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Principal Component Analysis 





Advantages of a probabilistic PCA model 

 Enables comparison with other probabilistic techniques 

 Facilitates statistical testing 

 Permits the application of Bayesian methods 

 Extends the scope of PCA 

 Multiple PCA models can be combined as a probabilistic 

mixture 

 PCA projections can be obtained when some data values are 

missing 

 Can be utilized as a constrained Gaussian density model 

 Classification 

 Novelty detection 



Graphical Representation of pPCA 

… 

Observation Vector 
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Latent Variables 
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Factor Analysis and PCA 





Factor Analysis and PCA 
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Probabilistic Principal Component Analysis 
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Probabilistic Principal Component Analysis 
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Dimensionality Reduction in pPCA 
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Dimensionality Reduction in pPCA 
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EM for pPCA 





Switching Gears… 

 Now onto ICA 



Independent Component Analysis 
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Definitions of ICA 
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Identifiability of an ICA model 
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Relations to Other Methods 



Applications of ICA 
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Multi-Unit Objective (Contrast) Functions 
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Multi-Unit Objective (Contrast) Functions 
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Multi-Unit Objective (Contrast) Functions 
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One-Unit Objective (Contrast) Functions 
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One-Unit Objective (Contrast) Functions 

 Why should we use one-unit objective functions? 
 They are directly connected to projection pursuit.  They can be seen 

as measures of non-Gaussianity. 

 Most applications do not need to estimate all of the independent 
components.  For example, in projection pursuit the most interesting 
independent components are found first. 

 Complexity is reduced 

 Prior knowledge of the number of independent components is not 
needed, as the components can be estimated one-by-one 

 Connected to neural networks, and thus has computationally simple 
solutions. 

 After estimating one independent component, one can use simple 
decorrelation to find different independent components 
(independent components are by definition decorrelated).  So, 
making decorelation a constraint with respect to the independent 
components already found, one can find the other independent 
components. 



One-Unit Objective (Contrast) Functions 
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Algorithms for ICA 
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Algorithms for ICA 



Algorithms for ICA 
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Algorithms for ICA 
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Conclusion 
 pPCA 

 Views principal component analysis probabilistically 

 Has many advantages over simple PCA: 
 Permits the application of Bayesian methods 

 Can combine multiple PCA models 

 Allows for missing data values 

 Facilitates statistical testing 

 Can be utilized as a constrained Gaussian density model 

 ICA 
 Transformation of the data into components that are “independent as 

possible” 

 Applications in:  
 Projection pursuit 

 Factor analysis 

 Blind source separation 

 Feature extraction,  

 Blind deconvolution 

 



Thanks 

 Questions? 
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