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CLUSTERING REVIEW 



K-MEANS CLUSTERING 
 

• Description 

Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional 

real vector, k-means clustering aims to partition the n observations into k sets 

(k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares (WCSS): 

 

 

 

where μi is the mean of points in Si. 

 

 

• Standard Algorithm 

1) k initial "means" 

(in this case k=3) 

are randomly 

selected from the 

data set. 

2) k clusters are created 

by associating every 

observation with the 

nearest mean. 

3) The centroid of 

each of the k 

clusters becomes 

the new means. 

4) Steps 2 and 3 

are repeated until 

convergence has 

been reached. 

arg min
𝑆

  𝑥𝑗 − 𝑢𝑖
2

𝑥𝑗∈𝑆𝑖

𝑘

𝑖=1
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GENERAL 

Disconnected  

graph components 
Groups of points(Weakly connections in between components 

Strongly connections within components) 



GRAPH NOTATION 

G=(V,E) : 

• Vertex set       𝑉 = *𝑣1, … , 𝑣𝑛+ 

• Weighted adjacency matrix      𝑊 = 𝑤𝑖𝑗  𝑖, 𝑗 = 1,… , 𝑛    𝑤𝑖𝑗 ≥ 0    

 

 

• Degree      𝑑𝑖 =  𝑤𝑖𝑗
𝑛
𝑗=1  

 

 

• Degree matrix   Diagonal matrix with the degrees 𝑑1, … , 𝑑𝑛 on the diagonal. 

 

 

𝑣𝑛 

𝑣𝑚 

𝑣𝑛 



GRAPH NOTATION 

G=(V,E) : 

• Indicator Vector    𝟙𝐴 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛      𝑓𝑖 ∈ *0,1+ 

• “Size” of a subset  𝐴 ⊂ 𝑉 

 

 

• Connected    A subset A of a graph is connected if any two vertices in A can be joined 

by a path such that all intermediate points also lie in A. 

• Connected Component    it is connected and if there are no connections between 

vertices in A and 𝐴 . The nonempty sets 𝐴1, … , 𝐴𝑘 form a partition of the graph if 

𝐴𝑖 ∩ 𝐴𝑗 =  ∅ and 𝐴1 ∪ ⋯∪ 𝐴𝑘 = 𝑉. 

  

 

 

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔  𝑑𝑖

𝑖∈𝐴

 



SIMILARITY GRAPH  
 

• 𝜀-neighborhood graph 

      Connect all points whose pairwise distances are smaller than 𝜀 

• k-nearest neighbor graph 

      Connect vertex 𝑣𝑖 with vertex 𝑣𝑗 if 𝑣𝑗 is among the k-nearest neighbors of 𝑣𝑖. 

• fully connected graph  

      Connect all points with positive similarity with each other 

  

 All the above graphs are regularly used in spectral clustering! 
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Spectral Clustering 



GRAPH LAPLACIANS 
 

• Unnormalized Graph Laplacian 

L = D - W 

  

 

Proposition 1 (Properties of L)  The matrix L satisfies the following properties: 

 

1. For every 𝑓 ∈  ℝ𝑛 we have 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖 − 𝑓𝑗
2

𝑛

𝑖,𝑗=1

 

𝑓′𝐿𝑓 = 𝑓′𝐷𝑓 − 𝑓′𝑊𝑓 =  𝑑𝑖𝑓𝑖
2

𝑛

𝑖=1

−  𝑓𝑖𝑓𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

 

= 
1

2
 𝑑𝑖𝑓𝑖

2

𝑛

𝑖=1

− 2  𝑓𝑖𝑓𝑗𝑤𝑖𝑗

𝑛

𝑖,𝑗=1

+  𝑑𝑗𝑓𝑗
2

𝑛

𝑗=1

=
1

2
 𝑤𝑖𝑗 𝑓𝑖 − 𝑓𝑗

2
𝑛

𝑖,𝑗=1

 

 

𝑑𝑖 =  𝑤𝑖𝑗

𝑛

𝑗=1

 



GRAPH LAPLACIANS 
 

• Unnormalized Graph Laplacian 

L = D - W 

  

 

Proposition 1 (Properties of L)  The matrix L satisfies the following properties: 

1. For every 𝑓 ∈  ℝ𝑛 we have 

 

 

