examples
- Choosing feature space and kernel
- Summary

Motivation

- Machine learning theory and algorithms are well developed for linear case
 - Support Vector Machines (SVM)
 - Ridge regression
 - PCA
 - And more
- Real world data analysis problems: often nonlinear
- Solution?

Motivation (cont'd)

 Idea: map data from original input space into a (usually high-dimensional) feature space where linear relations exist among data and apply a linear algorithm in this space



Motivation (cont'd)

- Challenge: computation in high-dimensional space is difficult
- Key idea: if we choose the mapping wisely we can do computation in the feature space implicitly while keep working in the original input space!

Learning

• Given: input/output sets X, Y

$$(x_1, y_1) \dots (x_m, y_m) \in X \times Y$$

- Goal: generalization on unseen data
 - Given new input $x \in X$, find the corresponding y
 - -(x,y) should be similar to (x_1,y_1) ... (x_m,y_m)
- Similarity measure
 - For outputs: loss function (e.g. for Y = {1,-1}, zero-one loss)
 - For inputs: kernel

Kernels

kernel function k

$$k: X \times X \to R$$
, $(x, x') \mapsto k(x, x')$

- Kernel is symmetric: k(x, x') = k(x', x)
- A kernel that can be constructed by defining a mapping $\varphi: X \to H$, from the input space X to a feature space H, such that $\forall x, x' \in X$:

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle$$

- Why do we want this?
 - Allow us to apply many ML algorithms in dot product (feature) spaces
 - Gives us freedom to choose φ => design a large variety of models to solve a given problem

Kernel Trick

- We map patterns from input space X into a high-dimensional feature space H and compare them using dot product
- Choose mapping such that the dot product can be evaluated directly using a non-linear function in X
- \Rightarrow Avoid computation in H
- ⇒ Kernel Trick

Kernel Example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input in a quadratic feature set

$$\mathbf{x} \to \varphi(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^{\mathsf{T}}$$

• Kernel function for the feature space:

$$k(\mathbf{x}', \mathbf{x}) = \varphi(\mathbf{x}')^T \varphi(\mathbf{x})$$

$$= x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$$

$$= (x_1 x_1' + x_1 x_2' + 1)^2$$

$$= (1 + (\mathbf{x}^T \mathbf{x}'))^2$$

⇒ Computation in the higher dimensional space is performed implicitly in the original input space

Kernel Example: Support Vector Machines

Solution of the dual problem gives us: $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$$

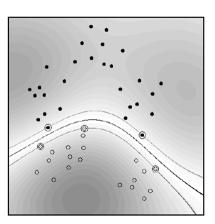
$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i=0}^{\infty} \hat{\boldsymbol{\alpha}}_i \ y_i(\mathbf{x}_i^T \mathbf{x}) + w_0$$

• The decision boundary: $\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i \ y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$ • The decision: $\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i \ y_i (\mathbf{x}_i^T \mathbf{x}) + w_0 \right]$ • Mapping to a feature space, we have the decision:

$$\hat{y} = \text{sign} \left[\sum_{i \in SV} \hat{\alpha}_i \ y_i (\phi(\mathbf{x}) \cdot \phi(\mathbf{x}_i)) + w_0 \right]$$
kernel k

SVM with Gaussian Kernel

$$k(x, x') = \exp(-\|x - x'\|^2)$$



Mercer's Condition

- **Question:** whether a prospective kernel k is good, e.g. being a dot product in some feature space?
- Mercer's condition (Vapnik 1995): there exists a mapping φ and an expansion

$$k(x,y) = \sum_{i} \varphi(x)_{i} \varphi(y)_{i}$$

<=> $\forall g(x)$ such that $\mathsf{L}_2 \operatorname{norm} \int g(x)^2 d(x)$ is finite, then

$$\int k(x,y)g(x)g(y)d(x)d(y) \ge 0$$

Positive Definite Kernels

- It can be shown that the admissible class of kernels coincides with the class of positive definite (pd) kernels
- Definition: k: $X \times X \rightarrow R$ is called a pd kernel if
 - k symmetric: k(x,x') = k(x',x)
 - $\forall x_1,...,x_m \in X \text{ and } \forall c_1,...,c_m \in R$

$$\sum_{i,j=1}^m c_i c_j K_{ij} \geq 0$$
, where $\mathbf{K}_{\mathbf{ij}}$ = $(\mathbf{k}(\mathbf{x}_{\mathbf{i}},\mathbf{x}_{\mathbf{j}}))_{\mathbf{ij}}$

K is called Gram matrix or kernel matrix

Basic properties of PD kernels

1. Kernels from feature maps

If φ maps X into a dot product space H then $\langle \varphi(x), \varphi(x') \rangle$ is a pd kernel on X x X

