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How to measure distance? d(xy,x3) =+ (x1—2x2)TM(xy—x3)
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How to measure distance?

d(x1,%7) = y/ (ATx,—ATx;)T (ATx,—ATx;)
learn A ‘
generate M
apply M to new sample x d(xq,x;) = \f(xl—xE)TAAT(xl —X5)

d(xy,x) = /(2 —2)TM(x1—x) ' |

M = AA"




Categorization

*  Unsupervised DML
* Linear Model

PCA,
MD5

*  Nonlinear Model

-

LLE,
ISOMAP,
Laplacian
Eigenmaps
Kernel PCA

Supervised DML

Global Distance Metric Learning
* Probabilistic Global Distance Metric Learning (PGDM)
Local Distance Metric Learning
* Neighborhood Components Analysis (NCA)
* Relevant Component Analysis (RCA)
* Discriminative Component Analysis (DCA)
* Probabilistic Relevant Component Analysis (pRCA)
* Large Margin Nearest Neighbor (LMNN)
» Information-Theoretic Metric Learning (ITML)
* Bregman Distance Function Learning (BDFL)
Certain Constraint
* NCA, RCA, DCA, LMNN,ITML,BDFL, etc
Uncertain Constraint
* pRCA
Matrix Form
* NCA, RCA, DCA, LMMITML pRCA etc
Functional Form
* BDFL
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Supervised metric learning?

d(xy, %) = \/(x3—%2)TM (1 —x3)

Object function Side information Regularization

L(M) R(M)

Similar = » Dissimilar
pairs pairs



Supervised metric learning?

d(xy, %) = \/(x3—%2)TM (1 —x3)

Object function Side information Regularization

L(M) R(M)
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Object function

Probabilistic Global Distance Metric Learning (PGDM
Minimize the

MR SiEan oG ¢ 0se to RAGENS distance between
similar samples
ming 3 [l
-
(It'.x")ES
GRS
A

(x;.x;)ED :
Gl J') Preserve certain

distance between
others

Extended Reading:

E. P. Xing, A. Y. Ng, M. |. Jordan, and S. Russell, Distance metric learning, with
application to clustering with side-information, Advances in Neural Information
Processing Systems 15, vol. 15, 2002, pp. 505-512.



Object function

Neighborhood Components Analysis (NCA)
Neighbors should gain probability to be in the same class

o exp AT - A%
- Ekijexp(_”‘qxi_Axk“z)

max, Z fﬂg(z Pij)
=1

JEC;

Minimize the
distance between

neighbors

Extended Reading:

J. Goldberger, S. Roweis, G. Hinton, and R, Salakhutdinov, “Neighbourhood
components analysis,” in Proc. NIPS, 2005.



Object function
Relevant Component Analysis (RCA)

Weight & be covariance

Weight the
distance by

Covariance of

the data 1
C= —Z Z(Iﬁ P covarience
P i

Jj

d(x;, x;) = J(-‘-’i —%)C 1 (X — x

i Equivalent to
max the mutual

information
maxI(X,Y)

& s.t.%ZZ“xﬂ—mIH 25K,Y=f(X)=AX

Extended Reading:

N. Shental and D. Weinshall, Learning distance functions using equivalence relations, In
Proceedings of the Twentieth International Conference on Machine Learning, vol. 21,
2003, pp. 11-18. '



Object function

Information maximiz

Mutual information
Find a mapping that maximize the mutual infoNECERE MR EIR i 0/ space
and that in transformed space and embedded data

maxI(X,Y)
| 2
I(X,)Y)=H(Y)—-HY|X)=> max I(X,Y) = max H(Y) = max |A| = max|M|

_ P sy 5 p(x)
pO) = = HOD = - [ p0)logp()dy =~ | p()tog =
maxy |M|

b | A

dx = H(X) + log|] (X)]

M—HC'l
N

!