2. L is symmetric and positive semi-definite. 

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant 

one vector 𝟙 

4.  L has n non-negative, real-valued eigenvalues 0 = 𝜆𝑖 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. 

𝑓′𝐿𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖 − 𝑓𝑗
2

𝑛

𝑖,𝑗=1

 



GRAPH LAPLACIANS 
 

• Unnormalized Graph Laplacian 

L = D - W 

  

 

Proposition 2  (Number of connected components and the spectrum of L) Let G be 

an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of 

L equals the number of connected components 𝐴1, … , 𝐴𝑘 in the graph. The eigenspace of 

eigenvalue 0 is spanned by the indicator vectors 𝟙𝐴1
, … , 𝟙𝐴𝑘

 of those components. 

Proof: 

When k = 1, a graph consisting of only one connected component we thus only have 

the constant one vector 𝕝 as eigenvector with eigenvalue 0, which obviously is the 

indicator vector of the connected component. 

When k > 1, L can be written in a block form. the spectrum of L 

is given by the union of the spectra of 𝐿𝑖, and the corresponding 

eigenvectors of L are the eigenvectors of 𝐿𝑖, filled with 0 at the 

positions of the other blocks. 



GRAPH LAPLACIANS 
 

• Normalized Graph Laplacian 

  

 

We denote the first matrix by 𝐿𝑠𝑦𝑚 as it is a symmetric matrix, and 

the second one by 𝐿𝑟𝑤 as it is closely related to a random walk. 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 



GRAPH LAPLACIANS 
• Normalized Graph Laplacian 

  

 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 

Proposition 3 (Properties of 𝑳𝒔𝒚𝒎 and 𝑳𝒓𝒘)  The normalized Laplacians statisfy the 

following properties: 

1. For every 𝑓 ∈  ℝ𝑛 we have 

 

2. 𝜆 is an eigenvalue of  𝐿𝑟𝑤 with eigenvector u if and only if 𝜆 is an eigenvalue of 

𝐿𝑠𝑦𝑚 with eigenvector 𝑤 = 𝐷1/2𝑢. 

3. 𝜆 is an eigenvalue of  𝐿𝑟𝑤 with eigenvector u if and only if 𝜆 and u solve the 

generalized eigen problem 𝐿𝑢 = 𝜆𝐷𝑢. 

4. 0 is an eigenvalue of 𝐿𝑟𝑤 with the constant one vector 𝟙 as eigenvector. 0 is an 

eigenvalue of 𝐿𝑠𝑦𝑚 with eigenvector 𝐷1/2𝟙. 

5. 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 are positive semi-definite and have n non-negative real-valued 

eigenvalues 0 = 𝜆𝑖 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛. 

𝑓′𝐿𝑠𝑦𝑚𝑓 =  
1

2
 𝑤𝑖𝑗

2 𝑓𝑖

𝑑𝑖

−
𝑓𝑗

𝑑𝑗

2𝑛

𝑖,𝑗=1

 



GRAPH LAPLACIANS 

• Normalized Graph Laplacian 

  

 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 

Proposition 4 (Number of connected components and spectra of 𝑳𝒔𝒚𝒎 and 𝑳𝒓𝒘)  

Let G be an undirected graph with non-negative weights. Then the multiplicity k of 

the eigenvalue 0 of both 𝐿𝑠𝑦𝑚 and 𝐿𝑟𝑤 equals the number of connected components 

𝐴1, … , 𝐴𝑘 in the graph. For 𝐿𝑟𝑤 the eigenspace of 0 is spanned by the indicator 

vectors 𝟙𝐴𝑖
 of those components. For 𝐿𝑠𝑦𝑚, the eigenspace of 0 is spanned by the 

vectors 𝐷1/2𝟙𝐴𝑖
. 

Proof.   The proof is analogous to the one of Proposition 2, using Proposition 3.  
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Spectral Clustering 



ALGORIGHM 

Main trick is to change the representation of the abstract data points 

𝑥𝑖 to points 𝑦𝑖 ∈ ℜ𝑘 

 

1. Unnormalized Spectral Clustering 

2. Normalized Spectral Clustering 1 

3. Normalized Spectral Clustering 2  

  

 



ALGORIGHM 
 

• Unnormalized Graph Laplacian 

  

 

L = D - W 

 



ALGORIGHM 

• Normalized Graph Laplacian 

  

 

𝐿𝑟𝑤  ≔ 𝐷−1𝐿 = 𝐼 − 𝐷−1𝑊 



ALGORIGHM 

• Normalized Graph Laplacian 

  

 

𝐿𝑠𝑦𝑚  ≔ 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 



ALGORIGHM 

It really works!!! 



