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Underestimation of distance
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Not a good 
distance metric!

Not a good 
distance metric!

Overestimation of distance
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The two images are close 
while their Euclidean 

distance is large! 

The two images are close 
while their Euclidean 

distance is large! 



Why diffusion framework?
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Noise sensitivity
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Random Walk on Graphs

• Let W be the similarity matrix on the graph, 
the transition from node x to node y is defined 
as: 

p1(y | x) =
w(x,y)
d(x)

d(x) = w(x,z)
z∈N (x )
∑
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P = pij = p1(x j | xi)[ ]n×n



Some properties of RW

• Asymptotic distribution

• The absolute value of the eigenvalues of P are 
between 0 and 1 with largest one equal to 1.

• The eigenvectors:
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π ∞(y) = lim
t →∞

pt (y | x) =
d(y)

d(z)
z

∑

PTφi = λiφi   and   Pψ i = λiψ i

ψi(x) =
φi(x)
φ0(x)

Some properties of RW

• The eigenvectors of P are bi‐orthogonal:

• Normalization:
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  φk
Tψl = δ(k,l)

  
φl 1/φ0

2 =
φl

2(x)
φ0(x)

=1,    ψl φ0

2 =
x

∑ ψl
2(x)φ0(x)

x
∑ =1



Forward Diffusion Process

• If the probability vector πt(.) represents the 
distribution of random walker at time t, we 
have: 

• Corollary:

π t +1(x) = p1(x | y)π t (y)
y

∑

π t +1 = PTπ t

π ∞ = PTπ ∞ ⇒ π ∞ = φ0
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Backward Diffusion Process

• If gt(.) is a real‐valued function defined on the 
graph at time t, gt+1(.) is the average of gt(.) at 
time t+1:

• Corollary: g∞(.) is the smoothest function (i.e. 
the constant function) 

gt +1(x) = p1(y | x)gt (y)
y

∑

gt +1 = Pgt

g∞ = Pg∞ ⇒ g∞ =ψ0 =1
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Link to Normalized Laplacian

• The transition matrix is closely related to the 
asymmetric normalized Laplacian:

dii = w(x,y)
y ∈N(x )
∑

P = D−1W ,
Lrw = I − D−1W = I − P
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T‐step Diffusion Processes

• We can generalize the forward and backward 
processes:

π t0 + t = PT PT ...PTπ t0 = (P(t ))T π t0

gt0 + t = P.P....P.gt0 = P( t )gt0

Ψ = ψ0 |ψ1 | ... |ψn−1[ ],    Φ = φ0 | φ1 | ... | φn−1[ ]
Λ = Λ ii = λi[ ]n×n

P = ΨΛΦT ⇒ P(t ) = ΨΛ(t )ΦT

P(t ) = λx
t φx

T .ψx
x

∑
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What does it do?

• The smaller eigenvalues decay:
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Diffusion Distance

• The diffusion distance between nodes x and z
at scale t is defined as:
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Dt
2(x,z) = pt (. | x) − pt (. | z) 1/φ0

2 =
pt (y | x) − pt (y | z)( )2

φ0(y)y
∑



Interpretation
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Diffusion Map

• The diffusion map of point x at scale with 
dimensionality q is defined as:

Ψf : x →

λ1
tψ1(x)

λ2
t ψ2(x)

λq
t ψq (x)
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Approximating Diffusion Dist.

• By replacing

• in 

• we get:

p(t )(x,y) = λz
t φz

T (x).ψz(y)
z

∑

Dt
2(x,z) = λy

2t (ψy (x) −ψy (z))2

y
∑

≈ λy
2t (ψy (x) −ψy (z))2

y=1

q

∑ = Ψt (x) − Ψt (z) 2
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The Euclidean 
distance

The Euclidean 
distance

Dt
2(x,z) = pt (. | x) − pt (. | z) 1/φ0

2 =
pt (y | x) − pt (y | z)( )2

φ0(y)y
∑



Embedded Space for Image Data
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Handwritten Digits
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Words in 2D
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Clusters = Topics
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T‐step Random Walk Kernel

