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Outline 
�  QR Factorization 

�  Latent Semantic Indexing (LSI) 

�  Kleinberg’s Algorithm (HITS) 

�  PageRank Algorithm (Google) 



Vector Space Model 

D1:How to bake bread without recipes 

D2:The classic art of  Viennese pastry 

D3:Numerical recipes: The art of  scientific computing 

D4:Breads, pastries, pies and cakes: quantity baking recipes 

D5:Pastry: A book of  best french recipes 

Documents 

T1:bak(e,ing) T2:recipes T3:bread T4:cake T5:pastr(y,ies) T6:pie 

Terms 



Vector Space Model 
�  Vector space model represents database as a vector space 

�  In indexing terms space 

�  Each document represented as a vector 
�  weight of  the vector: semantic importance of  indexing term in 

the document 

�  queries are modeled as vectors 

terms 

terms 



Vector Space Model 
�  Whole database: d documents described by t terms  

�  t x d term-by-document matrix 

�  the semantic content of  the database is wholly contained 
in the column space of  A 
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Similarity Measure 
�  How to identify relevant documents? 

�  Using spatial proximity for semantic proximity 
�  Most relevant documents for a query ≈ those with vectors closest to the 

query 

�  Cosine measure: the most widespread similarity measure 
�  the cosine of  the angle between two vectors. 

�  Unit vectors è cosine measure = a simple dot product  
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�  A vector space with two dimensions 

�  Three documents and one query (unit vectors) 

�  D2 is the most similar document to query q 



Term weighting 
�  Simplest term (vector component) weightings: 

�  count of  number of  times word occurs in document 

�  binary: word does or doesn’t occur in document 

�  A document is a better match if  a word occurs three times 
than once, but not a three times better match 
�  è a series of  weighting functions e.g., 1+log(x) if x > 0 

�  Significance of  a term: 
�  occurrence of  a term in a document is more important if  that 

term does not occur in many other documents 

�  Solution: weight=global weight x local weight 



QR-Factorization 
�  Some information are redundant in vector space 

model è QR factorization 

�  How it works? 
�  Identify a basis for the column space 
�  Low rank approximation 



Identify a Basis for Column 
Space 

�  For a rank rA matrix A: 
�  R: t x d upper triangular matrix 

�  Q: t x t orthogonal matrix  
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Example 



Query Matching 



Low Rank Approximation 
�  Change in the DB or not being precise: 

�  Use approximation of  A: A + E (Uncertainty Matrix) 

�  What if  adding E reduces the rank of  A 
�  A can be partitioned to isolate smaller parts of  the 

entries 



QR- Factorization Problem 
�  Gives no information of  row space 

�  Doesn’t choose the smallest values è Could be more 
precise 

�  Inability to address two problems 
�  Synonymy: two different words (say car and automobile) have 

the same meaning 
�  Polysemy: a term such as charge has multiple meanings 

�  Synonymy è underestimate true similarity 

�  Polysemy è overestimate true similarity 

�  Solution: LSI  
�  Use the co-occurrences of  terms to capture the latent 

semantic associations of  terms? 



Latent Semantic Indexing (LSI) 
�  Approach: Employing a low rank approximation to the vector 

space representation 

�  Goal: Cluster similar documents which may share no terms in 
the latent semantic space, which is a low-dimensional 
subspace. (improves recall) 

�  LSI projects queries and documents into a space with latent 
semantic dimensions.  
�  co-occurring words are projected on the same dimensions 
�  non-co-occurring words are projected onto different dimensions 

�  Thus, LSI can be described as a method for dimensionality 
reduction 

 

 



Latent Semantic Indexing (LSI) 
�  Dimensions of  the reduced semantic space correspond to the axes 

of  greatest variation in the original space (closely related to PCA) 

�  LSI is accomplished by applying SVD to term-by-document matrix 

�  Steps: 
�  Preprocessing: Compute optimal low-rank approximation (latent 

semantic space) to the original term-by-document matrix with help of  
SVD 

�  Evaluation: Rank similarity of  terms and docs to query in the latent 
semantic space via a usual similarity measure 

�  Optimality dictates that the projection into the latent semantic 
space should be changed as little as possible measured by the 
sum of  the squares of  differences 



Example 
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�  A: term-by- document matrix 
with rank 5 

�  Reduced to two dimensions 
(latent dimensions, 
concepts) 

�  In the original space the 
relation between d2 and d3 
is not clear   
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Singular Value 
Decomposition (SVD) 

�  Decomposes Atxd into the product of  three matrices Ttxd , Snxn and Ddxn 

�  T and D: have orthonormal columns 

�  S: diagonal matrix containing singular values of  A in descending order. 
number of  non-zero singular values = rank of  A 
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Singular Value 
Decomposition (SVD) 

�  Columns of T: orthogonal eigenvectors of AAT 

�  Columns of D: orthogonal eigenvectors of ATA 

�  LSI defines: 
�  A as term-by-document matrix 
�  T as term-to-concept similarity matrix 
�  S as concept strengths 
�  D as concept-to-doc similarity matrix 

�  If  rank of  A is smaller than term count, we can directly project 
into a reduced dimensionality space. However, we may also 
want to reduce the dimensionality of  A by setting small 
singular values of  S to zero. 



