CS 3750 Machine Learning Lecture 2

Advanced Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs3750/

CS 3750 Advanced Machine Learning

Tentative topics

- Review: supervised learning, density estimation
- Extending standard learning framework:
 - sparsity, learning to rank, multiple task
- Low dimensional representation of data
 - Component analysis and their applications
 - PCA, LSA, PLSA, pPCA, ICA, etc
 - Latent variable models
 - Variational approximations
- Kernels
 - Kernel methods, Kernel-PCA, string kernels, etc.
- Non-parametric models and methods:
 - Graph-based kernels for classification and clustering
 - Metric learning
 - Gaussian processes

Learning

Starts with data & prior knowledge

Typical steps in learning:

- Define a model space
- Define an objective criterion: criterion for measuring the goodness of a model (fit to data)
- Optimization: finding the best model

Alternative: optimization is replaced with the inference, e.g. Bayesian inference in the Bayesian learning

Evaluation/application:

- Model learned from the training data
- generalization to the future (test) data

CS 3750 Advanced Machine Learning

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: try to estimate the underlying true probability distribution over variables X, p(X), using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ $p(\mathbf{X} | \Theta)$
- Example: mean and covariances of multivariate normal
- Estimation: find parameters $\hat{\Theta}$ that fit the data D the best

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- The density for a point x is influenced by examples in its neighborhood

CS 3750 Advanced Machine Learning

Basic criteria

What is the best set of parameters?

Maximum likelihood (ML)

maximize
$$p(D | \Theta, \xi)$$

 ξ - represents prior (background) knowledge

Maximum a posteriori probability (MAP)

maximize
$$p(\Theta | D, \xi)$$

Selects the mode of the posterior

$$p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}$$

Example. Bernoulli distribution.

Outcomes: two possible values -0 or 1 (head or tail) Data: D a sequence of outcomes x_i with 0,1 values

Model: probability of an outcome 1 θ probability of 0 $(1-\theta)$

$$P(x_i | \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

Objective:

We would like to estimate the probability of seeing 1:

 $\hat{\theta}$

CS 3750 Advanced Machine Learning

Maximum likelihood (ML) estimate.

Likelihood of data: $P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$

Maximum likelihood estimate

$$\theta_{ML} = \underset{\theta}{\operatorname{arg max}} P(D \mid \theta, \xi)$$

Optimize log-likelihood

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of 1s seen} \qquad N_2 - \text{number of 0s seen}$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D,\theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

Solving

$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:

$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

CS 3750 Advanced Machine Learning

Maximum a posteriori estimate

Maximum a posteriori estimate

- Selects the mode of the posterior distribution

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg\,max}} \ p(\theta \mid D, \xi)$$

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) p(\theta \mid \xi)}{P(D \mid \xi)}$$
 (via Bayes rule)

 $P(D | \theta, \xi)$ - is the likelihood of data

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)} = \theta^{N_1} (1 - \theta)^{N_2}$$

 $p(\theta \,|\, \xi)$ - is the prior probability on θ

How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution

$$p(\theta \mid \xi) = Beta(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

Why?

Beta distribution "fits" binomial sampling - conjugate choices

$$P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2}$$

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)Beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

MAP Solution:
$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}$$

Bayesian learning

- Both ML or MAP pick one parameter value
 - Is it always the best solution?
- Full Bayesian approach
 - Remedies the limitation of one choice
 - Keeps and uses a complete posterior distribution
- How is it used? Assume we want: $P(\Delta \mid D, \xi)$
 - Considers all parameter settings and averages the result

$$P(\Delta \mid D, \xi) = \int_{\theta} P(\Delta \mid \theta, \xi) p(\theta \mid D, \xi) d\theta$$

- Example: predict the result of the next outcome
 - Choose outcome 1 if $P(x=1|D,\xi)$ is higher

CS 3750 Advanced Machine Learning

Modeling complex multivariate distributions

How to model complex multivariate distributions $\hat{p}(\mathbf{X})$ with large number of variables?

One solution:

• Decompose the distribution. Reduce the number of parameters, using some form of independence.

Two models:

- Bayesian belief networks (BBNs)
- Markov Random Fields (MRFs)
- Learning. Relies on the decomposition.

Bayesian belief network.

1. Directed acyclic graph

- **Nodes** = random variables
- Links = direct (causal) dependencies between variables
 - Missing links encode independences

CS 3750 Advanced Machine Learning

Bayesian belief network.

2. Local conditional distributions

relate variables and their parents

Full joint distribution in BBNs

CS 3750 Advanced Machine Learning

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F

Then its probability is:

$$P(B=T,E=T,A=T,J=T,M=F) = P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M=F|A=T)$$

Markov Random Fields (MRFs)

Undirected graph

- **Nodes** = random variables
- **Links** = direct relations between variables
- BBNs used to model **asymetric** dependencies (most often causal),
- MRFs model **symmetric** dependencies (bidirectional effects) such as spatial dependences

CS 3750 Advanced Machine Learning

Markov Random Fields (MRFs)

A probability distribution is defined in terms of potential functions defined over cliques of the graph

$$\mathbf{P}(X_1, X_2, ..., X_n) = \frac{1}{Z} \prod_{C_i \in cliques(G)} \Psi(C_i)$$

Latent variable models

- We can have a model with hidden variables
- Hidden variables may help us to induce the decomposition of a complex distribution

Latent variable models

- More general latent variable models
- Various relations in between hidden and observable variables
- Example: Continuous vector quantizer (CVQ) model

- Possible uses:
- A probabilistic model
- A low dimensional representation of observable data

Copula distributions

- Copula defines a joint distribution function for random variables U1,U2, . .,Uk each of which is marginally uniformly distributed on (0, 1).
- Important (Sklar's theorem): A distribution function for a multivariate X can be written as a copula of marginal distribution functions
- Copula is used to model all dependences in between components of X