SVD Applications: LSI and Link Analysis

Advanced Machine Learning Course Shaghayegh Sahebi (Sherry)

Outline

- QR Factorization
- Latent Semantic Indexing (LSI)
- Kleinberg's Algorithm (HITS)
- PageRank Algorithm (Google)

Vector Space Model

Documents

D1:How to bake bread without recipes

D2:The classic art of Viennese pastry

D3:Numerical recipes: The art of scientific computing

D4: Breads, pastries, pies and cakes: quantity baking recipes

D5:Pastry: A book of best french recipes

Terms

T1:bak(e,ing) T2:recipes T3:bread T4:cake T5:pastr(y,ies) T6:pie

Vector Space Model

- Vector space model represents database as a vector space
 - In indexing terms space
 - Each document represented as a vector
 - weight of the vector: semantic importance of indexing term in the document

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 terms

queries are modeled as vectors

$$q^{(1)} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}^T$$
terms

Vector Space Model

- Whole database: d documents described by t terms
 - t x d term-by-document matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Normalized with unit columns

$$\hat{A} = \begin{pmatrix} 0.5774 & 0 & 0 & 0.4082 & 0 \\ 0.5774 & 0 & 1 & 0.4082 & 0.7071 \\ 0.5774 & 0 & 0 & 0.4082 & 0 \\ 0 & 0 & 0 & 0.4082 & 0 \\ 0 & 1 & 0 & 0.4082 & 0.7071 \\ 0 & 0 & 0 & 0.4082 & 0 \end{pmatrix}$$

 the semantic content of the database is wholly contained in the column space of A

Similarity Measure

- How to identify relevant documents?
- Using spatial proximity for semantic proximity
 - Most relevant documents for a query ≈ those with vectors closest to the query
- Cosine measure: the most widespread similarity measure
 - the cosine of the angle between two vectors.
 - Unit vectors → cosine measure = a simple dot product

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x}.\vec{y}}{|\vec{x}||\vec{y}|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

- A vector space with two dimensions
- Three documents and one query (unit vectors)
- D2 is the most similar document to query q

Term weighting

- Simplest term (vector component) weightings:
 - count of number of times word occurs in document
 - binary: word does or doesn't occur in document
- A document is a better match if a word occurs three times than once, but not a three times better match
 - \rightarrow a series of weighting functions e.g., $1 + \log(x)$ if x > 0
- Significance of a term:
 - occurrence of a term in a document is more important if that term does not occur in many other documents
 - Solution: weight=global weight x local weight

QR-Factorization

- Some information are redundant in vector space model → QR factorization
- How it works?
 - Identify a basis for the column space
 - Low rank approximation

Identify a Basis for Column Space

- For a rank r_A matrix A:
 - R: t x d upper triangular matrix
 - Q: t x t orthogonal matrix

$$A = QR$$

$$A = (Q_A Q_A^{\perp}) \begin{pmatrix} R_A \\ 0 \end{pmatrix} = Q_A R_A$$

$$\cos\theta_j = \frac{a_j^Tq}{\parallel a_j \parallel_2 \parallel q \parallel_2} = \frac{(Q_Ar_j)^Tq}{\parallel Q_Ar_j \parallel_2 \parallel q \parallel_2} = \frac{r_j^T(Q_A^Tq)}{\parallel r_j \parallel_2 \parallel q \parallel_2}$$

Example

$$Q = \left(\begin{array}{ccc|ccc|c} -0.5774 & 0 & -0.4082 & 0 & -0.7071 & 0 \\ -0.5774 & 0 & 0.8165 & 0 & 0.0000 & 0 \\ -0.5774 & 0 & -0.4082 & 0 & 0.7071 & 0 \\ 0 & 0 & 0 & -0.7071 & 0 & -0.7071 \\ 0 & -1.0000 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -0.7071 & 0 & 0.7071 \end{array} \right),$$

