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 Brief Clustering Review



CLUSTERING REVIEW

Clustering

Groups together “similar” mstances 1n the data sample

Basic clustering problem:

» distribute data into & different groups such that data points
similar to each other are in the same group

« Simularity between data points 1s defined in terms of some
distance metric (can be chosen)

Clustering 1s useful for:
* Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other
* Dimensionality reduction

High dimensional data replaced with a group (cluster) label

CS 2750 Machine Learning



K-MEANS CLUSTERING

 Description

Given a set of observations (X, X,, ..., X,), where each observation is a d-dimensional
real vector, k-means clustering aims to partition the n observations into k sets
(k<n)S={S,,S,, ..., S} so as to minimize the within-cluster sum of squares (WCSS):

. : 2
arg min ) > |l - ui
S

1=1 xjES;

where g; is the mean of points in S;.
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4) Steps 2 and 3

are repeated until
convergence has
been reached.
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GENERAL

First - graph representation of data ﬂ
(largely, application dependent)

Then - graph partitioning ﬂ
Disconnected Groups of points(Weakly connections in between components
graph components Strongly connections within components)



GRAPH NOTATION
G=(V,E) :

e \ertex set V=1{vq,..,0v,}

* Weighted adjacency matrix W = (w;;)i,j=1,..,n w;; =0

V.

* Degree d;=3%7,w;

VAN

n

« Degree matrix Diagonal matrix with the degrees dg, ..., d,, on the diagonal.



GRAPH NOTATION
G=(V,E) :

 [Indicator Vector 1, =(fy,..,f,)' € R* f,€{0,1}

e “Size” ofasubset AcV

|A| := the number of vertices in A

vol(A) = Z d;

i€A
« Connected A subset A of a graph is connected if any two vertices in A can be joined

by a path such that all intermediate points also lie in A.

« Connected Component it is connected and if there are no connections between
vertices in A and A. The nonempty sets A4, ..., A, form a partition of the graph if

AiﬂAj= (DandA1U~-UAk=V.



SIMILARITY GRAPH

 ¢&-neighborhood graph

Connect all points whose pairwise distances are smaller than ¢
 Kk-nearest neighbor graph

Connect vertex v; with vertex v; if v; is among the k-nearest neighbors of v;.
 fully connected graph

Connect all points with positive similarity with each other

All the above graphs are regularly used in spectral clustering!



Spectral Clustering

« Graph Laplacian



GRAPH LAPLACIANS
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« Unnormalized Graph Laplacian

ij

L=D-W
Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every f € R™ we have

1 n
FLf=5 ) wi(fi— 1)

ij=1

fILf = f'Df = f'Wf = Zdlﬁ Zﬁfjwu

i,j=1

(Zdlfl ZZflf]WU+de]>=%zn: wi(f: - ;)

1,j=1 ,j=1



GRAPH LAPLACIANS

« Unnormalized Graph Laplacian
L=D-W

Proposition 1 (Properties of L) The matrix L satisfies the following properties:
1. Forevery f € R™ we have

n
FLf=g ) Wi £)’
i,j=1
2. L is symmetric and positive semi-definite.
3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1

4. L has nnon-negative, real-valued eigenvalues 0 = 1; <1, < --- < A4,,.



GRAPH LAPLACIANS

« Unnormalized Graph Laplacian
L=D-W

Proposition 2 (Number of connected components and the spectrum of L) Let G be
an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of
L equals the number of connected components 44, ..., Ay in the graph. The eigenspace of
eigenvalue O Is spanned by the indicator vectors 1 , ..., 14, Of those components.

Proof:

When k =1, a graph consisting of only one connected component we thus only have
the constant one vector 1 as eigenvector with eigenvalue 0, which obviously is the
indicator vector of the connected component.

When k > 1, L can be written in a block form. the spectrum of L L
IS given by the union of the spectra of L;, and the corresponding I _ L
eigenvectors of L are the eigenvectors of L;, filled with 0 at the '

positions of the other blocks. Ly,



GRAPH LAPLACIANS

« Normalized Graph Laplacian

11 11
Leym =D72LD"2=1— DTZWD 2

L., =D71L=1— Dw

We denote the first matrix by Lg,,,,, as it is a symmetric matrix, and
the second one by L,.,, as it is closely related to a random walk.



