SEMI-SUPERVISED LEARNING Matt Stokes

Topics

- Background
- □ Label Propagation
 - Definitions
 - □ Transition matrix (random walk) method
 - Harmonic solution
 - □ Graph Laplacian method
- Kernel Methods
 - Smoothness
 - Kernel alignment

Types of Learning

- Unsupervised
 - Class labels are unknown
 - No feedback/error signal
 - Essentially density estimation
- Supervised
 - Given labeled training examples
 - Can evaluate performance directly
 - Learn mapping of X to Y
- Semi-supervised
 - Only some samples are labeled
 - Saves time/cost of labeling large datasets

Assumptions

- Data exist in some kind of clusters
- Local assumption
 - Points near one another likely to have the same label
- Global assumption
 - Points on the same structure (i.e. manifold) likely to have the same label
- □ Simple clustering methods (k-NN) rely only on local structure and can lead to suboptimal results

Label Propagation

Problem setup (Zhu, 2002)

- \square Data $(x_1, y_1)...(x_N, y_N)$ consist of:
 - \Box L labeled samples $(x_1, y_1)...(x_l, y_l)$
 - $\ \square$ U unlabelled samples (x_{l+1}, y_{l+1}) ... (x_{l+U}, y_{l+U}) where class labels $\{y_{l+1}, \dots, y_{l+U}\}$ are unknown
 - □ Usually, L<<U</p>
 - □ Number of classes (C) is known
- □ Create a fully connected graph with samples as nodes, connection weights proportional to sample proximity

$$w_{ij} = \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right) = \exp\left(-\frac{\sum_{d=1}^{D}(x_i^d - x_j^d)^2}{\sigma^2}\right)$$

Label Propagation

- □ Node labels represented as a distribution over classes in label matrix *Y* (*N* rows, *C* columns)
- Begin with arbitrary assignment of class distributions to unlabeled points, known class to labeled points
- □ Repeat:
 - 1. Propagate Y←TY
 - Labels spread information along local structure
 - 2. Row normalize Y
 - Keep proper distribution over classes
 - 3. Clamp labeled data to original value
 - Keep originally labeled points

$$Y_{ic} = \delta(y_i, c)$$

Convergence

- $\begin{array}{c|c} \blacksquare \text{ Represent as row-normalized } Y = \begin{bmatrix} Y_L \\ Y_U \end{bmatrix} \leftarrow \begin{bmatrix} \overline{T}_{ll} & \overline{T}_{lu} \\ \overline{T}_{ul} & \overline{T}_{uu} \end{bmatrix} \begin{bmatrix} Y_L \\ Y_U \end{bmatrix} \\ \end{array}$
- \square Iterative update for Y_{II}

$$Y_U \leftarrow \overline{T}_{ul} Y_L + \overline{T}_{uu} Y_U$$

- $\qquad \text{Result of iteration:} \qquad Y_U = \Bigg\lceil \sum_{i=1}^n \overline{T}_{uu}^{(i-1)} \, \Bigg\rceil \overline{T}_{ul} Y_L + \lim_{n \to \infty} \overline{T}_{uu}^n Y^0$
- $\ \square$ Because T row-normalized and $\lim_{n\to\infty}\overline{T}_{uu}^nY^0=0$ T_{uu} is a submatrix, we have:
- \Box Converges regardless of initial Y°: $Y_U = (I \overline{T}_{uu})^{-1} \overline{T}_{ul} Y_L$

Class Assignment

- How should we assign classes to unlabeled points?
- Could choose most likely class
 - ML method does not explicitly control class proportions
- Suppose we want labels to fit a known or estimated distribution over classes
 - Normalize class mass scale columns of Y_U to fit class distribution and then pick ML class
 - Does not guarantee strict label proportions
 - Perform label bidding each entry $Y_U(i,c)$ is a "bid" of sample i for class c
 - Handle bids from largest to smallest
 - Bid is taken if class c is not full, otherwise it is discarded

Parameterization

- □ Single parameter O controls spread of labels
 - For $\sigma \rightarrow 0$, classification of unlabeled points dominated by nearest labeled point
 - For $\sigma \to \infty$, class probabilities just become class frequencies (no information from label proximity)
- □ Build minimum spanning tree, longest edges first
 - Set $\sigma = d^*/3$, where d^* is the first edge connecting subgraphs containing differently labeled points
- Can minimize entropy of class labels
 - Leads to confident classifications
 - \square However, minimum entropy at $\sigma=0$

Optimizing O

 \square Add uniform transition component ($\mathbf{U}_{ii}=1/N$) to T

$$\widetilde{T} = \varepsilon \mathbf{U} + (1 - \varepsilon)T$$

- \Box For small σ , uniform component dominates
 - \square Minimum entropy no longer at $\sigma=0$
- \square Use $\sigma_1 \dots \sigma_N$ to scale each dimension independently
- Perform gradient descent with respect to σ's in order to minimize entropy

$$\frac{\partial H}{\partial \sigma_d} = \sum_{i=L+1}^{L+U} \sum_{c=1}^{C} \frac{\partial H}{\partial Y_{ic}} \frac{\partial Y_{ic}}{\partial \sigma_d}$$

What is going on?

