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Dimensionality Reduction

• Linear Dimensionality Reduction Methods
– PCA
• Finds a  low‐dimensional embedding of the data points 

that best preserves their variance as measured in the 
high‐dimensional input space

– Classical MDS
• Finds an embedding that preserves the inter‐point 

distances.

• Equivalent to PCA when those distances are Euclidean.



Dimensionality Reduction 

• A special class of problem
– Low dimensional data lying in a very high 

dimensional space

– Manifold learning 

Manifolds

• Three examples of manifolds

• All three are two‐dim. data embedded in 3D

– Linear, “S”‐shape, “Swiss roll”

• For all three, we would like to recover:

– That the data is only two‐dimensional

– “Consistent” locations for the data in 2D



Manifolds

(a) (b) (c)

• PCA : works for (a)

• Doesn’t do much good for (b) or (c)

– Linear subspace doesn’t explain it well

• What do we mean by “consistent locations”?

– Preserve local relationships and structure

– One possibility: preserve distances

Preserving Local/Global Relationships

• MDS – produces a linear embedding
– Preserved all pairwise distances

(a) (b) (a) (b)

• Nonlinear manifold:
– local distances (a) make sense

– but, global distances (b) don’t respect the geometry



Solution

• Methods that preserve local structure
– Isomap

– LLE (Locally Linear Embedding)

– Eigenmaps

Nonlinear Approach‐ Isomap

• Classical MDS – uses Euclidean distance

• What we really want:
– Distance measurements along manifold(geodesics)

– Find low‐dim reconstruction which also has these geodesic 
distances

• Isomap: Classical MDS with geodesic distances.

Josh. Tenenbaum, Vin de Silva, John langford 
2000



Isomap ‐ Algorithm

• Step 1: Construct Neighborhood graph (G)
– Define the graph G over all data points by connecting points 

i and j if they are 
• Closer than є – (є‐Isomap)

• If i is one of the k nearest neighbors of j (k‐isomap)

– Set edge lengths equal to dx(i,j)

Josh. Tenenbaum, Vin de Silva, John langford 
2000

• Step 2: Compute Shortest Paths in G
– Floyd’s algorithm ( O(n3)) to find DG

• Step 3: Construct d‐dimensional embedding
– Apply classical MDS on DG to find d‐dimensional embedding

– Finding eigenvectors (O(n3))

Josh. Tenenbaum, Vin de Silva, John langford 
2000

Isomap ‐ Algorithm



Isomap

• Advantages
– Non‐linear

– Non‐iterative polynomial time algorithm

– Guarantee of globally optimality
• For intrinsically Euclidean manifolds, a guarantee of 

asymptotic convergence to the true structure

• the ability to discover manifolds of arbitrary 
dimensionality 

• Disadvantages

Isomap: Examples

• Dimensionality 
reduction for visual 
perception
– 64x64 image

– 698 raw images

– Isomap (k=6)



Isomap: Examples

• Handwritten ‘2’
– 1000 handwritten 2s

– Isomap (є=4.2)

Isomap: Examples

• Hand images
– 64x64 image

– 2000 images

– Isomap (k=6)



Residual Variance

Face Images
SwisRoll

Hand Images 2

Locally Linear Embedding (LLE)

• Manifold Characteristics/Key Assumption
– Provided there is sufficient data, we expect each 

data point and its neighbors to lie on or close to a 
locally linear patch

Sam T. Roweis, L. K. Saul 2000



LLE Algorithm
• Step 1:
– Assign neighbors to each data point Xi

• Step 2
– Characterize the local geometry of linear patches 

by linear coefficients that reconstruct each point 
from its neighbors

LLE Algorithm

• Step 2: How to assign weights?
– Minimize cost function measuring 

reconstruction error

• Weight Wij summarizes the contribution of the jth data 
point to the ith reconstruction

– Assign weights under two constraints

– Wij = 0 if Xj does not belong to set of neighbors of Xi

– The rows of the weight matrix sum to one i.e. 



LLE Algorithm

• Step 3: Map to embedded 
coordinates
– Each high‐dimensional observation Xi

is mapped to  a low‐dimensional 
vector Yi

– Choose Yi to minimize the embedding 
cost function

• The cost function can be minimized (subject to 
constraints) by solving a sparse NxN eigenvalue problem.

LLE Algorithm

• The constrained weights obey an important symmetry
– For a particular data point, the weights are invariant to 

rotation, rescaling and translation of the data point and its 
neighbors.

• The same weights that reconstruct the datapoints in D 
dimensions should reconstruct it in the manifold 
coordinate in d dimensions.
– The weights characterize the intrinsic geometric properties of 

each neighborhood.



LLE Example

Images of faces mapped into the embedding space described by the first two 
coordinates of LLE. Representative faces are shown next to circled points. The 
bottom images correspond to points along the top‐right path (linked by solid line) 
illustrating one particular mode of variability in pose and expression. 

Effect of K

• Require dense data points on the manifold for 
good estimation



Summary: Isomap Vs LLE

• Isomap
1. MDS on the geodesic distance matrix
2. Global approach
3. Requires Dynamic programming

• LLE
1. Model local neighborhoods as linear a patches 

and then embed in a lower dimensional manifold.
2. Local approach
3. Computationally efficient. Eigenvectors from 

sparse matrices

Laplacian Eigenmaps

• Problem: Given a set (x1, x2, …, xk ) of k points in Rl, 
find a set of points (y1, y2,…,yk ) in Rm (m << l)  such 
that yi represents xi.

