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pLSA

pLSA: A quick review

Generative model:
e M documents, to generate each document, do N times:
e Pick one of k topics,
e Pick one of V words according to the topic.
Parameters:
o P(z|d): M(k — 1) parameters defining the distribution of topics for
each training document.
o P(w|z): k(V — 1) parameters defining the distribution of words for
each topic.

Number of parameters grows linearly with the training data: A
sign of overfitting! N

e Not truly generative: learns topic mixtures only for training
documents.
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LDA
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Latent Dirichlet Allocation

e Main idea: a fully Bayesian version of pLSI: adds a
prior distribution over topic mixtures.
¢ Notation:

e w,, is a document: a sequence of N words.

e A word w,,, is a V-vector with 1 in one coordinate
and 0 in the rest.

e O is a k-vector representing the mixture of topics for a

Ca=c=o ™o

document.
e A topic z, is a k-vector with 1 in one coordinate and 0
in the rest.
N o Bisa k x V matrix defining P(w/ = 1|z' = 1).

M
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LDA: Generative model
For each of M documents w,,,,
1. Choose N, ~ Poisson(¢).
y 2. Choose 0, ~ Dir(«).
3. For each of the N words w,,:
3.1 Choose a topic z,, ~ Multinomial(6).
3.2 Choose a word w,, with probability p(wWm|zam, 5)-
: N
M
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Inference
Main inference problem: Estimate topic mixture of a document w:

p(97 Z? W|a7 /6)
p(wla, B)

p(0,zlw, a, B) =

The denominator is intractable to compute:

p(wla.5) = [ pléla) (Hzp(wnm,ﬁ)p(znw)) df

n=1 2z,
P(Zf:l%) k - N Ok Vv y
-/ o) U T2 o e

1 3 and 6 coupled!

1j
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Variational inference
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Introduction to variational inference

Goal: Estimate posterior P(X|D) by a X latent variables
distribution Q(X)

Minimize the KL divergence:

D observed variables (data)

Q(X)

PrilQIP) = of5) 8 P(x|D)

_ P(D)
B Q(EX) log (Q(X)P(Xv D))

= log P(D) + QFX) (log Q(X) — log P(X, D))

- 7

log-evidence ~~
—L(Q) variational free energy
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Applications, Extensions

The variational distribution for LDA
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Variational free energy for LDA

q(0,27,¢) = a(0) [ [ a(zalen)

L(v, ¢, 5) = — Elog q(0,z|v,¢) + glog p(0,z,w|a, 3)

= Elog p(f]a) + Elog p(2|0) + Elog p(wlz, ) — Elog q(0]7) — Elog 4(2|¢)

We can compute each term (no coupling between parameters): L is a tractably
computable lowerbound for the posterior.
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Learning: Variational EM

e We have a model with latent variables: The natural choice for learning is EM.
e Optimizing the likelihood directly is intractable.

e Solution: optimize the negative variational free energy instead.

o E-Step: argmax, , L(7, ¢; @, B).

o M-step: argmax,, 5 L(7, ¢; a, B3).
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e Extensions:

e Smoothing: Dirichlet prior on 3
e Supervised extensions: sLDA, MedLDA — Add a class variable that is dependent on the
latent topic.

o Applications:

e Document Modeling: Classify by latent topic.
e Collaborative filtering: e.g. Predicting a user’s rating based on other users.
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