ALGORIGHM 
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GRAPH CUT 

Disconnected  
graph components 

Groups of points(Weakly connections in between components 

Strongly connections within components) 



GRAPH CUT 

G=(V,E) : 

• For two not necessarily disjoint set 𝐴, 𝐵 ⊂ 𝑉, we define  

 

• Minicut: choosing a partition 𝐴1, 𝐴2, … , 𝐴𝐾 which minimizes 

 

 

 

𝑊 𝐴,𝐵 ≔  𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 

𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘 ≔
1

2
  𝑊(𝐴𝑖 , 𝐴𝑖)

𝑘

𝑖=1

 

Cut between 2 sets        𝑐𝑢𝑡 𝐴1, 𝐴2 =   𝑤𝑛𝑚𝑚∈𝐴2𝑛∈𝐴1
 



GRAPH CUT 

Problems!!! 

• Sensitive to outliers 

 

 

What we get What we want 



GRAPH CUT 

Solutions 

• RatioCut(Hagen and Kahng, 1992) 

 

 

• Ncut(Shi and Malik, 2000) 

 

 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

  

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

|A| := the number of vertices in A 

𝑣𝑜𝑙 𝐴 ≔  𝑑𝑖

𝑖∈𝐴

 



GRAPH CUT 

Problem!!! 

• NP hard 

 

 

 

Solution!!! 

• Approximation 

 

 

 

 

Approx

imation 

Spectral 

Clustering 

Ncut 

RatioCut 

Normalized Spectral Clustering 

Unnormalized Spectral Clustering 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

  

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

relaxing 

relaxing 



GRAPH CUT 

• Approximation RatioCut for k=2 

Our goal is to solve the optimization problem: 

Rewrite the problem in a more convenient form: 

Given a subset 𝐴 ⊂ 𝑉, we define the vector                                        with entries 

Magic happens!!! 

𝑓 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛 

𝑓𝑖 =
𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴 
 

min
𝐴⊂𝑉

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐴, 𝐴 ) 



GRAPH CUT 

• Approximation RatioCut for k=2 
𝑓𝑖 =

𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴

 − 𝐴 /|𝐴|,  if 𝑣𝑖 ∈ 𝐴 
 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝐴𝑖

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|

𝑘

𝑖=1

  

𝑊 𝐴,𝐵 ≔  𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘 ≔
1

2
  𝑊(𝐴𝑖 , 𝐴𝑖)

𝑘

𝑖=1

 



GRAPH CUT 

• Approximation RatioCut for k=2 

Additionally, we have 

The vector f as defined before is orthogonal to the constant one vector 𝕝 . 

f satisfies 



GRAPH CUT 

• Approximation RatioCut for k=2 

Relaxation !!! 

f is the eigenvector corresponding to the 

second smallest eigenvalue of L (the smallest 

eigenvalue of L is 0 with eigenvector 𝕝) 

Rayleigh-Ritz Theorem 



GRAPH CUT 

• Approximation RatioCut for k=2 

f is the eigenvector corresponding to 

the second smallest eigenvalue of L 

Only works for k = 2 More General, works for any k 

Use the sign as 

indicator 

function 

𝑓𝑖  as points in R 

and do K-means 
re-convert 



GRAPH CUT 
• Approximation RatioCut for arbitrary k 

Given a partition of V into k sets 𝐴1, 𝐴2, … , 𝐴𝑘, we define k indicator vectors 

𝑗 = (1,𝑗 , … , 𝑛,𝑗)′ by    

𝐻 ∈  ℝ𝑛×𝑘, containing those k  

Indicator vectors as columns. 

Columns in H are orthonormal  

to each other, that is 𝐻′𝐻 = 𝐼 

𝑖,𝑗 =

1

𝐴𝑗

,  if 𝑣𝑖 ∈ 𝐴𝑗

 0,        otherwise

 (i=1,…,n; j=1,…,k) 

𝑖
′𝐿𝑖 =

𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

|𝐴𝑖|
 

𝑖
′𝐿𝑖 = 𝐻′𝐿𝐻 𝑖𝑖 

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡 𝐴1, … , 𝐴𝑘 =  𝑖
′𝐿𝑖 =  𝐻′𝐿𝐻 𝑖𝑖 = 𝑇𝑟(𝐻′𝐿𝐻)

𝑘

𝑖=1

𝑘

𝑖=1

 



GRAPH CUT 

• Approximation RatioCut for arbitrary k 

Problem reformulation: 

Relaxation !!! 