Dimensionality Reduction 
�  Compute SVD of  Atxd=TtxnSnxn(Ddxn)T 

�  Form A^txk=TtxkSkxk(Dkxn)T by replacing the r －k smallest singular 
values on the diagonal by zeros, which is the optimal reduced 
rank-k approximation of  Atxd 

�  B^txk=Skxk(Dkxn)T builds the projection of  documents from the 
original space to the reduced rank-k approximation 
�  in the original space, n dimensions correspond to terms 
�  in the new reduced space, k dimensions correspond to concepts 

�  Qk=(Ttxk)TQt builds the projection of  the query from the original 
space to the reduced rank-k approximation 

�  Then we can rank similarity of  documents to query in the 
reduced latent semantic space via a usual similarity measure  



Example-SVD 
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Example-Reduction (rank-2 
approx.)  
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We can get rid of zero valued columns and rows 
And have a 2 x 2 concept strength matrix 

We can get rid of zero valued columns 
And have a 5 x 2 term-to-concept similarity matrix 

We can get rid of zero valued columns 
And have a 2 x 6 concept-to-doc similarity matrix 

dim1 and dim2 are the new concepts 



Example-Projection 
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Original space Reduced latent semantic space 

We see that query is not related to the d2 in the original space but  
in the latent semantic space they become highly related, which is true 
Max [cos(x,y)]=1 



Database as in Graph Model 
�  Building citation graph and its adjacency matrix 

�  Represent documents and terms as nodes of  the 
graph 

�  There is a link from each document to each term if  
the term appears in that document 

�  An authoritive word: a commonly used word 

�  connected components in the linkage graph: 
distinct document topics 



Kleinberg’s Algorithm 
�  Extracting information from link structures of  a hyperlinked 

environment   

�  Basic essentials 
�  Authorities  
�  Hubs  

�  For a topic, authorities are relevant nodes which are referred by 
many hubs 

�  For a topic, hubs are nodes which connect many related 
authorities for that topic 

�  Authorities are defined in terms of  hubs and hubs defined in 
terms of  authorities 
�  Mutually enforcing relationship (global nature) 



Authorities and Hubs 

�  The algorithm can be applied to arbitrary hyperlinked 
environments 
�  World Wide Web (nodes correspond to web pages with links) 
�  Publications Database (nodes correspond to publications and links 

to co-citation relationship) 

Hubs Authorities 



Kleinberg’s Algorithm 
(WWW) 

�  Is different from clustering 
�  Different meanings of  query terms 

�  Addressed problems by the text-based model 
�  Self-description of  page may not include appropriate keywords 

�  Distinguish between general popularity and relevance 

�  Three steps 
�  Create a focused sub-graph of  the Web 

�  Iteratively compute hub and authority scores 

�  Filter out the top hubs and authorities 

 



Root and Base Set 
�  For the success of  the algorithm base set (sub-graph) should be 

�  relatively small 

�  rich in relevant pages 

�  contains most of  the strongest authorities 

�  Start first with a root set 
�  obtained from a text-based search engine 

�  does not satisfy third condition of  a useful subgraph 

�  Solution: extending root set 
�  add any page pointed by a page in the root set to it 

�  add any page that points to a page in the root set to it  (at most d) 

�  the extended root set becomes our base set 



Root and Base Set 

Root 

Base 



Two Operations 

�  a[p]   … authority weight  for page p  

�  h[p]   … hub weight for page p 

�  Iterative algorithm  
1.  set all weights for each page to 1  
2.  apply both operations on each page from the base set and normalize 

authority and hub weights separately (sum of  squares=1) 
3.  repeat step 2 until weights converge  

q1 

q2 

q3 

page p 
a[p]=sum of h[q],  
         for all q pointing to p 

q1 

q2 

q3 

page p 
h[p]=sum of a[q],  
         for all q pointed by p 

Updating authority weight Updating hub weight 



Matrix Notation 
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�  G (root set) is a directed graph with web pages as nodes and 
their links 

�  G can be presented as a connectivity matrix A 
�  A(i,j)=1 only if  i-th page points to j-th page 

�  Authority weights can be represented as a unit vector a 
�  a(i) is the authority weight of  the i-th page 

�  Hub weights can be represented as a unit vector h 
�  h(i) is the hub weight of  the i-th page 

n1 n2 

n4 

n5 

n3 

G 



Convergence 
�  Two mentioned basic operations can be written as matrix 

operations (all values are updated simultaneously) 
�  Updating authority weights: a=ATh  
�  Updating hub weights: h=Aa 

�  After k iterations: 

 