- □ Transition matrix *T* holds probabilities of moving from one node to another
- Very similar to Markov random walker
 - However, insensitive to timescale of the walk
 - Constant source labels leads to equilibrium as iterations increase
- Mean field approximation interpretation for pairwise Markov random field F
 - Label propagation finds most likely labels for the approximate mean field solution of F
 - Not just most likely state (MinCut)
 - Can split clusters equidistant from labeled points

Harmonic Functions (Zhu, 2003)

- Now define class labeling f in terms of a Gaussian over continuous space, instead of random field over discrete label set
- Distribution on f is a Gaussian field

$$p_{\beta}(f) = \frac{e^{-\beta E(f)}}{Z_{\beta}}$$
$$Z_{\beta} = \int_{f|_{L=f_{1}}} \exp(-\beta E(f)) df$$

- Useful for multi-label problems (NP-hard for discrete random fields)
 - ML configuration is now unique, attainable by matrix methods, and characterized by harmonic functions

Harmonic Energy

"Energy" of solution labeling f is defined as: $E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2$

$$E(f) = \frac{1}{2} \sum_{i,j} w_{ij} (f(i) - f(j))^2$$

- Nearby points should have similar labels
- \square Solution which minimizes E(f) is harmonic
 - \square $\Delta f = 0$ for unlabeled points, where $\Delta = D W$ (combinatorial Laplacian)
 - $\square \Delta f = f_i$ for labeled points
 - \blacksquare Value of f at an unlabeled point is the average of f at neighboring points

$$f(j) = \frac{1}{d_j} \sum_{i \sim j} w_{ij} f(i), \text{ for } j = L+1, ..., L+U$$

$$f = D^{-1}Wf$$

Harmonic Solution

□ As before, split problem into:

$$f = \begin{bmatrix} f_l \\ f_u \end{bmatrix} \qquad W = \begin{bmatrix} W_{ll} & W_{lu} \\ W_{ul} & W_{uu} \end{bmatrix} \qquad P = D^{-1}W$$

□ Solve using $\Delta f = 0$, $f|_{I} = f_{I}$:

$$f_u = (D_{uu} - W_{uu})^{-1} W_{ul} f_l = (I - P_{uu})^{-1} P_{ul} f_l$$

 Can be viewed as heat kernel classification, but independent of time parameter

Other interpretations

- Consider random walker on data graph with given transition probabilities starting from unlabeled node i
 - \Box f(i) is the probability that the first labeled node encountered is of class 1
 - $lue{}$ Solution is an equilibrium state, not depending on time t
- Can also be viewed as electrical network
 - □ Class 1 labels connected to source, class 0 labels to ground
 - □ Weights represent conductance
 - \Box f_u is the resulting voltage on an unlabeled node
 - Minimizes energy dissipation in the network

Reformulation (Zhou)

- Explicitly model self-reinforcement of labeled nodes
 - No clamping of values
 - Original labels stored in Y
 - \Box Distribution of labels now stored in F(t)
- Information spreads symmetrically
- □ S is the normalized graph Laplacian
 - Identical to spectral clustering
 - Similar to transition matrix
- □ Note that $(I-\alpha S)^{-1}$ is a diffusion kernel

$$w_{ij} = \exp\left(-\frac{d_{ij}^2}{\sigma^2}\right) for i \neq j$$

$$w_{ij} = 0$$

$$D = \begin{bmatrix} \sum_{j=1}^{N} w_{1j} & 0 & 0 & 0 \\ 0 & \sum_{j=1}^{N} w_{2j} & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \sum_{j=1}^{N} w_{Nj} \end{bmatrix}$$

$$S = D^{-1/2}WD^{-1/2}$$

$$F(t+1) = \alpha SF(t) + (1-\alpha)Y$$

$$F^* = \lim_{t \to \infty} F(t) = (1 - \alpha)(I - \alpha S)^{-1} Y$$

Regularization

 $\hfill \square$ Define cost function Q associated with assignment of class labels F

$$Q(F) = \underbrace{\frac{1}{2} \sum_{i,j=1}^{N} W_{ij} \left\| \frac{F_i}{\sqrt{D_{ii}}} - \frac{F_j}{\sqrt{D_{jj}}} \right\|^2}_{Smoothness} + \underbrace{\mu \sum_{i=1}^{N} \left\| F_i - Y_i \right\|^2}_{Fitting}$$