Optimal H is the first k eigenvectors of  L as 

columns. 

Rayleigh-Ritz Theorem 

minimizing   RatioCut(𝐴1, … , 𝐴𝑘) 

min
𝐴1,…,𝐴𝑘

𝑇𝑟(𝐻′𝐿𝐻)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐻 = 𝐼 

min
𝐻∈  ℝ𝑛×𝑘

𝑇𝑟(𝐻′𝐿𝐻)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐻 = 𝐼 

𝑖,𝑗 =

1

𝐴𝑗

,  if 𝑣𝑖 ∈ 𝐴𝑗

 0,        otherwise

 



GRAPH CUT 

• Approximation Ncut for k=2 

Our goal is to solve the optimization problem: 

Rewrite the problem in a more convenient form: 

Given a subset 𝐴 ⊂ 𝑉, we define the vector                                          with entries 

min
𝐴⊂𝑉

𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

𝑓 = 𝑓1, … , 𝑓𝑛
′ ∈  ℝ𝑛 

𝑁𝑐𝑢𝑡 𝐴1, … , 𝐴𝑘  ≔
1

2
  

𝑊 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

=  
𝑐𝑢𝑡 𝐴𝑖 , 𝐴𝑖

𝑣𝑜𝑙(𝐴𝑖)

𝑘

𝑖=1

  

𝑓𝑖 = 

𝑣𝑜𝑙 𝐴 

𝑣𝑜𝑙 𝐴
             if 𝑣𝑖 ∈ 𝐴

−
𝑣𝑜𝑙 𝐴

𝑣𝑜𝑙 𝐴 
           if 𝑣𝑖 ∈  𝐴 

 

𝐷𝑓 ′𝟙 = 0, 𝑓′𝐷𝑓 = 𝑣𝑜𝑙 𝑉 , and 𝑓′𝐿𝑓 = 𝑣𝑜𝑙 𝑉 𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

Similar to above one can check that: 



GRAPH CUT 

• Approximation Ncut for k=2 

Relaxation !!! 

min
𝐴⊂𝑉

𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

(6) 

Rayleigh-Ritz Theorem!!! 

𝑓′𝐿𝑓 = 𝑣𝑜𝑙 𝑉 𝑁𝑐𝑢𝑡(𝐴, 𝐴 ) 

min
𝐴

𝑓′𝐿𝑓   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓 𝑎𝑠 𝑖𝑛 6 , 𝐷𝑓 ⊥  𝟙, 𝑓′𝐷𝑓 = 𝑣𝑜𝑙(𝑉) 

min
𝑓∈ ℝ𝑛

𝑓′𝐿𝑓   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐷𝑓 ⊥  𝟙,  𝑓′𝐷𝑓 = 𝑣𝑜𝑙(𝑉) 

min
𝑔 ∈ ℝ𝑛

𝑔′𝐷−1/2𝐿𝐷−1/2𝑔   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 ⊥ 𝐷
1
2 𝟙, 𝑔 2 = 𝑣𝑜𝑙(𝑉) 

Substitute 𝑔 ≔ 𝐷1/2𝑓 



GRAPH CUT 

• Approximation Ncut for arbitrary k 

Problem reformulation: 

Relaxation !!! 

T contains the first k eigenvectors of 𝐿𝑠𝑦𝑚 as columns.  

Rayleigh-Ritz Theorem 

min
𝐴⊂𝑉

𝑁𝑐𝑢𝑡(𝐴1, 𝐴2, … , 𝐴𝑘) 

Re-substituting 𝐻 =  𝐷−1/2𝑇, solution H contains the first k eigenvectors of 𝐿𝑟𝑤.  

min
𝐴1,…,𝐴𝑘

𝑇𝑟 𝐻′𝐿𝐻  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐻′𝐷𝐻 = 𝐼 

min
𝑇∈ℝ𝑛×𝑘

𝑇𝑟 𝑇′𝐷−1/2𝐿𝐷−1/2𝑇  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑇′𝑇 = 𝐼 

Re-substituting 𝐻 = 𝐷−1/2𝑇 
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RANDOM WALK 

• A random walk on a graph is a stochastic process which 

randomly jumps from vertex to vertex. 