Extended Reading:

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning distance functions using
equivalence relations,” in Proc. International Conference on Machine Learning, 2003,



Object function
Discriminative Component Analysis (DCA)

Minim iz gk &b in each chunklet and maximize the distance between

chunkld Covariance

between

G 1 '
chunklets e ;Z Z(mf —m;) (m; - mj)r
=)
1 T
Cor ;ZZ(%’E —my)(x;; —my)
J

i

within chunklet ATcpA

J(A) = argmax, ——
ATc,.A

Covariance

Extended Reading:

Steven C. H, Hoi, Wei Liu, Michael R. Lyu, and Wei-Ying Ma. 2006. Learning Distance
Metrics with Contextual Constraints for Image Retrieval. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition -

Volume 2 (CVPR '06), 2006.



Object function
probabilistic Relevance Component Analysis (pRCA)

Learning . iilasRaasC 0" probabilistic side information. Minimize the distance
betwe Uptimize ”_‘ S o bability to befﬂng to same chunklet and maximize the
dictane membership

probability, as F’mhdblll tic side
well as Metric information

. 2
mMinpy-q,p,m Z Z Pi;'”xi it ’ﬂj”M — Alog|M|
t2%)
s.t. [P — Pyl <,

ZP:‘;‘ =1,p;; >0
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Extended Reading:

Lei Wu, Steven C.H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu, “Distance Metric Learning
from Uncertain Side Information with Application to Automated Photo Tagging”, ACM
International Conference on Multimedia (MM’09), 2009,



Object function
Large Margin Nearest Neighbor (LMNN)

Maximize the margin between the distance of similar samples and the distance of
dissimilar samples

Mijl|xi — Ij“i, + L'Z N (1 — y,-_,-)(l + || — xj“i, — [l2¢; — xglls” )

ming.g
+
ijl
Select samples
with different
labels

Select neighbor
ij are the ne
neighborinth  penalizes large

penalizes small
distances
between each
label distances
between each
input and its
target neighbors

input and all
other inputs
that do not
share the same
abel

Extended Reading:

Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance Metric Learning for Large
Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (June 2009), 207-244.



Object function
Information-Theoretic Metric Learning (ITML)

Regularize the Mahalanobis matrix M to be as close as possible to a given
Mahalanobis distance function, parameterized by M,

Minimize the KL divergence
miny.oKL(p(x,Mo)||p(x, M) to the predefined distance
s.t. dy(x;,x;) <u,(x;,x;)€ES

dM(xi, x;-) > 1, (x,-,xj) eD Make the distance between

Similar samples smaller than u

Make the distance between
dissimilar samples larger than |

Extended Reading:

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. 2007,
Information-theoretic metric learning. In Proceedings of the 24th international
conference on Machine learning (ICML '07),2007.



Object function
Bregman Distance Function Learning (BDFL)

Extend the Mahalanobis matrix M to Bregman functional {g
Use a function form rather than

matrix form for distance metric
d(x,,x;) :fP(Il)“fP(Iz)T* gx - —
= d(xy,x3) = (x1 —x3) ' V(X)) (x1 — x2)

, - e
Mingeau pert 5|91, + € ) EOAd(x, xb) = bi])
i

Search for an optimal convex function from a

Reproducing Kernel Hilbert Space

Extended Reading:

Lei Wu, Rong lJin, Steven C.H. Hoi, Jianke Zhu, Nenghai Yu, “Learning Bregman Distance
Functions and Its Application for Semi-Supervised Clustering”, Advances in Neural
Information Processing Systems (NIPS’08), 2008.



Supervised metric learning?

d(xy, %) = \/(x3—%2)TM (1 —x3)

Object function Side information Regularization

L(M) R(M)

Similar = » Dissimilar
pairs pairs



Side information

Probabilistic Global Distance Metric Learning (PGDM)

Map similar points close to each other

2
miﬂ‘,‘ Z “x,— —x}-”‘q

(I;,I},‘)ES

I[.T‘.'.Ij} eED

Extended Reading:

E. P. Xing, A. Y. Ng, M. |. Jordan, and S. Russell, Distance metric learning, with
application to clustering with side-information, Advances in Neural Information.
Processing Systems 15, vol. 15, 2002, pp. 505-512.