Query Matching

$$q = Iq = QQ^{T}$$

$$= [Q_{A}Q_{A}^{T} + Q_{A}^{\perp}(Q_{A}^{\perp})^{T}]q$$

$$= Q_{A}Q_{A}^{T}q + Q_{A}^{\perp}(Q_{A}^{\perp})^{T}q$$

$$= q_{A} + q_{A}^{\perp}.$$

$$\cos \theta_j = \frac{a_j^T q_A + a_j^T q_A^{\perp}}{\parallel a_j \parallel_2 \parallel q \parallel_2} = \frac{a_j^T q_A + a_j^T Q_A^{\perp} (Q_A^{\perp})^T q}{\parallel a_j \parallel_2 \parallel q \parallel_2}.$$

$$\cos \theta_j = \frac{a_j^T q_A + 0 \cdot (Q_A^{\perp})^T q}{\parallel a_j \parallel_2 \parallel q \parallel_2} = \frac{a_j^T q_A}{\parallel a_j \parallel_2 \parallel q \parallel_2}.$$

$$\cos \theta_j' = \frac{a_j^T q_A}{\parallel a_j \parallel_2 \parallel q_A \parallel_2}.$$

Low Rank Approximation

- Change in the DB or not being precise:
 - Use approximation of A: A + E (Uncertainty Matrix)
- What if adding E reduces the rank of A
 - A can be partitioned to isolate smaller parts of the entries

QR- Factorization Problem

- Gives no information of row space
- Doesn't choose the smallest values → Could be more precise
- Inability to address two problems
 - Synonymy: two different words (say car and automobile) have the same meaning
 - Polysemy: a term such as charge has multiple meanings
- Synonymy → underestimate true similarity
- Polysemy → overestimate true similarity
- Solution: LSI
 - Use the co-occurrences of terms to capture the latent semantic associations of terms?

Latent Semantic Indexing (LSI)

- Approach: Employing a low rank approximation to the vector space representation
- Goal: Cluster similar documents which may share no terms in the latent semantic space, which is a low-dimensional subspace. (improves recall)
- LSI projects queries and documents into a space with latent semantic dimensions.
 - co-occurring words are projected on the same dimensions
 - non-co-occurring words are projected onto different dimensions
- Thus, LSI can be described as a method for dimensionality reduction

Latent Semantic Indexing (LSI)

- Dimensions of the reduced semantic space correspond to the axes of greatest variation in the original space (closely related to PCA)
- LSI is accomplished by applying SVD to term-by-document matrix
- Steps:
 - Preprocessing: Compute optimal low-rank approximation (latent semantic space) to the original term-by-document matrix with help of SVD
 - Evaluation: Rank similarity of terms and docs to query in the latent semantic space via a usual similarity measure
- Optimality dictates that the projection into the latent semantic space should be changed as little as possible measured by the sum of the squares of differences

Example

$$A = \begin{pmatrix} d1 & d2 & d3 & d4 & d5 & d6 \\ \cos monaut & 1 & 0 & 1 & 0 & 0 & 0 \\ astronaut & 0 & 1 & 0 & 0 & 0 & 0 \\ moon & 1 & 1 & 0 & 0 & 0 & 0 \\ car & 1 & 0 & 0 & 1 & 1 & 0 \\ truck & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

- A: term-by- document matrix with rank 5
- Reduced to two dimensions (latent dimensions, concepts)

 In the original space the relation between d2 and d3 is not clear

Singular Value Decomposition (SVD)

Decomposes A_{txd} into the product of three matrices T_{txd} , S_{nxn} and D_{dxn}

$$\begin{pmatrix}
o & o & o \\
o & o & o \\
o & o & o \\
o & o & o
\end{pmatrix} = \begin{pmatrix}
o & o \\
o & o \\
o & o \\
o & o
\end{pmatrix} x \begin{pmatrix}
o & o \\
o & o \\
o & o
\end{pmatrix} x \begin{pmatrix}
o & o & o \\
o & o & o
\end{pmatrix}$$

- T and D: have orthonormal columns
- S: diagonal matrix containing singular values of A in descending order.
 number of non-zero singular values = rank of A

Singular Value Decomposition (SVD)

- ullet Columns of T: orthogonal eigenvectors of $AA^{ op}$
- Columns of D: orthogonal eigenvectors of A^TA
- LSI defines:
 - A as term-by-document matrix
 - Tas term-to-concept similarity matrix
 - S as concept strengths
 - D as concept-to-doc similarity matrix
- If rank of A is smaller than term count, we can directly project into a reduced dimensionality space. However, we may also want to reduce the dimensionality of A by setting small singular values of S to zero.