GRAPH LAPLACIANS

« Normalized Graph Laplacian Lyym =D2LDZ=1— DZWD2
Ly, =D 'L=I1-D7'w

Proposition 3 (Properties of Ly, and L,,,) The normalized Laplacians statisfy the
following properties:

n 2

1 fi fi

1. Forevery f € R™ we have f'Lsymf = 5 Z W.2.< L2
2 T\ Jd;, Jd;
j

Z. Ais an eigenvalue of L., with eigenvector u if and only if A is an eigenvalue of

ij=1

Lsym With eigenvector w = D/2u.

3. Aisan eigenvalue of L,., with eigenvector u if and only if A and u solve the
generalized eigen problem Lu = ADu.

4. 0isan eigenvalue of L,,, with the constant one vector 1 as eigenvector. 0 is an
eigenvalue of Lg,,, with eigenvector D/21.

5. Lsym and Ly, are positive semi-definite and have n non-negative real-valued

eigenvalues0 = 1; < 1, < - < A,



GRAPH LAPLACIANS

1 1 1

* Normalized Graph Laplacian Liym =D LD I =1~ DZWD™2
Lo =D 'L=1-D'W

Proposition 4 (Number of connected components and spectra of Lg,,,,, and L., )

Let G be an undirected graph with non-negative weights. Then the multiplicity k of
the eigenvalue 0 of both L., and L,,, equals the number of connected components

A4, ..., Ay in the graph. For L., the eigenspace of 0 is spanned by the indicator
vectors 1, of those components. For L, the eigenspace of O is spanned by the

vectors D/21,,..

Proof. The proof is analogous to the one of Proposition 2, using Proposition 3.



Spectral Clustering

 Spectral Clustering Algorithm



ALGORIGHM

Main trick is to change the representation of the abstract data points

x; to points y; € R

1. Unnormalized Spectral Clustering
2. Normalized Spectral Clustering 1

3. Normalized Spectral Clustering 2



ALGORIGHM

« Unnormalized Graph Laplacian

L=D-W

Unnormalized spectral clustering

Input: Similarity matrix S € R™*", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k eigenvectors uy.....u of L.

Let U € R"** be the matrix containing the vectors uj..... Ur as columns.

For i=1,..., n, let y; € R* be the vector corresponding to the i-th row of U.
Cluster the points (¥i)i=1....n in R* with the k-means algorithm into clusters

Ch..... Ch.
Output: Clusters A;...... 4p with A; = {j|ly; € Ci}.




ALGORIGHM

* Normalized Graph Laplacian Ly =D"'L =1— D7'W

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S € R™*", number k of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.

¢ Compute the first k£ generalized eigenvectors uy,...,ug of the generalized eigenprob-
lem Lu = ADu.

e Let U €JR"** be the matrix containing the vectors u;,....,ur as columns.

e For i=|..... n, let y; € RF be the vector corresponding to the i-th row of U.

e Cluster|the points (Eﬁ]i:L.....n in R* with the k-means algorithm into clusters

Cr.....{:.

Output: Clusters Ai,...,Ax with A; = {j| y; € Ci}.

\ 4
Proposition 3 (Properties of Loy, and Lyw) The normalized Laplacians satisfy the following prop-
erties:

3. A is an eigenvalue of L, with eigenvector u if and only if A and u solve the generalized eigen-

problem Lu = ADu.



ALGORIGHM

1 1 1 1

Normalized Graph Laplacian Leym =D ZLD"Z =1~ D ZWDZ

Normalized spectral clustering according to Ng, Jordan, and Weiss (2002)

Input: Similarity matrix S € R™*", number k of clusters to construct.

Construct a similarity graph by one of the ways described in Section 2. Let W
be its weighted adjacency matrix.

Compute the normalized Laplacian Lgy.

Compute the first k£ eigenvectors uq,...,ux of Leym.

Let U € R"** be the matrix containing the vectors uj..... U as columns.
Form the matrix 7' € R*** from U by normalizing the rows to norm 1,

that is set t;; = u;; /(3 u% )2,
For i=1,..., n, let y; € R* be the vector corresponding to the i-th row of 1.
Cluster the points [yz-]li:hmn with the k-means algorithm into clusters Cr...., Clh.

Output: Clusters A;...... 4, with A; = {j| y; € Ci}.