�  Thus 
�  hk is a unit vector in the direction of  (AAT)kh0 

�  ak is a unit vector in the direction of (ATA)k-1h0 

�  Theorem 
�  ak converges to the principal eigenvector of  ATA 
�  hk converges to the principal eigenvector of  AAT 
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Convergence 
�  (ATA)k x v` ≈ (const) v1 where k>>1, v` is a random vector, v1 is the eigenvector 

of  ATA 

�  Proof: 
     (ATA)k = (ATA) x (ATA) x … = (VΛ2VT ) x (VΛ2Vt ) x … 

                = (VΛ2VT ) x … = (VΛ4VT ) x …. = (VΛ2kVT)  

      Using spectral decomposition:  

      (ATA)k = (VΛ2kVT) = λ1
2k

 v1 v1
T + λ2

2k
 v2 v2

T+ … + λn
2k

 vnvn
T 

      because λ1 > λi≠1 à λ1
2k

 >> λi≠1
2k 

      thus (ATA)k ≈ λ1
2k

 v1 v1
T 

      now (ATA)k x v` = λ1
2k

 v1 v1
T x v` = (const) v1  

      because v1
Tx v` is a scalar. 

 



Sign of  Eigenvector 
�  We know that (ATA)k ≈ λ1

2k
 v1 v1

T 

�  Since A is the adjacency matrix, elements of  (ATA)k 

are all positive 

�  èλ1
2k

 v1 v1
T should be positive 

�  λ1
2k is positive è v1 v1

T is positive è all elements 
of  v1 should have the same sign (either all elements 
are positive or all are negative) 



Sub-communities 
�  Authority vector converges to the principal eigenvector of  ATA, 

which lets us choose strong authorities 

�  Hub vector converges to the principal eigenvector of  AAT which 
lets us choose strong hubs 

�  These chosen authorities and hubs build a cluster in our network 

�  However there can exist different clusters of  authorities and hubs 
for a given topic, which correspond to: 
�  different meanings of  a term (e.g. jaguar à animal,car,team) 
�  different communities for a term (e.g. randomized algorithms) 
�  polarized thoughts for a term (e.g. abortion) 

�  Extension: 
�  each eigenvector of  ATA and AAT represents distinct authority and hub 

vectors for a sub-community in Graph G, respectively. 



PageRank 
�  PageRank is a link analysis algorithm that assigns weights to 

nodes of  a hyperlinked environment 

�  It assigns importance scores to every node in the set which is 
similar to the authority scores in Kleinberg algorithm 

�  It is an iterative algorithm like Kleinberg algorithm 

�  Main assumptions: 
�  in-degree of  nodes are indicators of  their importance 

�  links from different nodes are not counted equally. They are 
normalized by the out-degree of  its source.     

 



Simplified PageRank (WWW) 

∑
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�  PageRank Algorithm simulates a random walk over web pages. 

�  Pr value is interpreted as probabilities 

�  In each iteration we update Pr values of  each page 
simultaneously 

�  After several passes, Pr value converges to a probability 
distribution used to represent the probability that a person 
randomly clicking on links will arrive at any particular page  

B(u) is the set of nodes  
which have a link to u 



Matrix Notation 

11 PrPr kxkxkkx M ×= =ijM

�  M(i,j) is the transition matrix and defines fragment of  the j-th 
page’s Pr value which contributes to the Pr value of  the i-th 
page 

jB
1

0

, if i  jB∈

, else 

Update step  

k is the number of total pages 
Bi is the set of pages which have a link to i-th page 



PageRank and Markov Chain 

�  PageRank defines a Markov Chain on the pages  
�  with transition matrix M and stationary distribution Pr 

�  states are pages 
�  transitions are the links between pages (all equally probable) 

�  As a result of  Markov theory, Pr value of  a page is the 
probability of  being at that page after lots of  clicks. 



Matrix Notation 
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Update step  



Non-Simplified PageRank 
(WWW) 
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�  (1-d) defines the probability to jump to a page, to which there 
is no link from the current page 

�  Pr converges to the principal eigenvector of  the transition 
matrix M 

=ijM jB
d

k
d
+

−1

k
d−1

, if i  jB∈

, else k is the number of total pages 
Bi is the set of pages which have a link to i-th page 

Matrix Notation  



Randomized HITS 
�  Random walk on HITS 

�  Odd time steps: update authority 

�  Even time steps: update hubs 

�  t: a very large odd number, large enough that the 
random walk converged è The authority weight of  a 
page = the chance that the surfer visits that page on 
time step t 



Stability of  Algorithms 
�  Being stable to perturbations of  the link structure. 

�  HITS: if  the eigengap is big, insensitive to small 
perturbations; If  it’s small there may be a small 
perturbation that can dramatically change its 
results. 

�  PageRank: if  the perturbed/modified web pages did 
not have high overall PageRank, then the perturbed 
PageRank scores will not be far from the original. 

�  Randomized HITS: insensitive to small perturbations 



 

 

Thank You! 

Special thanks to Cem 


