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Tentative topics

* Review: supervised learning, density estimation
» Extending standard learning framework:
— sparsity, learning to rank, multiple task
* Low dimensional representation of data
— Component analysis and their applications
* PCA, LSA, PLSA, pPCA, ICA, etc
— Latent variable models
* Variational approximations
* Kernels
— Kernel methods, Kernel-PCA, string kernels, etc.
* Non-parametric models and methods:
— Graph-based kernels for classification and clustering
— Metric learning
— Gaussian processes
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Learning

Starts with data & prior knowledge

Typical steps in learning:
* Define a model space

* Define an objective criterion: criterion for measuring the
goodness of a model (fit to data)

* Optimization: finding the best model

Alternative: optimization is replaced with the inference, e.g.
Bayesian inference in the Bayesian learning

Evaluation/application:
* Model learned from the training data
» generalization to the future (test) data
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Density estimation

Data: p=1{p,D,,..D,}
D, =x, a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n Samples estimate

>
p(X) D={D,,D,,..D,} P(X)

Standard (iid) assumptions: Samples
+ are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ®
p(X|©)

* Example: mean and covariances of multivariate normal

» Estimation: find parameters © that fit the data D the best

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the distribution

* The density for a point x is influenced by examples in its
neighborhood
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Basic criteria

What is the best set of parameters?
* Maximum likelihood (ML)
maximize p(D|0,¢&)
& - represents prior (background) knowledge
* Maximum a posteriori probability (MAP)
maximize p(®|D,&)

Selects the mode of the posterior

o|p.c) = PD10.5pO1£)
P@ID.) p(D (&)
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Example. Bernoulli distribution.

Outcomes: two possible values — 0 or 1 (head or tail)
Data: D asequence of outcomes x; with 0,1 values

Model: probability of an outcome 1 6@
probability of 0 (1-6)

P(x,10)=0"(1-0)"""" Bernoulli distribution

Objective:
We would like to estimate the probability of seeing 1:

A

0
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Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D]6.&) =[]0 1-0)""
i=1

Maximum likelihood estimate
0,, =argmax P(D|6,¢&)
0
Optimize log-likelihood
[(D,0)=1og P(D|0,&)=log[ [ 6" (1-6)"" =

=1 5 n

D x,logh+(1-x,)logl—6) =1ogd> _x, +log1-60)> " (1-x,)
i=1 i=1

i=1

N, - number of 1s seen N, - number of Os seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0) =N, logf+N,log(1-6)
Set derivative to zero
oD.O) N, _ N, _
00 0 (1-0)

Solving 0=

ML Solution: 0,, = ﬂ _
N
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Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

O,p = AT gnaxp(& | D,&)

P(D]0,5)p(0]2)
P(D[&)

P(D|6,&) -is the likelihood of data

p@|D,¢&)= (via Bayes rule)

P(D|0,5)=]]o"(1-6)"""=0"(1-0)"
i=1

p(@|&) - is the prior probability on &

How to choose the prior probability?
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Prior distribution
Choice of prior: Beta distribution

_ _ @ +) oy gye
p(erf)—Bem(e\a],az)—F(al)r(%)e (1-0)
Why?

Beta distribution “fits” binomial sampling - conjugate choices

P(D]0,5)=0"(1-0)"

p(e‘D’g): P(D|H9é;3(Bl§t’a§()0|al9a2)

=Beta(@|a,+ N,,a, + N,)

eMAP -

o, +N, -1
o, +o,+N +N,-2

MAP Solution:
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Beta distribution

3.5

. .

— «=0.5, $=0.5

— =25, p=25
0=2.5, p=5
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Bayesian learning

* Both ML or MAP pick one parameter value
— Is it always the best solution?
* Full Bayesian approach
— Remedies the limitation of one choice
— Keeps and uses a complete posterior distribution
» How is it used? Assume we want: P(A|D,¢&)
— Considers all parameter settings and averages the result

P(A[D,5)= IP(A 10,5)p(0|D,5)do

— Example: predict the result of the next outcome
* Choose outcome 1 if P(x=1|D,&) is higher

CS 3750 Advanced Machine Learning

Modeling complex multivariate distributions

How to model complex multivariate distributions p(X) with large

number of variables?

One solution:
* Decompose the distribution. Reduce the number of
parameters, using some form of independence.

Two models:
* Bayesian belief networks (BBNs)
* Markov Random Fields (MRFs)

* Learning. Relies on the decomposition.

CS 3750 Advanced Machine Learning




Bayesian belief network.

1. Directed acyclic graph

Nodes = random variables
Links = direct (causal) dependencies between variables
* Missing links encode independences

'

@ P(A|B,E)

P(J|A) P(MIA)

Gomcat) — (Marycaiy
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Bayesian belief network.

2. Local conditional distributions

relate variables and their parents

-

@ P(A|B,E)

P(JIA) P(MIA)

Gomeans) — (Marycans
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Bayesian belief network.

P(B) P(E)
F

T F T
Burglary )| 0.001 0.999 Earthquake ) [0.002 0.998

P(A[B,E)
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)

\ P(M|A)
Al T F Al T F
T | 0.90 0.1
F | 0.05 0.95

-
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,,X,,..X,)= HP(X,' | pa(X,))

i=l,.n

OB E
Example: \ f
Assume the following assignment A
of values to random variables (5/ E
B=T,E=T,A=T,J=T,M=F J M

Then its probability is:
PB=T,E=T,A=T,J=T,M=F)=

AB=T)RE=T)AA=T| B=T,E=T)RJ=T| A=D)AM=F| A=T)
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Markov Random Fields (MRFs)

Undirected graph
* Nodes = random variables
* Links = direct relations between variables

*  BBNs used to model asymetric dependencies (most often
causal),

*  MRFs model symmetric dependencies (bidirectional effects)
such as spatial dependences
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Markov Random Fields (MRFs)

A probability distribution is defined in terms of potential
functions defined over cliques of the graph

P(X, X, X,) == [](C)

C;ecliques(G)
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Latent variable models

*  We can have a model with hidden variables

» Hidden variables may help us to induce the decomposition of
a complex distribution
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Latent variable models

* More general latent variable models
* Various relations in between hidden and observable variables
« Example: Continuous vector quantizer (CVQ) model

Hidden binary variables

Q Q Real variables

* A probabilistic model

* Possible uses:

* A low dimensional representation of observable data
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Copula distributions

Copula defines a joint distribution function for random
variables U1,U2, . .,Uk each of which is marginally uniformly
distributed on (0, 1).

Important (Sklar’s theorem): A distribution function for a
multivariate X can be written as a copula of marginal
distribution functions

Copula is used to model all dependences in between
components of X
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