ALGORIGHM
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ALGORIGHM

35

25

0.5

On Spectral Clustering:
Analysis and an algorithm

Andrew Y. Ng Michael 1. Jordan Yair Weiss
CS Division CS Div. & Dept. of Stat.  School of CS & Engr.
U.C. Berkeley U.C. Berkeley The Hebrew Univ.
ang@cs.berkeley. edu jordan@cs. berkeley.edu yweiss @es. hugi.ac.al
nips, 8 clusters lineandballs, 3 clusters fourclouds, 2 clusters
5r 5r
45r 45t
s % x
4r ar XBER % x ¢ Foen
IQDED% _.--." . /.,‘(f&\\% X x X ox o, % xygg&
g DD : ® >¢§</\ *
ol asr £ X a5k
‘. PR T § . * x
5] " R « ®
g B : 3t x5 3t x
o Seaet X ¥x % x
S x x
25r 254
o) 2r 2r
[e]
(_‘(
‘ 5 150 150
et
1+ 1+
05F o5t
. ‘ . ‘ . . . ‘ . '\ o . ‘ . ‘ . ‘ . ‘ . D . . . ‘ . ‘ . . .

0.5 1 15 2 25 3 35 4 45 5 0 05 1 15 3 35 4 45 5 0 0.5 1 15 2 25 3 35 4 45



Spectral Clustering

« Graph Cut Point of View



GRAPH CUT

First - graph representation of data ﬂ
(largely, application dependent)

Then { graph partitioning

Disconnected Groups of points(Weakly connections in between components
graph components Strongly connections within components)



GRAPH CUT

G=(V,E) :
 For two not necessarily disjoint set A, B c V, we define
W(A,B) = w;;
ie;j:eB :

« Minicut: choosing a partition A, A,, ..., Ax which minimizes

Cut between 2 sets  cut(Ay,43) = Ynea, Lmea, Wnm

AN



GRAPH CUT

Problems!!!

e Sensitive to outliers

What we get What we want



GRAPH CUT

|A] := the number of vertices in A

Solutions i) =3 d

« RatioCut(Hagen and Kahng, 1992)

1 : W(A;, Ay) : t(A;, A;)
) 417 cu i, Aj
RatioCut(A4, ..., A) == E b E i» 41

l

* Ncut(Shi and Malik, 2000)

I WALE) o cut(dy Ay
1 i)Aj _ cu i»41q
Ncut(Ay, ..., Ag) = > Ell, vol(A,) _Z vol(A4;)

i= =

l



GRAPH CUT

k R k _
Problem!!! RatioCut(y ., ) =3 3 S0l 5 L)
i=1 ¢ i=1 ¢
k J— k _
[ J 1 W(Ai,Ai) cut(Al-,Al)
N P hard Ncut(Ay, ..., Ay) = > ; vol(A) = ; vol(AD)
Solution!!!

« Approximation

Neut "9 Normalized Spectral Clustering

Approx Spectral

Imation Clustering

RatioCut rem_x";g Unnormalized Spectral Clustering



GRAPH CUT

« Approximation RatioCut for k=2

Our goal is to solve the optimization problem:

min RatioCut(4, A)
AcCV

Rewrite the problem in a more convenient form:

Given a subset A c V, we define the vector f = (fy, ..., f;,)' € R™ with entries

g
/|/T|/|A|, ifv;eA
— /I/TI/|A|, ifv, € A

\

Magic happens:

fi =1




GRAPH CUT

|Al/14],  ifv; €A
» Approximation RatioCut for k=2 [/MW ifo, €
_ 1o A, Ap) ‘ cut(4;,4;)
RatioCut(Ay, ..., Ay) ==§; |A| =; 14;]
ut(Ay, . 4D =5 Y WAL E)  WAB= ) wy
1 n =1 lEA,JEB
flLf= 5 Z wi;(fi — f;)°
1,7=1
! @, Ay, @ [a)
—z 2w (VmryE) te 2 |V
icA.jeA icA,JeA
/1Al A
=-::11t(ﬂ.f1)( + — +2)
Al |A]
A

— (1Al +|A] A+ A
=cut(A.A)( |A|| | | ||_J1|| |)

= |V| - RatioCut(A, A).



