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LSA: A quick review

LSA uses PCA to find a lower-dimensional “topic” space.
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PCA as reconstruction error minimization
For each data vector x, = (Xp1, ..., Xnq), and for M < d,

find U = (uy,...,up) that minimizes
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Probabilistic LSA

e The same “document <> topic <> word"
idea in a probabilistic framework.
e Asymmetric generative aspect model:
1. Select a document d with probability
P(d).
2. Select a latent class z with probability
P(z|d).
3. Generate a word w with probability
P(w|z).
e A mixture model
e Each document corresponds to a mixture
of topics.
e Each topic corresponds to a mixture of
words.
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Parametrization

d The index of a document in the
dataset.

P(d) The frequency of the document in
the corpus (uniform in practice).
z The index of a topic.
P(z|d) Latent parameters that define the

distribution of topics for a
particular document.

w The index of a word in the
dictionary.

P(w|z) Latent parameters that define the
distribution of words for a
particular topics.
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Independence

e Remember independence equivalence classes in Bayesian networks?
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Symmetric aspect model

Parametrization
=Y P(2)P(d|z)P(w]|z)
ZEZ a

e Inference is BN inference.

e Learning is the same as for any BN with
latent variables: EM.
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pLSA vs LSA

pLSA

Assumes conditional
independence given a
lower-dimensional variable.

Maximizes likelihood function.

Parameters are multinomial
distributions.

EM is slow.

EM converges to a local
optimum.

LSA

e Assumes linear transformation
to a low-dimensional space.

e Minimizes Gaussian error.

e Parameters have no obvious
interpretation.

e Linear operations are fast.

e SVD is exact (up to numerical
precision).
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Learning: standard EM

e E-step:
P(z)P(d|z)P(w|z)

Y.zez P(Z)P(d|2)P(w|2')

P(z|d,w) =

o M-step:
P(w|z) o< Y n(d, w)P(z|d, w)
deD
P(d|z) &< Y n(d,w)P(z|d, w)
wew

P(z) o< Y ) n(d, w)P(z|d, w)

deD wew
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Learning: tempered EM (TEM)

New E-Step:

P(z) [P(d|z)P(w|2)]”
Yz P(2) [P(d|2))P(w|2))”

Same as the standard E-Step when 8 = 1.

P(z|d,w) =

e Same as a posterior given uniform data when 5 = 0.

Algorithm:

1. Hold out some data.

2. Set B+ L.

3. Perform EM and decrease 3 at some rate (8 < nS with n < 1).

4. Stop if performance on held-out data doesn't increase, otherwise
repeat previous step.

5. Perform some final iterations on full data.
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Applications to information retrieval and link analysis

e Information Retrieval: pLSI
e Index documents by their topic (z) distributions.
o Queries are computed by scoring each document with P(w|d) (for
words in the query).
e Can fold-in a new query as a "hypothetical document” P(z|q) by
updating that probability with EM.
e Link analysis: pHITS
e d are documents, c are citations (correspond to w in pLSA).
e Want to group these into “communities” (z).
e Authoritativeness measures:
P(c|z) authority of ¢ within the community z.
P(z|c) topic-specific authority.
P(z|c)P(c|z) topic characteristic for community.
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