Side information

Neighborhood Components Analysis (NCA)

Pairwise hard constraint

s exp(—||Ax; — Ax;||?)
Y Yeiexp(—|lAx; — Axy||?)

max, Z fﬂg(z Pij)
=

JEC;

Extended Reading:

J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neighbourhood
components analysis,” in Proc. NIPS, 2005.



Side information

Information maximization RCA

Find a mapping that maximize the mutual information of sample in original space
and that in transformed space

maxI(X,Y)
| 2
I(X,)Y)=H(Y)—-HY|X)=> max I(X,Y) = max H(Y) = max |A| = max|M|

_ P Sy, 5 p(x)
pO) = = HOD = - [ p0)logp()dy =~ | p()tog =
maxy |M|

b | A

dx = H(X) + log|] (X)]

!

X;; i-th sample in j-th
chunklet

Hard constraint

Extended Reading:

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, “Learning distance functions using
equivalence relations,” in Proc. International Conference on Machine Learning, 2003.



Side information

Discriminative Component Analysis (DCA)

Minimize the distance within each chunklet and maximize the distance between

chunklets
1 T
€= EZ Z(mi —-m;) (m; — m;)
=3
i | T
Cw = EZZ(I’" —my)(x;; —my)
J

i

J(A) = argmax, o Xj; i-th sample in j-th
chunklet

Hard constraint

Extended Reading:

Steven C. H. Hoi, Wei Liu, Michael R. Lyu, and Wei-Ying Ma. 2006. Learning Distance
Metrics with Contextual Constraints for Image Retrieval. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition -
Volume 2 (CVPR '06), 2006.



Side information
Large Margin Nearest Neighbor (LMNN)

Maximize the margin between the distance of similar samples and the distance of
dissimilar samples

minys.o ) nyllxi — Ij“i, + L‘Z N (1 — ya) (1 + ||x; — xj“i, — llx; — x1llpg” )

ijl

-+

Nearest neighbor +

hard constraints

Extended Reading:

Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance Metric Learning for Large
Margin Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (June 2009), 207-244.



Side information
Information-Theoretic Metric Learning (ITML)

Regularize the Mahalanobis matrix M to be as close as possible to a given
Mahalanobis distance function, parameterized by M,

miny. o KL(p(x,M,)||p(x,M))
s.t. dy(x;,x;) <u,(x;,x;)€ES
dy(x,x;) >, (x,%x;) ED

|
p(x,M) = EEIP(_E AITIER)] S and D are hard constraints

Extended Reading:

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. 2007.
Information-theoretic metric learning. In Proceedings of the 24th international
conference on Machine learning (ICML '07),2007.




Side information
Bregman Distance Function Learning (BDFL)

Pairwise hard constraints

d(xy,x3) = @(x1) — @(x3) — gxl — Xx3)" @*(x3)
= d(xy,x2) = (x4 — 22) " V20(R) (%1 — x3)

; 1 AT e
mingeaunypert 5 1@, + €Y @ A(xh, xb) — b))
i

Side info:
X1 X Similar : y =1

X1 X5 dissimilar:y = —1

Extended Reading:

Lei Wu, Rong Jin, Steven C.H. Hoi, Jianke Zhu, Nenghai Yu, “Learning Bregman Distance
Functions and Its Application for Semi-Supervised Clustering”, Advances in Neural
Information Processing Systems (NIPS’08), 2008.



Side information
probabilistic Relevance Component Analysis (pRCA)

Probabilistic constraints

Probabilistic side

information

Extended Reading:

Lei Wu, Steven C.H. Hoi, Rong Jin, Jianke Zhu, Nenghai Yu, “Distance Metric Learning
from Uncertain Side Information with Application to Automated Photo Tagging”, ACM
International Conference on Multimedia (MM’09), 2009,



Supervised metric learning?

d(xy, %) = \/(x3—%2)TM (1 —x3)

Object function Side information Regularization

L(M) R(M)
Similar e ® Dissimilar
pairs LA pairs



Regularization

Introducing additional information in order to solve an ill-posed problem or to
prevent overfitting

Basic regularizers:

* Bayesian information criterion || M||,
* Equal to minimum description length criterion (MDL)

* Least absolute shrinkage and selection operator (Lasso) ||M||4
* Fundamental to compressed sensing

* Tikhonov regularization (ridge regression) || M]||,
*  Common method to handle ill posed problem

Extended Reading: . '
A. Neumaier, Solving ill-conditioned and singular linear svstems A tuturlal on
regularization, SIAM Review 40 (1998), 636-666.