GRAPH CUT

« Approximation RatioCut for k=2

Additionally, we have

gﬁ Z\:jl Z\ \:jl |4I\ 14 _

The vector f as defined before is orthogonal to the constant one vector 1 .

f satisfies



GRAPH CUT

.-/

« Approximation RatioCut for k=2 ~\/I41/A]

min RatioCut(A, A).
ACV
1 n
f'lLf= 5 > wii(fi = £5)
i,j=1

= |V| - RatioCut(A, A).

min f'Lf subject to f L1 |f]|=vn

ACV
l Relaxation !!!

min f'Lf subject to f L 1. | f|| = /n.

fer®
1 Rayleigh-Ritz Theorem

f is the eigenvector corresponding to the
second smallest eigenvalue of L (the smallest
eigenvalue of L is 0 with eigenvector 1)

ifv, € A
ifv; € A.



GRAPH CUT

« Approximation RatioCut for k=2

f is the eigenvector corresponding to
the second smallest eigenvalue of L

Use the sign as f; as points in R

- re-convert
indicator and do K-means
function
v, €A i f; >0 v, €A it f;eC
U; € A if fi < O. v; e A if fi € C.

Only works for k = 2 More General, works for any k



GRAPH CUT

« Approximation RatioCut for arbitrary k

Given a partition of V into k sets A4, 4,, ..., Aj, we define k indicator vectors

hj = (hy, ...,hn,j)’ by -
_—, if Vi € A]
hij =4 J|4]
0, otherwise
cut(4;, A;)
hiLh; =
L |4;]

!

h{th — (H’LH)il'

1.

I=1,...,n,j=1,...k)

H € R™¥, containing those k
Indicator vectors as columns.
Columns in H are orthonormal
to each other, thatis H'H = |

RatioCut(A,, ..., Ay) = z hLh; = Z(H’LH)ii — Tr(H'LH)
=1 =1



GRAPH CUT

1
. . , . —_, ifv; € Aj
» Approximation RatioCut for arbitrary k hu‘{ |4
0, otherwise

Problem reformulation:
minimizing RatioCut(4,, ..., Ag)

min Tr(H'LH) subjectto H'H =1
Aq,. Ak

l Relaxation !!!

min Tr(H'LH) subjectto H'H =1
He RnXk
l Rayleigh-Ritz Theorem

Optimal H is the first k eigenvectors of L as
columns.



GRAPH CUT

.. 1WA O cut(Ay )
« Approximation Ncut for k=2 Newt(hs - 40 =3 ) =i = 2. vol(ig
Our goal is to solve the optimization problem:
min Ncut(4, A)
AcCV

Rewrite the problem in a more convenient form:

Given a subset A c V, we define the vector f = (fy, ..., f;,)' € R™ with entries

( _

vol(A) e
vol(A) it
fi= <
vol(A _
— (—) ifv,; €E A
\ vol(4)

Similar to above one can check that:

(Df)'1=0,f'Df =vol(V),and f'Lf = vol(V)Ncut(4, A)



GRAPH CUT

- - vol 2 if Ui cA
 Approximation Ncut for k=2 PP /EE tnen @
min Ncut(4, A)
AcCV

f'Lf = vol(V)Ncut(4,A)

mjnf’Lf subject to f asin (6),Df L 1,f'Df = vol(V)

l Relaxation !!!

frg]ilglf’Lf subjectto Df L 1, f'Df = vol(V)

Substitute g == D/?f

1
min g'D~Y2LD"Y2g subjectto g L D21, lgll? = vol(V)
g n

Rayleigh-Ritz Theorem!!!



GRAPH CUT

1/y/vol(A;) ifv; € A

« Approximation Ncut for arbitrary k hiy = {U otherwise

Problem reformulation:

min Ncut(Aq, Ay, ..., Ay)

min Tr(H'LH) subject to HDH =1
Aq,. Ak

Relaxation !!!
Re-substituting H = D~/2T

min Tr(T'D~Y2LD~Y2T) subject to T'T = I
TeRTLXk
l Rayleigh-Ritz Theorem

T contains the first k eigenvectors of L, as columns.

Re-substituting H = D~/2T, solution H contains the first k eigenvectors of L., .



Spectral Clustering

« Random Walk Point of View



RANDOM WALK

« Arandom walk on a graph is a stochastic process which
randomly jumps from vertex to vertex.

« Random walk stays long within the same cluster and seldom
jumps between clusters.

« A balanced partition with a low cut will also have the property
that the random walk does not have many opportunities to
jump between clusters.