• The kernel in the embedded space is:

• One can define more general kernel by letting 
f to be any increasing function

Kt (x,y) = Ψt (x),Ψt (y) = λz
2tψz (x)

z
∑ ψz (y)

= ΨΛ2tΨT = Ψf (Λ)ΨT

K f (x,y) = Ψf (x),Ψf (y) = f (λz )ψz(x)
z

∑ ψz (y) = Ψf (Λ)ΨT
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The General Mapping 

• The induced mapping is:

• The corresponding distance is:

Ψf : x →

f (λ1)ψ1(x)

f (λ2)ψ2(x)

f (λq )ψq (x)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

Df
2 (x,z) = (ex − ez )

T K f (ex − ez ) = Ψf (x) − Ψf (z)
2
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Diffusion Kernel

• The Diffusion (Heat) Kernel reads:

• Informally, this process diffuses the local 
similarity H to obtain the global similarity K 
after time t.

∂
∂t

Kt (x, y) = H.Kt (x, y)

K0(x, y) = δ(x, y)
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The Exponential Family

• Solving the differential equation, we get:

• Example: for the continuous Laplacian 
operator H=Δ, k is the Gaussian kernel.

∂
∂t

Kt (x,y) = H.Kt (x, y)            Kt = etH = lim
n →∞

I +
tH
n

 
 
 

 
 
 

n

K0(x, y) = δ(x,y)
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Continuous Diffusion on Discrete 
Graphs

• For discrete graphs, we have

• Such that:

H = −L

L = U(I − Λ)UT ⇒ Kt = etH = e− tL = Ue− t(I −Λ )UT

µi = e−t(1−λi ) = f (λi)
This is a spectral 

transform!
This is a spectral 

transform!
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How related to random walk?

• Continuous Diffusion Kernel is the limit of Lazy 
Random Walk:
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′ p ij = t0∆t.pij ,    ′ p ii =1− t0∆t.pij
j ∈N( i)
∑ =1− t0∆t,   N =1/∆t

′ P N = (1− t0∆t)I + t0∆t.P( )1/ ∆t = I + t0∆t.(−Lrw )( )1/ ∆t

where Lrw = I − P

lim
∆t →0

′ P N = lim
∆t →0

I +
t0(−Lrw )

1/∆t
 
 
 

 
 
 

1/ ∆t

= exp(−t0Lrw )
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The Circuit Analogy

• Let G be a circuit with:

wij = cij =
1
rij

similarity ↔ conductance
distance ↔ resistance
function on graph ↔ node potential
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The Kirchhoff’s laws

• If yij is the current from node i to j and Y is the 
total current from source a to sink b, then

• If C is a cycle in the circuit with ordered edges 
i j

yij =
Y    if   i = a
−Y  if   i = b
0   otherwise

 

 
 

  j ∈N( i)
∑

yijrij = 0 = (vi − v j )
i→ j
∑

i→ j
∑
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The Effective Resistance

• The effective resistance between a and b with 
the total current Y is defined as:

• Theorem:

Rab =
va − vb

Y

Rab = (ea − eb )T L+(ea − eb )
if L = UΛUT ⇒ L+ = Uf (Λ)UT

where f (x) =
1/ x    x ≠ 0
0       x = 0     

 
 
 

11/7/2011 Advanced Topics in ML (CS 3750) 38



Resistance as Distance

• Comparing

• The spectral transform is:

Rab = (ea − eb )T L+ (ea − eb )
Df

2(a,b) = (ea − eb )T K f (ea − eb )

f (x) =
1/ x    x ≠ 0
0       x = 0     
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Some properties

• R is a distance metric

• R is a non‐increasing function of edge weights

• R is a lower bound on the geodesic distance

Rab ≤ dab
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Relation to Random Walk

• Let Tab denote the number of transitions (i.e. 
discrete time) that take random walker from a
to b. The average commute time between a 
and b is defined as:

• Theorem:  

Cab = E(Tab ) + E(Tba )

Rab =
Cab

di
i

∑
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Thank You!
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