Regularization

Introducing additional information in order to handle specific requirements, such as
sparsity

Some other regularizers:
s tr(M)
* Regularize diagonals

» logdet(M)
* Equalto tr(exp(M))

1
o Ml g,z = B (B|my])?
* Regularize columns
Extended Reading: :
Guo-Jun Qj, Jinhui Tang, Zheng-Jun Zha and Tat-Seng Chua and Hung-—hang Zhang, An
Efficient Sparse Metric Learning in High-Dimensional Space via I11-Penalized Log-
Determinant Regulaization, ICML 2009 :
o B AR

> ’ I
. .



Regularization

Introducing additional information in order to handle specific requirements, such as
sparsity

Generalized regularizers for metric learning:
» tr(LM)
» IfL=1I= tr(M)= Generalized Sparese metric learning
* IfL=F = Yy (xi— xj)TM(xi = Xj)
« ifL=ILM=v"v = ||v|; = D — ranking vector machine
« if L=M,> tr(MM) = ||M||3,, = Pair — wise SVM

! ”M“Fra = JE; E;lmulz e~ 1('tT(MM)

Extended Reading: :

Kaizhu Huang, Yiming Ying, and Colin Campbell. 2009. GSML A Unified Framework for
Sparse Metric Learning. In Proceedings of the 2009 Ninth IEEE International Conference
on Data Mining (ICDM '09). IEEE Computer Sm:lety, Washmgton DC, USA, 189-198

.-J'|.

> . ol
. -



]

property of Metric

on the

it

¥,

Lo 1]

" -sg. -"ll:
g T



semgwan the property of Metric

:--."' ?}_!. L




1L

sangwwthe property of Metric ol £ Y A R




1L

sangwwthe property of Metric o e Y A R

~ Metric M must meet the trian

- o




semgwan the property of Metric

et

U&= E&d
. I.. -, "l:..lr i .
w e gy
I Tyt

- y =

¥l L X | ‘JI'_I-

. | il
B




Seminar on the property of Metric

What is the relation between Metric learning and support vector machine?
DML

miny Z ¥i(ll(xi1 — x:2)All* — b;) + log| M|
i
SVM

minw.b,a'z' ||W||2 = a; [yi(wix; — b;) — 1]

i

1
max _EZ iy K (xi, x; e o + z a;

L

]

i

J
gl Zﬂ.’i}'; =1, = UﬂﬂLEC,VI'i

2
K (xi,%;) = ||x=' = x‘;‘|| 6



Seminar on the property of Metric

What is the relation between Metric learning and Embedding?

DML: pair-wise constraints, preserve the supervised side info

M* = argminy Z lAx;y — Ax;3||?

(xi1,xi2) €S
Embeding: preserve the geodesic distance between samples

2
W':argminwz Z Wix;
i

I);EN(J‘.';)

Y
i



Exploration of Distance Function Learning (BDFL)
(Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering (NIPS09))

d(xy,xz) = \/(Il—xz)TM(xl—xz)

Drawbacks: M is a dxd matrix

d(xy,x3) = @(x1) — @(x3) — (x4 — x3) "Ve(x;) (Original)

d(xy, %) = (Vo(x1) — V(%)) (%1 — xz) (Modified )
d(xy,x3) = (% —x3) ' VZ@(X)(xy — x3) (Intermediate Value Theorem)

A~V (%)
Advantage:
1. (%) is a function RY - R, and V@(x,) is a vector rather than a matrix
O(dxd) - 0(d)
2. (%) is local sensitive. Hessian matrix of convex functmn ﬁ'ztp(x) depends on the
location of x; and x,