RANDOM WALK

* Transition probability p; of jJumping from v; to v;
Pij = wij/d;
* The transition matrix P = (p;;) i,j = 1,...,n of random walk is

defined by
P=D"tw

 |f the graph Is connected and non-bipartite, the random walk

!

always processes a unique stationary distribution T = (74, ..., ),
where 1t; = d;/vol(V). (=) wy, vol)=) d)

eV



RANDOM WALK

* Relationship between L,.,, and P.
L.,=1—P
e Alsan eigenvalue of L., with eigenvectoruifandonlyif 1 — A is
an eigenvalue of P with eigenvector u.

» The largest eigenvectors of P and the smallest eigenvectors of

L., can be used to describe cluster properties of the graph.



RANDOM WALK

« Random walks and Ncut

Proposition 5 (Ncut via transition probabilities) Let G be connected and non bi-
partite. Assume that we run the random walk (X;):ey Starting with X, in the stationary
distribution 7. For disjoint subsets A, B c V, denote by P(B|A) := P(X; € B |X, € A).
Then:

Ncut(4,A) = P(A|A) + P(A]|A).



RANDOM WALK

« Random walks and Ncut

Proposition 5 (Ncut via transition probabilities) Let G be connected and non bi-
partite. Assume that we run the random walk (X;);ey Starting with X, in the stationary
distribution m. For disjoint subsets A, B c V, denote by P(B|A) .= P(X; € B |X, € A).

Then: _ _ _
Ncut(A,A) = P(A|A) + P(A|A).
Proof. First of all observe that

PUGEAX, EB) = ) P(o=iXy=j)= ) mpy

i€A,jEB i€A,jEB
z di Wij 1 z
= ) = Wij
i€EA,JEB vol(V) d;  vol(V) i€EA,JEB
Using this we obtain

P(X, €A X, €B)
P(X, € A)

B 1 vol(A)\ _ Xieajer Wij
_<vol(V) Z Wij)(vol(V))  vol(A)

i€EA,JEB

Now the proposition follows directly with the definition of Ncut.



RANDOM WALK

« Random walks and Ncut

Proposition 5 (Ncut via transition probabilities) Let G be connected and non bi-
partite. Assume that we run the random walk (X;);ey Starting with X, in the stationary
distribution m. For disjoint subsets A, B c V, denote by P(B|A) .= P(X; € B |X, € A).
Then:

Ncut(4,A) = P(4|A) + P(A]|A).

It tells us that when minimizing Ncut, we actually look for a cut through the
graph such that A random walk seldom transitions from A to 4 and vice

versa.



RANDOM WALK

« What i1Is commute distance

The commute distance (resistance distance) c;; between two vertices v; and v;

IS the expected time it takes the random walk to travel from vertex v; to vertex
v; and back.

The commute distance between two vertices decrease if there are many
different short ways to get from vertex v; to vertex v;.

Points which are connected by a short path in the graph and lie in the same
high-density region of the graph are considered closer to each other than

points which are connected by a short path but lie in different high-density
regions of the graph.

Well-suited for Clustering



RANDOM WALK

 How to calculate commute distance

Generalized inverse (also called pseudo-inverse or Moore-Penrose inverse)

L can be decomposed as L = U A U’, and L is not invertible.

Define generalized inverse as LT = U AT U, and AT is the diagonal
matrix with the eigenvalues 14, ..., 4,, on the diagonal entries 1/4; if
/11' == Oand0|f/1l = (.

. 1
The entries of LT can be computed as llTj = Y=o 7 LikUjk



RANDOM WALK

 How to calculate commute distance

Proposition 6 (Commute distance) Let G=(V,E) a connected, undirected graph.

Denote by c;; the commute distance between vertex v; and vertex v;, and by
Lr=(0f) the generalized inverse of L. Then we have:
.,j=1,..,n

Cij = vol(V)(llTl- — ZILTJ- + l;rj) = vol(V)(el- — ej)’LJr(ei — ej)

e; = (0,...,0,1,0, ...,0)" as the i-th unit vector.

This is result has been published by Klein and Randic(1993), where it has been
proved by methods of electrical network theory.



RANDOM WALK

* Proposition 6’s consequence

Construct
an embedding

Commute Distance Euclidean Distance
between v; and v; between z; and z;

Choose z; as the point in R™ corresponding to the i-th row of the matrix U(AT)1/?

(Zi,Zj> = ei'LTe]- and Cij = UOl(V)”Zi — Zj”2



RANDOM WALK

* Aloose relation between spectral clustering and commute distance.

