Latent Dirichlet Allocation

Yuriy Sverchkov

Intelligent Systems Program University of Pittsburgh

October 13, 2011

Applications, Extensions

Probabilistic Latent Semantic Analysis (pLSA) A quick review

Latent Dirichlet Allocation (LDA)
The LDA model

Variational inference

Learning Variational EM

Probabilistic Latent Semantic Analysis (pLSA) A quick review

Latent Dirichlet Allocation (LDA)
The LDA model

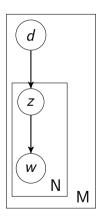
Variational inference

pLSA

Learning
Variational EM

pLSA: A quick review

- Generative model:
 - *M* documents, to generate each document, do *N* times:
 - Pick one of k topics,
 - Pick one of V words according to the topic.
- Parameters:
 - P(z|d): M(k-1) parameters defining the distribution of topics for each training document.
 - P(w|z): k(V-1) parameters defining the distribution of words for each topic.
- Number of parameters grows linearly with the training data: A sign of overfitting!
- Not truly generative: learns topic mixtures only for training documents



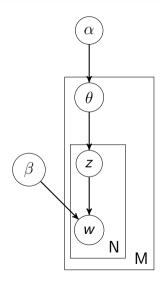
Probabilistic Latent Semantic Analysis (pLSA)
A quick review

Latent Dirichlet Allocation (LDA)
The LDA model

Variational inference

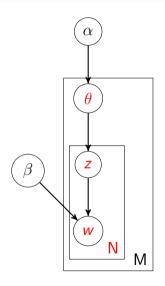
Learning Variational EM

Latent Dirichlet Allocation



- Main idea: a fully Bayesian version of pLSI: adds a prior distribution over topic mixtures.
- Notation:
 - **w**_m is a document: a sequence of N words.
 - A word w_{mn} is a V-vector with 1 in one coordinate and 0 in the rest.
 - θ is a k-vector representing the mixture of topics for a document.
 - A topic z_n is a k-vector with 1 in one coordinate and 0 in the rest.
 - β is a $k \times V$ matrix defining $P(w^j = 1 | z^i = 1)$.

LDA: Generative model



For each of M documents \mathbf{w}_m ,

- 1. Choose $N_m \sim \text{Poisson}(\xi)$.
- 2. Choose $\theta_m \sim \text{Dir}(\alpha)$.
- 3. For each of the N words w_{mn} :
 - 3.1 Choose a topic $z_{nm} \sim \text{Multinomial}(\theta)$.
 - 3.2 Choose a word w_{nm} with probability $p(w_{nm}|z_{nm},\beta)$.

Inference

Main inference problem: Estimate topic mixture of a document w:

$$p(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta) = \frac{p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)}{p(\mathbf{w} | \alpha, \beta)}$$

The denominator is intractable to compute:

$$p(\mathbf{w}|\alpha,\beta) = \int p(\theta|\alpha) \left(\prod_{n=1}^{N} \sum_{z_n} p(w_n|z_n,\beta) p(z_n|\theta) \right) d\theta$$

$$= \int \left(\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_i\right)}{\prod_{i=1^{k}} \Gamma(\alpha_i)} \prod_{i=1}^{k} \theta_i^{\alpha_i - 1} \right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} \underbrace{(\theta_i \beta_{ij})^{w_n^j}}_{\theta_i \text{ and } \theta_i \text{ coupled}} \right) d\theta$$

Latent Dirichlet Allocation

A quick review

Variational inference

Variational FM

Introduction to variational inference

Goal: Estimate posterior P(X|D) by a distribution Q(X)

X latent variables

D observed variables (data)

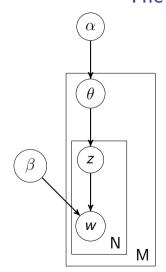
Minimize the KL divergence:

$$D_{KL}(Q|P) = \underset{Q(X)}{\mathsf{E}} \log \frac{Q(X)}{P(X|D)}$$

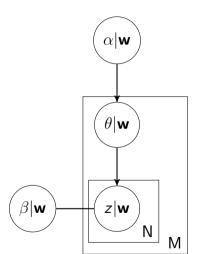
$$= \underset{\mathsf{log-evidence}}{\mathsf{E}} \log \left(Q(X) \frac{P(D)}{P(X,D)} \right)$$

$$= \underbrace{\log P(D)}_{\mathsf{log-evidence}} + \underbrace{\underset{Q(X)}{\mathsf{E}} (\log Q(X) - \log P(X,D))}_{-\mathcal{L}(Q) \text{ variational free energy}}$$

11 / 16



pLSA





Yuriy Sverchkov (ISP) Latent Dirichlet Allocation October 13, 2011

Variational free energy for LDA

$$q(\theta, \mathbf{z}|\gamma, \phi) = q(\theta|\gamma) \prod_{n=1}^{n} q(z_n|\phi_n)$$

$$\mathcal{L}(\gamma, \phi; \alpha, \beta) = - \underset{q}{\mathsf{E}} \log q(\theta, \mathbf{z} | \gamma, \phi) + \underset{q}{\mathsf{E}} \log p(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)$$
$$= \underset{q}{\mathsf{E}} \log p(\theta | \alpha) + \underset{q}{\mathsf{E}} \log p(\mathbf{z} | \theta) + \underset{q}{\mathsf{E}} \log p(\mathbf{w} | \mathbf{z}, \beta) - \underset{q}{\mathsf{E}} \log q(\theta | \gamma) - \underset{q}{\mathsf{E}} \log q(\mathbf{z} | \phi)$$

We can compute each term (no coupling between parameters): \mathcal{L} is a tractably computable lowerbound for the posterior.

Yuriy Sverchkov (ISP) Latent Dirichlet Allocation

Probabilistic Latent Semantic Analysis (pLSA)
A quick review

Latent Dirichlet Allocation (LDA)

The LDA model

Variational inference

Learning Variational EM

Learning: Variational EM

- We have a model with latent variables: The natural choice for learning is EM.
- Optimizing the likelihood directly is intractable.
- Solution: optimize the negative variational free energy instead.
- E-Step: $\operatorname{argmax}_{\gamma,\phi} \mathcal{L}(\gamma,\phi;\alpha,\beta)$.
- M-step: $\operatorname{argmax}_{\alpha,\beta} \mathcal{L}(\gamma,\phi;\alpha,\beta)$.

Probabilistic Latent Semantic Analysis (pLSA) A quick review

Latent Dirichlet Allocation (LDA)
The LDA model

Variational inference

Learning Variational EM

- Smoothing: Dirichlet prior on β
- Supervised extensions: sLDA, MedLDA Add a class variable that is dependent on the latent topic.
- Applications:
 - Document Modeling: Classify by latent topic.
 - Collaborative filtering: e.g. Predicting a user's rating based on other users.

Latent Dirichlet Allocation