2. Positivity on the diagonal

$$k(x, x) \ge 0 \ \forall x \in X$$

3. Cauchy-Schwarz inequality

$$k(x,x')^2 \le k(x,x)k(x',x')$$

4. Vanishing diagonals

$$k(x,x) = 0 \ \forall x \in X \rightarrow k(x,x') = 0 \ \forall x,x' \in X$$

From Kernels to Feature Spaces

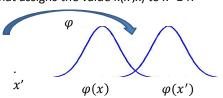
- Question: given a pd kernel in the input space, how can we construct a feature space such that the kernel computes dot product in that space?
 - i.e. how to construct mapping φ and space H, $\varphi: X \to H$, such that $\forall x, x' \in X$ $k(x, x') = \langle \varphi(x), \varphi(x') \rangle$

Constructing Feature Space

1. Define a feature map

$$\varphi\colon\! X\to R^X, \qquad x\mapsto k(.\,,x)$$
 $\varphi(x)=\mathrm{k}(.\,,x)$ denotes the function that assigns the value $\mathrm{k}(\mathrm{x}',\mathrm{x})$ to $\mathrm{x}'\in\mathrm{R}$

e.g. for the Gaussian kernel



2. Turn it into a linear space

Add linear combinations to the space

$$f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i),$$
 $g(.) = \sum_{j=1}^{m'} \beta_j k(., x'_j)$

where $m, m' \in N$, $\alpha_i, \beta_j \in R$ and $x_i, x'_j \in X$

Constructing Feature Space (Cont'd)

3. Add dot product to the space

$$\begin{split} \langle f,g\rangle &= \sum_{i=1}^m \sum_{j=1}^{m'} \alpha_i \beta_j k(x_i,x'_j) \\ &= \sum_{i=1}^m \alpha_i g(x_i) \qquad \text{(independent of f)} \\ &= \sum_{j=1}^{m'} \beta_j f(x'_j) \qquad \text{(independent of g)} \\ &\Rightarrow \langle k(.,x),g\rangle = g(x) \ and \ \langle f,k(.,x')\rangle = f(x') \\ &\text{In addition, we have difined } \varphi(x) = \mathrm{k}(.,x) \\ &\Rightarrow \langle k(.,x),k(.,x')\rangle = k(x,x') = \langle \varphi(x),\varphi(x')\rangle \\ &\Rightarrow \mathrm{k} \ \text{is called a reproducing kernel} \end{split}$$

(Hofman et al. 2008) proved that operator $\langle .,. \rangle$ is in fact a dot product and a pd kernel (symmetric, positive definite by definition)

4. Complete the space with a norm to get a reproducing kernel Hilbert Space (RKHS)

Hilbert Spaces

- Hilbert Space: a complete vector space with dot product and a norm
- Definition: dot product on a vector space
 - A real function $\langle x,y \rangle$: V x V → R that $\forall x,y,z \in V$ and $\forall c \in R$
 - <x,y> = <y,x>
 - <cx,y> = c<x,y>
 - <x+y,z> = <x,z> + <y,z>
 - < x, x > > 0 when $x \ne 0$
- Complete space
 - All Cauchy sequences $\{x_n\}$ in the space converge: $\forall \varepsilon > 0 \ \exists n \in \mathbb{N}: \ \forall m, k > n: \ \|x_m x_k\| < \varepsilon$
 - − Completeness induces (by Riesz repsentation theorem) that $\forall x' \in X$ and $\forall f \in H$, \exists a unique function of x, called k(x,x') s.t.

$$f(x') = \langle f, (k(., x')) \rangle$$

Constructing Kernels

k₁, k₂ are valid (symmetric, positive definite) kernels

⇒ The following are valid kernels:

- 1. $k(u,v) = \alpha k_1(u,v) + \beta k_2(u,v)$, for $\alpha, \beta \ge 0$
- 2. $k(u,v) = k_1(u,v) k_2(u,v)$
- 3. $k(u,v) = k_1(f(u),f(v))$, where $f: X \to X$
- 4. k(u,v) = g(u)g(v), for $g: X \rightarrow R$
- 5. $k(u,v) = f(k_1(u,v))$, where f is a polynomial with positive coefficients
- 6. $k(u,v) = \exp(k_1(u,v))$
- 7. $k(u,v) = \exp\left(\frac{-\|u-v\|^2}{\sigma^2}\right)$

