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Types of Learning

Unsupervised
Class labels are unknown
No feedback/error signal
Essentially density estimation

Supervised
Given labeled training examples
Can evaluate performance directly
Learn mapping of X to Y

Semi-supervised
Only some samples are labeled
Saves time/cost of labeling large datasets

Assumptions

Data exist in some kind of clusters
Local assumption

Points near one another likely to have the same label
Global assumption

Points on the same structure (i.e. manifold) likely to have the 
same label

Simple clustering methods (k-NN) rely only on local 
structure and can lead to suboptimal results

1-NN



Label Propagation

Problem setup (Zhu, 2002)
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Data (x1, y1)…(xN, yN) consist of:
L labeled samples (x1, y1)… (xL, yL)
U unlabelled samples (xL+1, yL+1)… (xL+U, yL+U) where class 
labels {yL+1… yL+U} are unknown
Usually, L<<U
Number of classes (C) is known

Create a fully connected graph with samples as nodes, 
connection weights proportional to sample proximity

Asymmetric transition matrix T has dimensions N x N
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Label Propagation

Node labels represented as a distribution over classes in 
label matrix Y (N rows, C columns)
Begin with arbitrary assignment of class distributions to 
unlabeled points, known class to labeled points
Repeat:

1. Propagate Y←TY
Labels spread information along local structure

2. Row normalize Y
Keep proper distribution over classes

3. Clamp labeled data to original value
Keep originally labeled points
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Convergence

Represent as row-normalized 
block matrices:
Iterative update for YU 

YL is clamped at original values

Result of iteration:

Because T row-normalized and 
Tuu is a submatrix, we have:
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Class Assignment

How should we assign classes to unlabeled points?
Could choose most likely class

ML method does not explicitly control class proportions
Suppose we want labels to fit a known or estimated 
distribution over classes

Normalize class mass – scale columns of YU to fit class 
distribution and then pick ML class

Does not guarantee strict label proportions
Perform label bidding – each entry YU(i,c) is a “bid” of 
sample i for class c

Handle bids from largest to smallest
Bid is taken if class c is not full, otherwise it is discarded

Parameterization

Single parameter σ controls spread of labels
For σ→0, classification of unlabeled points dominated 
by nearest labeled point
For σ→∞, class probabilities just become class 
frequencies (no information from label proximity)

Build minimum spanning tree, longest edges first
Set σ = d*/3, where d* is the first edge connecting 
subgraphs containing differently labeled points

Can minimize entropy of class labels
Leads to confident classifications
However, minimum entropy at σ=0



Optimizing σ

Add uniform transition component (Uij=1/N) to T

For small σ, uniform component dominates
Minimum entropy no longer at σ=0

Use σ1… σN to scale each dimension independently
Perform gradient descent with respect to σ’s in 
order to minimize entropy
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What is going on?

Transition matrix T holds probabilities of moving from 
one node to another
Very similar to Markov random walker

However, insensitive to timescale of the walk
Constant source labels leads to equilibrium as iterations 
increase

Mean field approximation interpretation for pairwise 
Markov random field F

Label propagation finds most likely labels for the 
approximate mean field solution of F
Not just most likely state (MinCut)
Can split clusters equidistant from labeled points



Harmonic Functions (Zhu, 2003)

Now define class labeling f in terms of a Gaussian over 
continuous space, instead of random field over discrete 
label set
Distribution on f is a Gaussian field

Useful for multi-label problems (NP-hard for discrete 
random fields)

ML configuration is now unique, attainable by matrix 
methods, and characterized by harmonic functions
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Harmonic Energy

“Energy” of solution labeling f is defined as:

Nearby points should have similar labels

Solution which minimizes E(f) is harmonic
∆f=0 for unlabeled points, where ∆=D-W (combinatorial 
Laplacian)
∆f=fl for labeled points
Value of f at an unlabeled point is the average of f at 
neighboring points
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Harmonic Solution

As before, split problem into:

Solve using ∆f=0, f|L= fl :

Can be viewed as heat kernel classification, but 
independent of time parameter
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Other interpretations

Consider random walker on data graph with given 
transition probabilities starting from unlabeled node i

f(i) is the probability that the first labeled node 
encountered is of class 1
Solution is an equilibrium state, not depending on time t

Can also be viewed as electrical network
Class 1 labels connected to source, class 0 labels to ground
Weights represent conductance
fu is the resulting voltage on an unlabeled node
Minimizes energy dissipation in the network



Reformulation (Zhou)

Explicitly model self-reinforcement of 
labeled nodes

No clamping of values
Original labels stored in Y
Distribution of labels now stored in F(t)

Information spreads symmetrically
S is the normalized graph Laplacian

Identical to spectral clustering
Similar to transition matrix 

Note that (I-αS)-1 is a diffusion kernel
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Regularization

Define cost function Q associated with assignment of class labels F
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Smoothness
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µSmoothness constraint 
ensures classification does 
not change much between 
nearby points
Fitting constraint ensures 
classification does not 
deviatedmuch from initial 
assignment
F* optimizes solution to the 
regularized framework



Kernel Methods

Review

Graph Laplacian 
has eigenvectors 
φ1…φN, eigenvalues 
λ1…λN ≥ 0
Smallest eigenvalues 
correspond to 
“smoothest”
eigenvectors
These eigenvectors 
most useful for 
classification 



Kernels by Spectral Transform

Semi-supervised learning creates a smooth function over 
unlabeled points

Generally, smooth if f(i)≈f(j) for pairs with large Wij

Different weightings (i.e. spectral transforms) of Laplacian 
eigenvalues leads to different smoothness measures

We want a kernel K that respects smoothness
Define using eigenvectors of Laplacian (φ) and eigenvalues of K (µ)

Can also define in terms of a spectral transform of Laplacian 
eigenvalues
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Types of Transforms

r(λi) is a non-negative and decreasing transform

Reverses order of eigenvalues, so smooth 
eigenvectors have larger eigenvalues in K
Is there an optimal transform?
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Kernel Alignment

Assess fitness of a kernel to training labels
Empirical kernel alignment compares kernel matrix Ktr
for training data to target matrix T for training data

Tij=1 if yi=yj, otherwise Tij=-1

Alignment measure computes cosine between Ktr and T
Find the optimal spectral transformation r(λi) using the 
kernel alignment notion
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Kernel alignment between Ktr and T is a convex function 
of kernel eigenvalues µi

No assumption on parametric form of transform r(λi)
Need K to be positive semi-definite

Restrict eigenvalues of K to be ≥0
Leads to computationally efficient Quadratically 
Constrained Quadratic Program

Minimize convex quadratic function over smaller feasible 
region
Both objective function and constraints are quadratic
Complexity comparable to linear programs



Constraints

We would like to keep decreasing order on spectral 
transformation

Smooth functions are preferred – bigger eigenvalues for 
smoother eigenvectors

Constant eigenvectors act as a bias term in the graph 
kernel
λ1=0, corresponding eigenvector φi is constant
Need not constrain bias terms
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Summary

Unsupervised learning involves spreading 
information from labeled nodes to unlabeled nodes
Multiple formulations with different interpretations

Clamped version equivalent to Markov random walk
Harmonic solution equivalent to electrical network
Unclamped version equivalent to diffusion kernel

Kernel methods use optimally smoothing spectral 
transforms of the data

Align kernel to labeled training data for optimal 
performance