Dimensionality Reduction

- Compute SVD of $A_{txd} = T_{txn}S_{nxn}(D_{dxn})^T$
- Form $A^{-}_{txk} = T_{txk} S_{kxk} (D_{kxn})^T$ by replacing the r-k smallest singular values on the diagonal by zeros, which is the optimal reduced rank-k approximation of A_{txd}
- $B^{-}_{txk} = S_{kxk} (D_{kxn})^{T}$ builds the projection of documents from the original space to the reduced rank-k approximation
 - in the original space, n dimensions correspond to terms
 - in the new reduced space, k dimensions correspond to concepts
- $Q_k = (T_{txk})^T Q_t$ builds the projection of the query from the original space to the reduced rank-k approximation
- Then we can rank similarity of documents to query in the reduced latent semantic space via a usual similarity measure

Example-SVD

$$A = \begin{pmatrix} d1 & d2 & d3 & d4 & d5 & d6 \\ \cos monaut & 1 & 0 & 1 & 0 & 0 & 0 \\ astronaut & 0 & 1 & 0 & 0 & 0 & 0 \\ moon & 1 & 1 & 0 & 0 & 0 & 0 \\ car & 1 & 0 & 0 & 1 & 1 & 0 \\ truck & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$T = \begin{pmatrix} dim1 & dim2 & dim3 & dim4 & dim5 \\ cos monaut & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\ astronaut & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\ moon & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\ car & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\ truck & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \end{pmatrix}$$

$$S = \begin{pmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{pmatrix}$$

$$D^{T} = \begin{pmatrix} d1 & d2 & d3 & d4 & d5 & d6 \\ \dim 1 & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ \dim 2 & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ \dim 3 & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ \dim 4 & 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\ \dim 5 & -0.53 & 0.29 & -0.63 & 0.19 & 0.41 & -0.22 \end{pmatrix}$$

Example-Reduction (rank-2 approx.)

We can get rid of zero valued columns and rows And have a 2 x 2 concept strength matrix

$$T^{r} = \begin{pmatrix} dim1 & dim2 & dim3 & dim4 & dim5 \\ cos monaut & -0.44 & -0.30 & 0 & 0 & 0 \\ astronaut & -0.13 & -0.33 & 0 & 0 & 0 \\ moon & -0.48 & -0.51 & 0 & 0 & 0 \\ car & -0.70 & 0.35 & 0 & 0 & 0 \\ truck & -0.26 & 0.65 & 0 & 0 & 0 \end{pmatrix}$$

We can get rid of zero valued columns And have a 5 x 2 *term-to-concept similarity* matrix

$$D^{rT} = \begin{pmatrix} d1 & d2 & d3 & d4 & d5 & d6 \\ \dim 1 & -0.75 & -0.28 & -0.20 & -0.44 & -0.33 & -0.12 \\ \dim 2 & -0.29 & -0.53 & -0.19 & 0.65 & 0.22 & 0.41 \\ \dim 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ \dim 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ \dim 5 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

We can get rid of zero valued columns And have a 2 x 6 *concept-to-doc similarity matrix*

dim1 and dim2 are the new concepts

Example-Projection

We see that query is not related to the d2 in the original space but in the latent semantic space they become highly related, which is true Max [cos(x,y)]=1

Database as in Graph Model

- Building citation graph and its adjacency matrix
- Represent documents and terms as nodes of the graph
- There is a link from each document to each term if the term appears in that document
- An authoritive word: a commonly used word
- connected components in the linkage graph: distinct document topics

Kleinberg's Algorithm

- Extracting information from link structures of a hyperlinked environment
- Basic essentials
 - Authorities
 - Hubs
- For a topic, authorities are relevant nodes which are referred by many hubs
- For a topic, hubs are nodes which connect many related authorities for that topic
- Authorities are defined in terms of hubs and hubs defined in terms of authorities
 - Mutually enforcing relationship (global nature)

Authorities and Hubs

- The algorithm can be applied to arbitrary hyperlinked environments
 - World Wide Web (nodes correspond to web pages with links)
 - Publications Database (nodes correspond to publications and links to co-citation relationship)