Any Problem?

gy u | -



Exploration of Distance Function Learning
(Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering (NIPS09))

d(xy,x;) = \/(xl—xz)TM(xl—xz) —d(xy,x3) = (X1 — x3) VEQ(R) (x4 — x2)
Property of Mahalanobis distance
d(xy,x2) = d(x2,%y) J
d(xy,x3) =0 x; = x; ‘J

d(xy,x3) < d(x4,%3) + d(x2,x3)

Property of Bregman distance function V* (%)

v
d(xy,x2) = d(x2,%1) J
v
?

d(x],xz) 5 = xl = xz

d(x;,x3) < d(xy,x3) +d(x;3,%X3)




Nil-

DL ving ineaualitv
- .' 1 | 23 " f

VM = m)(d(xq x)d (x,

W
295) i

Proof. First, let us denote by f as follows:
f= (VM — ym)ld(wa, zc)d(ze, 73)] /4
The square of the right side of Eq. (2) is
(\m+ m-&- FU4E = d(za, 2p) — MZa, 25, o) + 6(2 0, 23, Z.)

where

6(2a, 5, 2s) = f2+ 2f\V/d(@a,3.) + 2f /A0, wp) + 24/ A0, )0, Tp)
M(&a; T, 2e) = (Vip(2a) = Viplze) )z — 23) + (Vip(ze) — Vip(zp)) (20 — 2c).

From this above equation, the proposition holds if and only if §(=z,, 2, 2.) — n(z,, 28, 2.) = 0.
From the fact that

§(xa, Tb, Te) — N(Ta, Tp, Te)
(VM — /) + 2AVM — y/m) (d(@a, 2:) §d(we, 06)  + dleo, 20)F d(@a, 7)) + 2d(za, 0.)d(z, 22)
vV d(za, xe)d(ze, T0)
since /M > ,/m and the distance function d(+) > 0, we get 8(z, 23, 2. ) — 9(Za, Ty, zc) > 0. [

Any other problem?




Exploration of Distance Function Learning
(Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering (NIPS09))

d(xy,x3) = (%1 — x3) V2@ (R) (x4 — x2)

nq;lﬁlfﬂim +sz(y1[d(xar ) —bD

How to solve?
px) = f dyr(x,y)q(y) = f dy exp(x"y)q(y)
= [ du exp(x"Xu)q(u)

Assume q(y) = Z a;o(y — x;)
‘ 1
I Min,cpn L = E“T’l{“ +C E £(yilz @ — b))

z; = [exp(xi) — exp(x)] o [X T (xi — xD)]

Extended Reading:

Lei Wu, Rong Jin, Steven C.H. Hoi, Jianke Zhu, Nenghai Yu, “Learning Bregman Distance
Functions and Its Application for Semi-Supervised Clusterlng Advances in Neural

!

Information Processing Systems (NIPS’09), 2009. = ‘-“



The function that minimizes
>
minplf, +C ) LOild(xxt)  bl)

=1

Admits the following forni:

Q(x) € Hy = [ _, dygh(x'y) = [ du h(x"Xu)g(w)
Whereu € RY, and X = (xy,-, Xy).

Proof. We write p(z) = ¢)(z) + @1 (z) where

pi(z) € H) = [ dya(y)h(z " y), pL(z) € H1 = / dyq(y)h(="y)
yEA y - A
Thus, the distance function defined in (1) is then expressed as

dza,z3) = (T —23) (Vepy(2a) — Viij(s)) + (2 — 28) " (Vopi(2a) — Vipu(23))

| a) R (@]y) — K (2 )y (za — o) + / a(w)(R' (2] y) — k(28 ¥))y | (20 — 23)

of
ye A wEMA

/ a(W) (R (2l y) — R (2 ) (20 — 23) = (22 —23) " (Vigy(za) — Vi (23))

ye A

Since [p(x)[§,, = || (2)}5,. +|eL(2)|3, , the minimizer of (1) should have [¢ 1 (2|7, = 0. Since
01(2)] = (@ L(), A, Wrte < |82, Yol I, = Oy, we have o (x) = O for any . We thus
have (z) = | (), which leads to the result in the theorem. O
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Distance measurement is important.