M. Belkin, P. Niyogi 2002

• Steps

– Build the adjacency graph

– Choose the weights for edges in the graph

– Eigen‐decomposition of the graph Laplacian

– Form the low‐dimensional embedding



Laplacian Eigenmaps‐Algorithm

• Step 1: Construct the graph
– Construct the adjacency graph G by connecting 

neighboring nodes (i,j) 

• Neighbors selection

– Є‐neighborhoods

– Adv: Geometrically motivated

– Disadv: Disconnected graph 

– n nearest neighbors

– Adv: Easier to choose, no disconnected graph

– Disadv: Less geometricall motivated

Laplacian Eigenmaps‐Algorithm

• Step 2: Choose the weights
• Simple‐minded: 1 if connected, 0 otherwise

• Heat Kernel:                           if connected, 0 
otherwise

– With          we get the simple‐minded approach



Laplacian Eigenmaps‐Algorithm

Laplacian Eigenmaps‐Algorithm
• Step 3: Eigenmaps

– Let, f0, f1, …, fk‐1 be the solutions ordered according 
to increasing eigenvalues

Lf0 = λ0Df0

Lf1 = λ1Df1

…
Lfk‐1 = λk‐1Dfk‐1

0 = λ0 <= λ1 <= … <= λk‐1

– We leave out eigenvector f0. Take the next m 
eigenvectors to construct m‐dimensional 
embedding (f1(i), … , fm(i))

Lf = λDf



Laplacian Eigenmaps‐Justification

• Consider the problem of mapping weighted graph G 
into a line so that the connected nodes stay as close 
as possible

• Let  y = (y1, y2, … , yn)T be such a map

• Criterion for good map is to minimize   ∑ij(yi‐yj)2Wij

Which turns out to be

1/2 ∑ij(yi‐yj)2Wij = yTLy

Laplacian Eigenmaps‐Justification

• Minimization problem 

• The constraint removes arbitrary scaling factor
• The vector y that minimizes the objective function is 

given by minimum eigenvalue solution to the 
generalized eigenvalue problem

• 1 is an eigenvector corresponding to eigenvalue 0.
• To eliminate this trivial solution: Constraint yTD1 = 0

Ly = λDy



Laplacian Eigenmaps‐Justification

• How to find the embedding into m‐dimensional 
space?

• The embedding is Y = [y1 y2 … ym]

• Objective function: 

minimize ∑ij ||y(i) – y(j)||2Wij = tr(YTLY) i.e.

• Solution is provided by the matrix of eigenvectors 
corresponding to the lowest eigenvalues of the 
generalized eigenvalue problem

Ly = λDy

Laplacian Eigenmaps

• So each eigenvector is a function from nodes to    in 
a way that "close by" points are assigned "close by" 
values. 

• The eigenvalue of each eigenfunction gives a 
measure of how "close by" are the values of close by 
points

• By using the first m eigenfunctions for determining 
our m‐dimensions we have our solution.



Continuous Manifold

• Laplacian of a graph is analogous to the Laplace 
Beltrami operator on manifolds.

• Mapping to 1‐D. Find a map f such that points close 
together on the manifold get mapped close together 
on the line.

• Two points z and x mapped to f(z) and f(x). It is shown 
that

Continuous Manifold

• Gradient of f provides us with an estimate of how far 
apart f maps nearby points.

• Minimizing the gradient minimizes the values assigned 
to close by points.

• Minimizing the objective function reduces to finding 
eigenfunctions of the Laplace Beltrami Operator



LLE and Laplacian Eigenmap

• LLE is connected with Laplacian Eigenmap

• LLE minimizes yT(I‐W)T(I‐W)y  which reduces to 
finding eigenvectors of (I‐W)T(I‐W)

• They show that finding eigenvectors of (I‐W)T(I‐W) 
can be re‐interpreted as finding eigenvectors of 
iterated Laplacian L2. 

Laplacian Eigenmap Example

• Swiss roll

2000 random data points on the manifold



Laplacian Eigenmap Example

• 2D embedding of the swiss roll

Free parameters, N and t. N = Number of neighbors, t = Heat kernel 
parameter

Laplacian Eigenmap Example
• 300 most frequent words from Brown corpus

• Each word is represented by a 600 dimensional vector

• Laplacian Eigenmap with N = 14, t = inf

Framgents labeled by  arrows, from left to right. The first is exclusively infinites of verbs, the 
second contains prepositions and the third mostly modal and auxiliariy verbs



Laplacian Eigenmap Example: Speech

• Speech signal is high dimensional but distinctive 
phonetic dimensions are few

• 30 ms window at 5 ms interval

• 256 Fourier coefficients for each 30 ms chunk

• 685 such vectors

685 speech data points plotted in the two dimensional Laplacian 
spectral representation

Laplacian Eigenmap Example: Speech

A blowup of the three selected regions. The data points corresponding to 
the same region have similar phonetic identity



Summary

• Isomap, LLE and Laplacian Eigenmap: Non‐linear 
dimensionality reduction technique

• Useful for learning manifolds, understanding low 
dimensional data embedded in high dimensional 
space.

• PCA and MDS fails for this type of data.

• All three use some technique to preserve local 
geometry i.e. inter‐point relationships
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