Probabilistic Latent Semantic Analysis

Yuriy Sverchkov

Intelligent Systems Program University of Pittsburgh

October 6, 2011

Latent Semantic Analysis (LSA) A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning EM and tempered EM

Applications pLSI and pHITS

LSA

Outline

Latent Semantic Analysis (LSA) A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning EM and tempered EM

Applications
pLSI and pHITS

LSA: A quick review

LSA uses PCA to find a lower-dimensional "topic" space.

$$\overset{\mathsf{vopics}}{\underset{\mathsf{w}_{m,1}}{\overset{\mathsf{topics}}{\overset{\mathsf{vopics}}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}}{\overset{\mathsf{vopics}}{\overset{\mathsf{vopics}}}{\overset{\mathsf{vopic$$

TERMS ← → TOPICS ← → DOCUMENTS

PCA as reconstruction error minimization

For each data vector $\mathbf{x}_n = (x_{n1}, \dots, x_{nd})$, and for M < d, find $U = (\mathbf{u}_1, \dots, \mathbf{u}_M)$ that minimizes

$$E_M \equiv \sum_{n=1}^N \|\mathbf{x}_n - \hat{\mathbf{x}}_n\|^2$$

where
$$\hat{\mathbf{x}}_n = \bar{\mathbf{x}} + \sum_{i=1}^M y_{ni} \mathbf{u}_i$$
 and $\bar{\mathbf{x}} \equiv \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n$ giving:

$$E_M = \sum_{i=M+1}^d \sum_{n=1}^N [\mathbf{u}_i^T (\mathbf{x}_n - \hat{\mathbf{x}})]^2 = \sum_{i=M+1}^d \mathbf{u}_i^T \Sigma \mathbf{u}_i = \sum_{i=M+1}^d \lambda_i$$

Latent Semantic Analysis (LSA) A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning EM and tempered EM

Applications
pLSI and pHITS

- The same "document ↔ topic ↔ word" idea in a probabilistic framework.
- Asymmetric generative aspect model:
 - 1. Select a document d with probability P(d).
 - 2. Select a latent class z with probability P(z|d).
 - 3. Generate a word w with probability P(w|z).
- A mixture model
 - Each document corresponds to a mixture of topics.
 - Each topic corresponds to a mixture of words.

Parametrization

- d The index of a document in the dataset.
- P(d) The frequency of the document in the corpus (uniform in practice).
 - z The index of a topic.
- P(z|d) Latent parameters that define the distribution of topics for a particular document.
 - w The index of a word in the dictionary.
- P(w|z) Latent parameters that define the distribution of words for a particular topics.

Independence

• Remember independence equivalence classes in Bayesian networks?

Symmetric aspect model

Parametrization

$$P(d, w) = \sum_{z \in Z} P(z)P(d|z)P(w|z)$$

- Inference is BN inference.
- Learning is the same as for any BN with latent variables: FM.

pLSA vs LSA

pLSA

- Assumes conditional independence given a lower-dimensional variable.
- Maximizes likelihood function.
- Parameters are multinomial distributions.
- EM is slow.
- EM converges to a local optimum.

LSA

- Assumes linear transformation to a low-dimensional space.
- Minimizes Gaussian error.
- Parameters have no obvious interpretation.
- Linear operations are fast.
- SVD is exact (up to numerical precision).

Latent Semantic Analysis (LSA) A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning EM and tempered EM

Applications
pLSI and pHITS

Learning: standard EM

Learning

E-step:

$$P(z|d,w) = \frac{P(z)P(d|z)P(w|z)}{\sum_{z' \in \mathcal{Z}} P(z')P(d|z')P(w|z')}$$

M-step:

$$P(w|z) \propto \sum_{d \in \mathcal{D}} n(d, w) P(z|d, w)$$

$$P(d|z) \propto \sum_{w \in \mathcal{W}} n(d, w) P(z|d, w)$$

$$P(z) \propto \sum_{d \in \mathcal{D}} \sum_{w \in \mathcal{W}} n(d, w) P(z|d, w)$$

Learning: tempered EM (TEM)

Learning

New E-Step:

$$P(z|d,w) = \frac{P(z) \left[P(d|z)P(w|z)\right]^{\beta}}{\sum_{z' \in \mathcal{Z}} P(z') \left[P(d|z')P(w|z')\right]^{\beta}}$$

- Same as the standard E-Step when $\beta = 1$.
- Same as a posterior given uniform data when $\beta = 0$.
- Algorithm:
 - Hold out some data.
 - 2. Set $\beta \leftarrow 1$.
 - 3. Perform EM and decrease β at some rate ($\beta \leftarrow \eta \beta$ with $\eta < 1$).
 - 4. Stop if performance on held-out data doesn't increase, otherwise repeat previous step.
 - Perform some final iterations on full data.

Latent Semantic Analysis (LSA) A quick review

Probabilistic LSA (pLSA)
The pLSA model

Learning EM and tempered EM

Applications pLSI and pHITS

Applications to information retrieval and link analysis

- Information Retrieval: pLSI
 - Index documents by their topic (z) distributions.
 - Queries are computed by scoring each document with P(w|d) (for words in the query).
 - Can fold-in a new query as a "hypothetical document" P(z|q) by updating that probability with EM.
- Link analysis: pHITS
 - d are documents, c are citations (correspond to w in pLSA).
 - Want to group these into "communities" (z).
 - Authoritativeness measures:

```
P(c|z) authority of c within the community z.
```

P(z|c) topic-specific authority.

P(z|c)P(c|z) topic characteristic for community.