- Smoothness constraint ensures classification does not change much between nearby points
- Fitting constraint ensures classification does not deviatedmuch from initial assignment
- □ F* optimizes solution to the regularized framework

$$\left. \frac{\partial Q}{\partial F} \right|_{F=F^*} = F^* - SF^* + \mu(F^* - Y) = 0$$

$$F^* - \frac{1}{1+\mu} SF^* - \frac{\mu}{1+\mu} Y = 0$$

$$\alpha = \frac{1}{1+\mu}$$

$$F^* = (1-\alpha)(I - \alpha S)^{-1} Y$$

Kernel Methods

Review

- □ Graph Laplacian has eigenvectors $\phi_1...\phi_N$, eigenvalues $\lambda_1...\lambda_N \ge 0$
- Smallest eigenvalues correspond to "smoothest" eigenvectors
- These eigenvectors most useful for classification

Kernels by Spectral Transform

- Semi-supervised learning creates a smooth function over unlabeled points
 - □ Generally, smooth if $f(i) \approx f(j)$ for pairs with large W_{ij}

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2} = \sum_{i=1}^{N} \alpha_{i}^{2} \lambda_{i}^{T}$$

- Different weightings (i.e. spectral transforms) of Laplacian eigenvalues leads to different smoothness measures
- We want a kernel K that respects smoothness
 - $lue{}$ Define using eigenvectors of Laplacian (ϕ) and eigenvalues of K (μ)

$$K = \sum_{i=1}^{N} \mu_{i} \phi_{i} \phi_{i}^{T}$$

 \blacksquare Can also define in terms of a spectral transform of Laplacian eigenvalues

$$K = \sum_{i=1}^{N} r(\lambda_i) \phi_i \phi_i^T$$

Types of Transforms

Regularize d Laplacian
$$r(\lambda) = \frac{1}{1 - \frac{1}{1$$

egularize d Laplacian
$$r(\lambda) = \frac{1}{\lambda + \varepsilon}$$
 Diffusion Kernel
$$r(\lambda) = \exp\left(-\frac{\sigma^2}{2}\lambda\right)$$

1-step Random Walk
$$r(\lambda) = (\alpha - \lambda), \alpha \ge 2$$

p-step Random Walk
$$r(\lambda) = (\alpha - \lambda)^p, \alpha \ge 2$$

Inverse Cosine $r(\lambda) = \cos(\lambda \pi / 4)$
Step Function $r(\lambda) = 1$ if $\lambda \le \lambda_{cut}$

- □ Reverses order of eigenvalues, so smooth eigenvectors have larger eigenvalues in K
- Is there an optimal transform?

Kernel Alignment

- Assess fitness of a kernel to training labels
- \Box Empirical kernel alignment compares kernel matrix K_{tr} for training data to target matrix T for training data
 - $T_{ij}=1$ if $y_i=y_i$, otherwise $T_{ij}=-1$

$$\hat{A}(K_{tr},T) = \frac{\left\langle K_{tr},T\right\rangle_{F}}{\sqrt{\left\langle K_{tr},K_{tr}\right\rangle_{F}\left\langle T,T\right\rangle_{F}}} \qquad \qquad \frac{\left\langle M,N\right\rangle_{F} = Tr(MN)}{\text{Frobenius Product}}$$

- \square Alignment measure computes cosine between K_{tr} and T
- \Box Find the optimal spectral transformation $r(\lambda_i)$ using the kernel alignment notion

QCQP

- □ Kernel alignment between K_{tr} and T is a convex function of kernel eigenvalues μ_i
 - \square No assumption on parametric form of transform $r(\lambda_i)$
- □ Need K to be positive semi-definite
 - Restrict eigenvalues of K to be ≥ 0
- Leads to computationally efficient Quadratically Constrained Quadratic Program
 - Minimize convex quadratic function over smaller feasible region
 - Both objective function and constraints are quadratic
 - Complexity comparable to linear programs

Constraints

- We would like to keep decreasing order on spectral transformation
 - Smooth functions are preferred bigger eigenvalues for smoother eigenvectors
- Constant eigenvectors act as a bias term in the graph kernel
 - $\Delta \lambda_1 = 0$, corresponding eigenvector Φ_i is constant
 - Need not constrain bias terms

$$\max_{K} A(K_{ir}, T)$$
subject to $\langle K_{ir}, T \rangle_{F} \leq 1$

$$K = \sum_{i=1}^{N} \mu_{i} K_{i}$$

$$K_{i} = \phi_{i} \phi_{i}^{T}$$

$$\mu_{i} \geq 0$$

$$\mu_{i} \geq \mu_{i+1}, i = 1...n - 1, \phi_{i} \text{ not constant}$$

Summary

- Unsupervised learning involves spreading information from labeled nodes to unlabeled nodes
- □ Multiple formulations with different interpretations
 - □ Clamped version equivalent to Markov random walk
 - □ Harmonic solution equivalent to electrical network
 - Unclamped version equivalent to diffusion kernel
- Kernel methods use optimally smoothing spectral transforms of the data
 - Align kernel to labeled training data for optimal performance