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Tentative topics
• Review: supervised learning, density estimation
• Extending standard learning framework: 

– sparsity, learning to rank, multiple task
• Low dimensional representation of data

– Component analysis and their applications
• PCA, LSA, PLSA, pPCA, ICA, etc

– Latent variable models
• Variational approximations

• Kernels
– Kernel methods, Kernel-PCA, string kernels, etc. 

• Non-parametric models and methods:
– Graph-based kernels for classification and clustering
– Metric learning
– Gaussian processes
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Learning

Starts with data & prior knowledge

Typical steps in learning:  
• Define a model space 
• Define an objective criterion: criterion for measuring the 
goodness of a model (fit to data)
• Optimization: finding the best model
Alternative: optimization is replaced with the inference, e.g. 
Bayesian inference in the Bayesian learning

Evaluation/application: 
• Model learned from the training data
• generalization to the future (test) data
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )
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Density estimation

Types of density estimation:
Parametric
• the distribution is modeled using a set of parameters           

• Example: mean and covariances of multivariate normal
• Estimation: find parameters       that fit the data D the best
Non-parametric
• The model of the distribution utilizes all examples in D
• As if all examples were parameters of the distribution
• The density for a point x is influenced by examples in its 

neighborhood
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Basic criteria

What is the best set of parameters? 
• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)
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Example. Bernoulli distribution.
Outcomes: two possible values – 0 or 1 (head or tail)
Data: D a sequence of outcomes       with 0,1 values 

Model:  probability of an outcome 1
probability of 0

Objective:
We would like to estimate the probability of seeing 1:
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Bernoulli distribution
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of 1s seen 2N - number of 0s seen
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Maximum likelihood (ML) estimate.
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Maximum a posteriori estimate

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

How to choose the prior probability?
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Prior distribution
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Choice of prior: Beta distribution

Beta distribution “fits” binomial sampling - conjugate choices
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Beta distribution
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Bayesian learning

• Both ML or MAP pick one parameter value
– Is it always the best solution?

• Full Bayesian approach
– Remedies the limitation of one choice
– Keeps and uses a complete posterior distribution

• How is it used? Assume we want: 
– Considers all parameter settings and averages the result

– Example: predict the result of the next outcome 
• Choose outcome 1 if                         is higher
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Modeling complex multivariate distributions

How to model complex multivariate distributions            with large 
number of variables?

One solution:
• Decompose the distribution. Reduce the number of 

parameters, using some form of independence.

Two models:
• Bayesian belief networks (BBNs)
• Markov Random Fields (MRFs)

• Learning. Relies on the decomposition. 
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables
• Links = direct (causal) dependencies between variables

• Missing links encode independences
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Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Markov Random Fields (MRFs)
Undirected graph

• Nodes = random variables
• Links = direct relations between variables

• BBNs used to model asymetric dependencies (most often 
causal), 

• MRFs model symmetric dependencies (bidirectional effects) 
such as spatial dependences
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Markov Random Fields (MRFs)
A probability distribution is defined in terms of potential 

functions defined over cliques of the graph
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Latent variable models

• We can have a model with hidden variables
• Hidden variables may help us to induce the decomposition of 

a complex distribution
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Latent variable models

• More general latent variable models
• Various relations in between hidden and observable variables
• Example: Continuous vector quantizer (CVQ) model

• Possible uses:
• A probabilistic model
• A low dimensional representation of observable data

Hidden binary variables

Real variables
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Copula distributions

• Copula defines a joint distribution function for random 
variables U1,U2, . .,Uk each of which is marginally uniformly 
distributed on (0, 1). 

• Important (Sklar’s theorem): A distribution function for a 
multivariate X can be written as a copula of marginal 
distribution functions

• Copula is used to model all dependences in between 
components of X 