 

• Random walk stays long within the same cluster and seldom 

jumps between clusters. 

 

• A balanced partition with a low cut will also have the property 

that the random walk does not have many opportunities to 

jump between clusters. 

 



RANDOM WALK 

• Transition probability 𝑝𝑖j of jumping from 𝑣𝑖 to 𝑣𝑗  

 

• The transition matrix 𝑃 = (𝑝𝑖𝑗) i,j = 1,…,n of random walk is 

defined by 

 

• If the graph is connected and non-bipartite, the random walk 

always processes a unique stationary distribution 𝜋 = (𝜋1, … , 𝜋𝑛)′, 

where 𝜋𝑖 = 𝑑𝑖/𝑣𝑜𝑙(𝑉). (              ,                 ) 

 

𝑝𝑖j = 𝑤𝑖j/𝑑𝑖 

𝑃 =  𝐷−1𝑊 

𝑣𝑜𝑙 𝑉 ≔  𝑑𝑖

𝑖∈𝑉

 𝑑𝑖 =  𝑤𝑖𝑗

𝑛

𝑗=1

 



RANDOM WALK 

• Relationship between 𝐿𝑟𝑤 and P. 

 

• 𝜆 is an eigenvalue of 𝐿𝑟𝑤 with eigenvector u if and only if 1 − 𝜆 is 

an eigenvalue of P with eigenvector u. 

• The largest eigenvectors of P and the smallest eigenvectors of 

𝐿𝑟𝑤 can be used to describe cluster properties of the graph. 

 

𝐿𝑟𝑤 = 𝐼 −  𝑃 



RANDOM WALK 

• Random walks and Ncut 

Proposition 5  (Ncut via transition probabilities) Let G be connected and non bi-

partite. Assume that we run the random walk 𝑋𝑡 𝑡∈𝑁 starting with 𝑋0 in the stationary 

distribution 𝜋. For disjoint subsets 𝐴, 𝐵 ⊂ 𝑉, denote by 𝑃 𝐵 𝐴 ≔ 𝑃 𝑋1 ∈ 𝐵 𝑋0 ∈ 𝐴). 

Then: 

𝑁𝑐𝑢𝑡 𝐴, 𝐴 = 𝑃 𝐴 𝐴 + 𝑃(𝐴|𝐴 ). 



RANDOM WALK 
• Random walks and Ncut 

Proposition 5  (Ncut via transition probabilities) Let G be connected and non bi-

partite. Assume that we run the random walk 𝑋𝑡 𝑡∈𝑁 starting with 𝑋0 in the stationary 

distribution 𝜋. For disjoint subsets 𝐴, 𝐵 ⊂ 𝑉, denote by 𝑃 𝐵 𝐴 ≔ 𝑃 𝑋1 ∈ 𝐵 𝑋0 ∈ 𝐴). 

Then: 
𝑁𝑐𝑢𝑡 𝐴, 𝐴 = 𝑃 𝐴 𝐴 + 𝑃(𝐴|𝐴 ). 

Proof.    First of all observe that 

𝑃 𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵 =  𝑃(𝑋0 = 𝑖, 𝑋1 = 𝑗)

𝑖∈𝐴,𝑗∈𝐵

=  𝜋𝑖𝑝𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 

=  
𝑑𝑖

𝑣𝑜𝑙 𝑉

𝑤𝑖𝑗

𝑑𝑖
𝑖∈𝐴,𝑗∈𝐵

=
1

𝑣𝑜𝑙 𝑉
 𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

 

  Using this we obtain 

𝑃 𝑋1 ∈ 𝐵|𝑋0 ∈ 𝐴 =
𝑃 𝑋0 ∈ 𝐴, 𝑋1 ∈ 𝐵

𝑃 𝑋0 ∈ 𝐴
 

=
1

𝑣𝑜𝑙 𝑉
 𝑤𝑖𝑗

𝑖∈𝐴,𝑗∈𝐵

𝑣𝑜𝑙 𝐴

𝑣𝑜𝑙 𝑉

−1

=
 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵

𝑣𝑜𝑙 𝐴
 

  
Now the proposition follows directly with the definition of Ncut. 