GO 'SIC EJF‘G from gstatic.com vincent van gogh

GO : rgl{: &~ JPG from gstatic.com » clifton suspension bridge drawing

GL)._ ;8[@ EJF‘G from gstatic.com * santorini greece



Background

« Annotation/tagging is essential to making images
accessible to Web users

« Social media data in social websites enjoy rich
tagging information provided by Web users

Flickr BRI




Background

Annotation
By Search

images Without Tags

Images
with tags

Taken the tagged images as knowledge, is it possible
to automatically tag the billions of images?




Motivation

* Annotation by Search (Wang et al. 2006)

— resolve the challenge of auto-photo annotation by leveraging
the emerging huge amount of rich image surrounding text

Main problems which limit the Annotation by Search
* Web noise
* Semantic gap




Motivation

» Distance Metric Learning
— Learning to optimize the metric M

— Side Information (a.k.s. “Pairwise Constraints”)
« Similar pairs S(x4,x5) : x; and x, belong to the same category

» Dissimilar pairs D(x4, x5): x; and x, belong to different
categories



Motivation

 Certain side information
— (Generated by humans
— Noise free
— Hard constraints: similar=1: dissimilar=0

- How about learning a better soft constraints

automatically from uncertain info of the Web?
— Small-scale

— |naccurate



Motivation

Certain Side Info Uncertain Side Info

Pros: Cons: Pros: Cons:
* Simple * Manual * Learn from Web « Complicated
* Easy to Adopt +* Expensive * Large amount * Noisy

\

Author: Lei Author: Lei
Tags: Tags:

Sun, Bird Bird, Fly
Sky, Blue White, Cloud




Motivation

« Annotation by Search from Social Media
— NO explicit pairwise side information available
— But rich information is available with social images

» |deas of our research
— To discover implicit pairwise relationship between social
images via a probabilistic approach

— To learn effective distance metrics from uncertain
side information that is discovered from soclal images
implicitly



Probabilistic Relevance Component Analysis (pRCA)

ion of pRCA:

WHiatadliiveEd L)

The objective

T (i

s 2
1min E E } i — g InE —
M=0,u,P P f “

t=1 k=1

st ||[P— Pnll*i

S pfH = 1.-
k -

Corollary 1. IThen fixing the means of chunklets g and the matrix of probability assignments P

(assuming with hard assignments of 0 and 1), the Probabilistic Relevance Component Analyasis
(pRCA) formulation reduces to the regular RCA learning.




Time Cost for Metric Learning

» To evaluate the time efficiency performance of the
proposed DML algorithm on the same dataset

Table 1: Time cost of different DML methods.

» Findings
— The most efficient method is the regular RCA approach
— The most time-consuming one is NCA

— pRCA is quite competitive, which 1s worse than RCA,DCA, and
RDML, but is considerably better than ITML, LMNN, and NCA



Some Good Examples

autumn, fall, forest, trees, nature , tree
wood, germany , path , creative

sunset, clouds, sky, sea, beach, abigfave,
sun, water, landscape, ocean

tiger, zoo , specanimal, impressedbeauty, abigfave,
nature, animal , cat, animals, aplusphoto

garden, flowers, yellow, nature, hdr,
nikon, spring, festival, impressed beauty




Some Poor Examples

macro, nikon, bokeh, nature, flower,
canon, storm, eos, plane, flickrsbest

nikon, street, water, sport, blue, bike,
lebanon, kids, eric mckenna, krissy mckenna

winter, photography, art , beach
usa, fashion, portrait , travel, party, snow

park, river, travel, trees, lake, hiking,
winter, green, vacation, water




Conclusions

Distance metric learning (DML) is very useful
tool in solving distance based applications

There are quite a lot of interesting research
problems in DML

A little step on DML will make great impact to
many applications

This lecture is only an introduction. More details
please refer to the reference papers

Think hard and maybe a great idea will come out
to change the world |
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