Kleinberg's Algorithm (WWW)

- Is different from clustering
 - Different meanings of query terms
- Addressed problems by the text-based model
 - Self-description of page may not include appropriate keywords
 - Distinguish between general popularity and relevance
- Three steps
 - Create a focused sub-graph of the Web
 - Iteratively compute hub and authority scores
 - Filter out the top hubs and authorities

Root and Base Set

- For the success of the algorithm base set (sub-graph) should be
 - relatively small
 - rich in relevant pages
 - contains most of the strongest authorities
- Start first with a root set
 - obtained from a text-based search engine
 - does not satisfy third condition of a useful subgraph
- Solution: extending root set
 - add any page pointed by a page in the root set to it
 - add any page that points to a page in the root set to it (at most d)
 - the extended root set becomes our base set

Root and Base Set

Two Operations

Updating authority weight

page p a[p]=sum of h[q], for all q pointing to p

Updating hub weight

- a[p] ... authority weight for page p
- h[p] ... hub weight for page p
- Iterative algorithm
 - 1. set all weights for each page to 1
 - 2. apply both operations on each page from the base set and normalize authority and hub weights separately (sum of squares=1)
 - 3. repeat step 2 until weights converge

Matrix Notation

$$A = \begin{pmatrix} n1 & n2 & n3 & n4 & n5 \\ n1 & 0 & 1 & 1 & 1 & 0 \\ n2 & 0 & 0 & 0 & 1 & 0 \\ n3 & 0 & 0 & 0 & 0 & 1 \\ n4 & 0 & 0 & 0 & 0 & 0 \\ n5 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

- G (root set) is a directed graph with web pages as nodes and their links
- G can be presented as a connectivity matrix A
 - A(i,j)=1 only if i-th page points to j-th page
- Authority weights can be represented as a unit vector a
 - a(i) is the authority weight of the i-th page
- Hub weights can be represented as a unit vector h
 - h(i) is the hub weight of the i-th page

Convergence

- Two mentioned basic operations can be written as matrix operations (all values are updated simultaneously)
 - Updating authority weights: a=A^Th
 - Updating hub weights: h=Aa
- After k iterations:

$$a_1 = A^T h_0$$
 $h_1 = A a_1$
 $h_1 = A A^T h_0 \rightarrow h_k = (A A^T)^k h_0$

- Thus
 - h_k is a unit vector in the direction of $(AA^T)^k h_0$
 - a_k is a unit vector in the direction of $(A^TA)^{k-1}h_0$
- Theorem
 - a_k converges to the principal eigenvector of A^TA
 - h_k converges to the principal eigenvector of AA^T

Convergence

- (A^TA)^k x v^{*} ≈ (const) v₁ where k>>1, v^{*} is a random vector, v₁ is the eigenvector of A^TA
- Proof:

$$(A^{T}A)^{k} = (A^{T}A) \times (A^{T}A) \times ... = (V \wedge^{2}V^{T}) \times (V \wedge^{2}V^{t}) \times ...$$

= $(V \wedge^{2}V^{T}) \times ... = (V \wedge^{4}V^{T}) \times ... = (V \wedge^{2}V^{T})$

Using spectral decomposition:

$$(A^{T}A)^{k} = (V \wedge {}^{2k}V^{T}) = \lambda_{1}{}^{2k} \vee_{1} \vee_{1}^{T} + \lambda_{2}{}^{2k} \vee_{2} \vee_{2}^{T} + \dots + \lambda_{n}{}^{2k} \vee_{n}^{T} \vee_{n}^{T}$$

because $\lambda_{1} > \lambda_{i\neq 1} \rightarrow \lambda_{1}^{2k} >> \lambda_{i\neq 1}^{2k}$

thus $(A^TA)^k \approx \lambda_1^{2k} v_1 v_1^T$

now
$$(A^TA)^k \times v^* = \lambda_1^{2k} v_1 v_1^T \times v^* = (const) v_1$$

because $v_1^T x v$ is a scalar.