RANDOM WALK 

• Random walks and Ncut 

It tells us that when minimizing Ncut, we actually look for a cut through the 

graph such that A random walk seldom transitions from A to 𝑨  and vice 

versa. 

Proposition 5  (Ncut via transition probabilities) Let G be connected and non bi-

partite. Assume that we run the random walk 𝑋𝑡 𝑡∈𝑁 starting with 𝑋0 in the stationary 

distribution 𝜋. For disjoint subsets 𝐴, 𝐵 ⊂ 𝑉, denote by 𝑃 𝐵 𝐴 ≔ 𝑃 𝑋1 ∈ 𝐵 𝑋0 ∈ 𝐴). 

Then: 

𝑁𝑐𝑢𝑡 𝐴, 𝐴 = 𝑃 𝐴 𝐴 + 𝑃(𝐴|𝐴 ). 



RANDOM WALK 

• What is  commute distance 

The commute distance (resistance distance) 𝑐𝑖𝑗 between two vertices 𝑣𝑖 and 𝑣𝑗 

is the expected time it takes the random walk to travel from vertex 𝑣𝑖 to vertex 

𝑣𝑗 and back. 

The commute distance between two vertices decrease if there are many 

different short ways to get from vertex 𝑣𝑖 to vertex 𝑣𝑗. 

Points which are connected by a short path in the graph and lie in the same 

high-density region of the graph are considered closer to each other than 

points which are connected by a short path but lie in different high-density 

regions of the graph. 

Well-suited for Clustering 



RANDOM WALK 

• How to calculate commute distance 

Generalized inverse (also called pseudo-inverse or Moore-Penrose inverse) 

L can be decomposed as L = U ∧ U’, and L is not invertible. 

Define generalized inverse as 𝐿† = 𝑈 ∧† 𝑈’ , and ∧† is the diagonal 

matrix with the eigenvalues 𝜆1, … , 𝜆𝑛 on the diagonal entries 1/𝜆𝑖 if 

𝜆𝑖 ≠ 0 and 0 if 𝜆𝑖 = 0. 

The entries of 𝐿† can be computed as 𝑙𝑖𝑗
† =  

1

𝜆𝑘
𝑢𝑖𝑘𝑢𝑗𝑘

𝑛
𝑘=2  



RANDOM WALK 

• How to calculate commute distance 

Proposition 6  (Commute distance) Let G=(V,E) a connected, undirected graph. 

Denote by 𝑐𝑖𝑗 the commute distance between vertex 𝑣𝑖 and vertex 𝑣𝑗, and by 

𝐿† = 𝑙𝑖𝑗
†

𝑖,𝑗=1,…,𝑛
 the generalized inverse of L. Then we have:  

𝑐𝑖𝑗 = 𝑣𝑜𝑙 𝑉 𝑙𝑖𝑖
†  − 2𝑙𝑖𝑗

† + 𝑙𝑗𝑗
† = 𝑣𝑜𝑙 𝑉 𝑒𝑖  − 𝑒𝑗

′
𝐿† 𝑒𝑖  − 𝑒𝑗  

𝑒𝑖 = (0,… , 0,1,0, … , 0)′ as the i-th unit vector. 

This is result has been published by Klein and Randic(1993), where it has been 

proved by methods of electrical network theory. 



RANDOM WALK 

• Proposition 6’s consequence 

Construct  

an embedding 

Commute Distance  

between 𝑣𝑖 and 𝑣𝑗   

Euclidean Distance  

between 𝑧𝑖 and 𝑧𝑗   

Choose 𝑧𝑖 as the point in ℝ𝑛 corresponding to the i-th row of the matrix 𝑈(∧†)1/2 

𝑧𝑖 , 𝑧𝑗  = 𝑒𝑖
′𝐿†𝑒𝑗  and  𝑐𝑖𝑗 = 𝑣𝑜𝑙 𝑉 𝑧𝑖 − 𝑧𝑗

2
  

𝑐𝑖𝑗 = 𝑣𝑜𝑙 𝑉 𝑙𝑖𝑖
†  − 2𝑙𝑖𝑗

† + 𝑙𝑗𝑗
† = 𝑣𝑜𝑙 𝑉 𝑒𝑖  − 𝑒𝑗

′
𝐿† 𝑒𝑖  − 𝑒𝑗  



RANDOM WALK 

• A loose relation between spectral clustering and commute distance. 