Spectral Clustering
1. Map the vertices of the graph on the rows y; of the matrix U

2. Only take the first k columns of the matrix

Commute Distance
1. Map the vertices on the rows z; of the matrix (AT)Y/2U

2.  Commute time embedding takes all columns

Several authors justify that spectral clustering constructs clusters based on the
Euclidean distances between the y; can be interpreted as building clusters of the
vertices in the graph based on the commute distance.



Spectral Clustering

 Perturbation Theory Point of View



PERTURBATION THEORY

 Perturbation theory studies the question of how eigenvalues
and eigenvectors of a matrix A change if we add a small
perturbation H.

perturbed matrix A := A+ H

Perturbation theorems state that a certain distance between
eigenvalues or eigenvectors of A and A is bounded by a
constant times a norm of H.



PERTURBATION THEORY

Theorem 7 (Davis-Kahan) Let A, H € R™*" be symmetric matrices, and let || - | be the Frobenius
norm or the two-norm for matrices, respectively. Consider A := A+ H as a perturbed version of A.
Let S1 C R be an interval. Denote by og,(A) the set of eigenvalues of A which are contained in Sy,
and by Vi the eigenspace corresponding to all those eigenvalues (more formally, Vi is the image of

the spectral projection induced by og,(A)). Denote by os,(A) and Vi the analogous quantities for A.
Define the distance between S1 and the spectrum of A outside of S; as

d = min{|\ — s|; A eigenvalue of A, A & Sy, s € S1}.
Then the distance d(Vi, V1) == | sin ®(V3,V1)| between the two subspaces Vi and Vi is bounded by

d(Vi,Vq) < 'Oi”

The smaller the perturbation H = L — L and the larger the eigengap |1, — A,.1] is.

Below we will see that the size of the eigengap can also be used in a different context

as a quality criterion for spectral clustering, namely when choosing the number k of
clusters to construct.



Spectral Clustering

* Practical Details



PRACTICAL DETAILS

 Constructing the similarity graph

1. Similarity Function Itself Make sure that points which are considered to
be “very similar” by the similarity function are also closely related in the
application the data comes from.

2. Type of Similarity Graph Which one to choose from those three types.
General recommendation: k-nearest neighbor graph.

3. Parameters of Similarity Graph(k or ¢)

1. KNN: k in order of log(n);

2.  mutual KNN: k significantly larger than standard KNN;

3. &-neighborhood graph: longest edge of MST;

4. fully connected graph: o in order of the mean distance of a point to

Its k-th nearest neighbor. Or choose k = «¢.



PRACTICAL DETAILS

« Computing Eigenvectors

1. How to compute the first eigenvectors efficiently for large L
2. Numerical eigensolvers converge to some orthonormal basis of the

eigenspace.

 Number of Clusters

1. General Strategies
2. Eilgengap heuristic(Choose the number k such that all eigenvalues

Ay, ... Ay are very small, but A, 4 1s relatively large)



PRACTICAL DETAILS
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Eigengap Heuristic usually works well if the data contains very well pronounced

clusters, but in ambiguous cases it also returns ambiguous results.



PRACTICAL DETAILS

* The k-means step

It is not necessary. People also use other technigues

« Which graph Laplacian should be used?

Look at the degree distribution. There are several arguments which
advocate for using normalized rather than unnormalized spectral

clustering, and in the normalized case to use the eigenvectors of L,.,,

rather than those of L,



PRACTICAL DETAILS
« Which graph Laplacian should be used?

Why normalized is better than unnormalized spectral clustering?

Objectivel:

1. We want to find a partition such that points in different clusters are dissimilar to
each other, that is we want to minimize the between-cluster similarity. In the graph

setting, this means to minimize cut(4, A).
Both RatioCut and Ncut directly implement

Objective2:

2. We want to find a partition such that points in the same cluster are similar to
each other, that is we want to maximize the within-cluster similarities W (A4, 4),

and W (4, 4).
Only Ncut implements

Normalized spectral clustering implements both clustering objectives mentioned above,
while unnormalized spectral clustering only implements the first obejctive.



PRACTICAL DETAILS

« Which graph Laplacian should be used?

Why the eigenvectors of L., are better than those of Lg,,,,,?

1. Eigenvectors of L., are cluster indicator vectors I,,, while
the eigenvectors of Lg,,,,, are additionally multiplied with D/2,
which might lead to undesired artifacts.

2. Using Ly, also does not have any computational
advantages.
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SPECTRAL CLUSTERING

Thank you