Sign of Eigenvector

- We know that $(A^TA)^k \approx \lambda_1^{2k} v_1 v_1^T$
- Since A is the adjacency matrix, elements of (A^TA)^k are all positive
- $\rightarrow \lambda_1^{2k} v_1 v_1^T$ should be positive
- λ_1^{2k} is positive \rightarrow $v_1 v_1^T$ is positive \rightarrow all elements of v_1 should have the same sign (either all elements are positive or all are negative)

Sub-communities

- Authority vector converges to the principal eigenvector of A^TA, which lets us choose strong authorities
- Hub vector converges to the principal eigenvector of AA^T which lets us choose strong hubs
- These chosen authorities and hubs build a cluster in our network
- However there can exist different clusters of authorities and hubs for a given topic, which correspond to:
 - different meanings of a term (e.g. jaguar → animal,car,team)
 - different communities for a term (e.g. randomized algorithms)
 - polarized thoughts for a term (e.g. abortion)
- Extension:
 - each eigenvector of A^TA and AA^T represents distinct authority and hub vectors for a sub-community in Graph G, respectively.

PageRank

- PageRank is a link analysis algorithm that assigns weights to nodes of a hyperlinked environment
- It assigns importance scores to every node in the set which is similar to the authority scores in Kleinberg algorithm
- It is an iterative algorithm like Kleinberg algorithm
- Main assumptions:
 - in-degree of nodes are indicators of their importance
 - links from different nodes are not counted equally. They are normalized by the out-degree of its source.

Simplified PageRank (WWW)

$$\Pr(u) = \sum_{v \in B(u)} \frac{\Pr(v)}{L(v)}$$

B(u) is the set of nodes which have a link to u

- PageRank Algorithm simulates a random walk over web pages.
- Pr value is interpreted as probabilities
- In each iteration we update Pr values of each page simultaneously
- After several passes, Pr value converges to a probability distribution used to represent the probability that a person randomly clicking on links will arrive at any particular page

Matrix Notation

 M(i,j) is the transition matrix and defines fragment of the j-th page's Pr value which contributes to the Pr value of the i-th page

PageRank and Markov Chain

- PageRank defines a Markov Chain on the pages
 - with transition matrix M and stationary distribution Pr
 - states are pages
 - transitions are the links between pages (all equally probable)

 As a result of Markov theory, Pr value of a page is the probability of being at that page after lots of clicks.

Matrix Notation

Update step

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0.5 & 1 \\ 1 & 0 & 0 \\ 0 & 0.5 & 0 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$x = 0 \cdot x + 1/2 \cdot y + 1 \cdot z$$

$$y = 1 \cdot x + 0 \cdot y + 0 \cdot z$$

$$z = 0 \cdot x + 1/2 \cdot y + 0 \cdot z$$

Non-Simplified PageRank (WWW)

$$\Pr(u) = \frac{1-d}{k} + d \cdot \sum_{v \in B(u)} \frac{\Pr(v)}{L(v)}$$

Matrix Notation

$$Pr_{kx1} = M_{kxk} \times Pr_{kx1}$$

k is the number of total pages B_i is the set of pages which have a link to i-th page

$$M_{ij} = \begin{cases} \frac{1-d}{k} + \frac{d}{|B_j|} & \text{, if } i \in B_j \\ \frac{1-d}{k} & \text{, else} \end{cases}$$

- (1-d) defines the probability to jump to a page, to which there
 is no link from the current page
- Pr converges to the principal eigenvector of the transition matrix M

Randomized HITS

- Random walk on HITS
- Odd time steps: update authority
- Even time steps: update hubs

$$a^{(t+1)} = \epsilon \vec{1} + (1 - \epsilon) A_{\text{row}}^T h^{(t)}$$

 $h^{(t+1)} = \epsilon \vec{1} + (1 - \epsilon) A_{\text{col}} a^{(t+1)}$

 t: a very large odd number, large enough that the random walk converged → The authority weight of a page = the chance that the surfer visits that page on time step t

Stability of Algorithms

- Being stable to perturbations of the link structure.
- HITS: if the eigengap is big, insensitive to small perturbations; If it's small there may be a small perturbation that can dramatically change its results.
- PageRank: if the perturbed/modified web pages did not have high overall PageRank, then the perturbed PageRank scores will not be far from the original.
- Randomized HITS: insensitive to small perturbations

Thank You!

Special thanks to Cem