Representer Theorem

Denote by $\Omega:[0,\infty]\to R$ a strictly monotonic increasing function, by X a set, and by $c:(X\times R^2)^n\to R\cup\{\infty\}$ an arbitrary cost function. Then each minimizer $f\in H$ of the regularized risk functional

$$c((x_1, y_1, f(x_1)) \dots (x_n, y_n, f(x_n)) + \Omega(\|f\|_H^2)$$

admits a representation of the form

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

Representer Theorem (cont'd)

- Significance: although the optimization problem seems to be in an infinitedimensional space H, the solution only lies in the span of m particular kernels centered on m training points
 - Note that we need to solve only for α_i , i = 1..m

Examples: Kernels on vectors

- Polynomial $k(x,x') = (c + \langle x,x' \rangle)^p, p \in N, c \ge 0$
- Gaussian

$$k(x, x') = \exp\left(\frac{-\|x - x'\|^2}{2\sigma^2}\right)$$

Radial basis

$$k(x, x') = \exp\left(-\frac{1}{2}||x - x'||^2\right)$$

Example: String Kernel

- We want to compare 2 strings, e.g. "distance" between 2 strings
- Given index sequence $\mathbf{I} = (i_1,....i_{|u|})$ with $1 \le i_1 < ... < i_{|u|} \le |s|$, define subsequence u of string s: $u = s(\mathbf{I}) = s(i_1)...s(i_{|u|})$
- $l(I) = i_{|u|} i_1 + 1$ length of subsequence in s
- Feature map: $[\varphi_n(s)]_u = \sum_{I:s(I)=u} \lambda^{l(I)}$, 0<\(\lambda<\)1 is a decay parameter
- Example: substring u = asd, strings $s_1 = Nasdaq$, $s_2 = lass das$ $\Rightarrow [\varphi_n(s_1)]_u = \lambda^3, [\varphi_n(s_2)]_u = 2\lambda^5$
- Kernel

$$k_n(s,t) = \sum_u [\varphi_n(s)]_u [\varphi_n(t)]_u = \sum_u \sum_{I,J:s(I)=t(J)=u} \lambda^{l(I)} \lambda^{l(I)}$$

Applications: document analysis, spam filtering, annotation of DNA sequences etc

Examples: kernels on other structures

- Tree kernels
- · Graph kernels
- Kernels on sets and subspaces
- And more ...

How to choose the best feature space

- The problem of choosing the optimal feature space for a given problem is non-trivial
- Since we only know the feature space by the kernel that we use, this problem reduces to choosing the best kernel for learning
- Performance of the kernel algorithm is highly dependent on the kernel
- The best kernel depends on the specific problem

Choosing the best kernel

- We can use prior knowledge about the problem to significantly improve performance
 - Shape of the solution
- If kernel is not appropriate for problem, one needs to tune the kernel (performance is problem-dependent, so no universally good algorithm exists)
- Bad news: we need prior knowledge
 Good news: some knowledge can be extracted from the data

Approaches to choosing the best kernel

- Approach 1: Tune the hyper-parameter of a given family of functions
 - E.g. With the Gaussian kernel $k(x, x') = \exp(-\|x x'\|^2 / 2\sigma^2)$, set the kernel width σ
- However, for non-vectorial data (e.g. strings), this approach does not work well for popular kernels
 - People have devised their own kernel for problems such as protein classification

Approaches to choosing the best kernel (cont'd)

- Approach 2: Learn the kernel matrix directly from the data
- · This approach is more promising
- Goals of this approach
 - Not restricted to one family of kernels that may not be appropriate for the given problem
 - Stop tuning hyper-parameters and instead derive a way to learn the kernel matrix with the setting of parameters

Learning the kernel matrix

- Problems with learning the kernel matrix
 - It is not clear what is the best criterion to optimize
 - Difficult to solve the optimization
 - Choice of the class of kernel matrices to be considered is important
- Implementation issue
 - It may not be possible to store the entire kernel matrix for large data sets

Summary

- Kernels make it possible to look for linear relations in high-dimensional spaces at low computational cost
 - Inner products of the inputs in the feature space can be calculated in the original space
- Can be applied to non-vectorial data
 - Strings, trees, graphs etc
- Finding the best feature space and kernel is nontrivial

References

- Hoffman, Scholkopf, Smola. Kernel methods in machine learning. Annals of Statistics, Volume 36, Number 3 (2008), 1171-1220.
- Scholkopf, Smola. *A short introduction to kernel methods*. Advanced lectures on machine learning, LNAI 2600, pp. 41-64, 2003
- Hal Daume III. From zero to reproducing kernel hilbert spaces in twelve pages or less. Unpublished
- Vapnik V. The nature of statistical learning theory. Springer, New York, 1995
- Barlett P. Lectures from statistical learning theory course. Spring 2008
- Some slides/pictures from Milos Hauskrecht and David Krebs