Spectral Clustering 

1. Map the vertices of the graph on the rows 𝑦𝑖 of the matrix U 

2. Only take the first k columns of the matrix 

Commute Distance 

1. Map the vertices on the rows 𝑧𝑖 of the matrix (∧†)1/2𝑈 

2. Commute time embedding takes all columns 

Several authors justify that spectral clustering constructs clusters based on the 

Euclidean distances between the 𝑦𝑖 can be interpreted as building clusters of the 

vertices in the graph based on the commute distance.  
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Spectral Clustering 



PERTURBATION THEORY 

• Perturbation theory studies the question of how eigenvalues 

and eigenvectors of a matrix A change if we add a small 

perturbation H. 

Perturbation theorems state that a certain distance between 

eigenvalues or eigenvectors of A and 𝐴  is bounded by a 

constant times a norm of H. 



PERTURBATION THEORY 

The smaller the perturbation 𝐻 = 𝐿 − 𝐿  and the larger the eigengap 𝜆𝑘  − 𝜆𝑘+1  is. 

Below we will see that the size of the eigengap can also be used in a different context 

as a quality criterion for spectral clustering, namely when choosing the number k of 

clusters to construct. 
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PRACTICAL DETAILS 

• Constructing the similarity graph 

1. Similarity Function Itself  Make sure that points which are considered to 

be “very similar” by the similarity function are also closely related in the 

application the data comes from. 

2. Type of Similarity Graph   Which one to choose from those three types. 

General recommendation: k-nearest neighbor graph. 

3. Parameters of Similarity Graph(k or 𝜀)  

1. KNN: k in order of log(n);  

2. mutual KNN: k significantly larger than standard KNN;  

3.  𝜀-neighborhood graph: longest edge of MST;  

4. fully connected graph: 𝜎 in order of the mean distance of a point to 

its k-th nearest neighbor. Or choose k = 𝜀. 



PRACTICAL DETAILS 

• Computing Eigenvectors 

1. How to compute the first eigenvectors efficiently for large L 

2. Numerical eigensolvers converge to some orthonormal basis of the 

eigenspace. 

• Number of Clusters 

1. General Strategies 

2. Eigengap heuristic(Choose the number k such that all eigenvalues 

𝜆1, … 𝜆𝑘 are very small, but 𝜆𝑘+1 is relatively large) 



PRACTICAL DETAILS 

Well Separated More Blurry Overlap So Much 

Eigengap Heuristic usually works well if the data contains very well pronounced  

clusters, but in ambiguous cases it also returns ambiguous results. 



PRACTICAL DETAILS 

• The k-means step 

It is not necessary. People also use other techniques  

• Which graph Laplacian should be used? 

Look at the degree distribution. There are several arguments which 

advocate for using normalized rather than unnormalized spectral 

clustering, and in the normalized case to use the eigenvectors of 𝐿𝑟𝑤 

rather than those of 𝐿𝑠𝑦𝑚 



PRACTICAL DETAILS 

• Which graph Laplacian should be used? 

Why normalized is better than unnormalized spectral clustering? 

Objective1: 

Both RatioCut and Ncut directly implement 

Only Ncut implements 

Normalized spectral clustering implements both clustering objectives mentioned above, 

while unnormalized spectral clustering only implements the first obejctive. 

Objective2: 

1. We want to find a partition such that points in different clusters are dissimilar to 

each other, that is we want to minimize the between-cluster similarity. In the graph 

setting, this means to minimize 𝑐𝑢𝑡(𝐴, 𝐴 ). 

2. We want to find a partition such that points in the same cluster are similar to 

each other, that is we want to maximize the within-cluster similarities 𝑊(𝐴, 𝐴), 

and 𝑊(𝐴 , 𝐴 ). 



PRACTICAL DETAILS 

• Which graph Laplacian should be used? 

Why the eigenvectors of 𝐿𝑟𝑤 are better than those of 𝐿𝑠𝑦𝑚? 

1.   Eigenvectors of 𝐿𝑟𝑤 are cluster indicator vectors 𝕀𝐴𝑖
, while 

the eigenvectors of 𝐿𝑠𝑦𝑚 are additionally multiplied with 𝐷1/2, 

which might lead to undesired artifacts. 

 

2.   Using 𝐿𝑠𝑦𝑚 also does not have any computational 

advantages. 
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Thank you 


