SVD Applications: LSI and Link Analysis

Advanced Machine Learning Course Shaghayegh Sahebi (Sherry)

Outline

- QR Factorization
- Latent Semantic Indexing (LSI)
- Kleinberg's Algorithm (HITS)
- PageRank Algorithm (Google)

Vector Space Model

Documents
D1:How to bake bread without recipes
D2:The classic art of Viennese pastry
D3:Numerical recipes: The art of scientific computing
D4:Breads, pastries, pies and cakes: quantity baking recipes
D5:Pastry: A book of best french recipes

Terms
T1:bak(e,ing) T2:recipes T3:bread T4:cake T5:pastr(y,ies) T6:pie

Vector Space Model

- Vector space model represents database as a vector space
- In indexing terms space
- Each document represented as a vector
- weight of the vector: semantic importance of indexing term in the document

$$
\left.\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)\right] \text { terms }
$$

- queries are modeled as vectors

$$
q^{(1)}=\underbrace{\left(\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right)^{T}}_{\text {terms }}
$$

Vector Space Model

- Whole database: d documents described by t terms
- txd term-by-document matrix

Normalized with unit columns

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \hat{A}=\left(\begin{array}{ccccc}
0.5774 & 0 & 0 & 0.4082 & 0 \\
0.5774 & 0 & 1 & 0.4082 & 0.7071 \\
0.5774 & 0 & 0 & 0.4082 & 0 \\
0 & 0 & 0 & 0.4082 & 0 \\
0 & 1 & 0 & 0.4082 & 0.7071 \\
0 & 0 & 0 & 0.4082 & 0
\end{array}\right)
$$

- the semantic content of the database is wholly contained in the column space of A

Similarity Measure

- How to identify relevant documents?
- Using spatial proximity for semantic proximity
- Most relevant documents for a query \approx those with vectors closest to the query
- Cosine measure: the most widespread similarity measure
- the cosine of the angle between two vectors.
- Unit vectors \rightarrow cosine measure $=$ a simple dot product

$$
\cos (\vec{x}, \vec{y})=\frac{\vec{x} \cdot \vec{y}}{|\vec{x}||\vec{y}|}=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \sqrt{\sum_{i=1}^{n} y_{i}^{2}}}
$$

- A vector space with two dimensions
- Three documents and one query (unit vectors)
- D2 is the most similar document to query q

Term weighting

- Simplest term (vector component) weightings:
- count of number of times word occurs in document
- binary: word does or doesn't occur in document
- A document is a better match if a word occurs three times than once, but not a three times better match
- \rightarrow a series of weighting functions e.g., $1+\log (x)$ if $x>0$
- Significance of a term:
- occurrence of a term in a document is more important if that term does not occur in many other documents
- Solution: weight=global weight x local weight

QR-Factorization

- Some information are redundant in vector space model \rightarrow QR factorization
- How it works?
- Identify a basis for the column space
- Low rank approximation

Identify a Basis for Column Space

- For a rank r_{A} matrix A :
- $R: t \times d$ upper triangular matrix
- Q:txtorthogonal matrix

$$
\begin{gathered}
A=Q R \\
A=\left(Q_{A} Q_{A}^{\perp}\right)\binom{R_{A}}{0}=Q_{A} R_{A} \\
\cos \theta_{j}=\frac{a_{j}^{T} q}{\left\|a_{j}\right\|_{2}\|q\|_{2}}=\frac{\left(Q_{A} r_{j}\right)^{T} q}{\left\|Q_{A} r_{j}\right\|_{2}\|q\|_{2}}=\frac{r_{j}^{T}\left(Q_{A}^{T} q\right)}{\left\|r_{j}\right\|_{2}\|q\|_{2}}
\end{gathered}
$$

Example

$$
\begin{aligned}
& Q=\left(\begin{array}{rrrr|rr}
-0.5774 & 0 & -0.4082 & 0 & -0.7071 & 0 \\
-0.5774 & 0 & 0.8165 & 0 & 0.0000 & 0 \\
-0.5774 & 0 & -0.4082 & 0 & 0.7071 & 0 \\
0 & 0 & 0 & -0.7071 & 0 & -0.7071 \\
0 & -1.0000 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.7071 & 0 & 0.7071
\end{array}\right), \\
& R=\left(\begin{array}{rrrrr}
-1.0001 & 0 & -0.5774 & -0.7070 & -0.4082 \\
0 & -1.0000 & 0 & -0.4082 & -0.7071 \\
0 & 0 & 0.8165 & 0 & 0.5774 \\
0 & 0 & 0 & -0.5774 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Query Matchino } \\
& \qquad \begin{array}{l}
q=I q=Q Q^{T} \\
\quad=\left[Q_{A} Q_{A}^{T}+Q_{A}^{\perp}\left(Q_{A}^{\perp}\right)^{T}\right] q \\
\\
\quad=Q_{A} Q_{A}^{T} q+Q_{A}^{\perp}\left(Q_{A}^{\perp}\right)^{T} q \\
\\
\quad=q_{A}+q_{A}^{\perp}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\cos \theta_{j}=\frac{a_{j}^{T} q_{A}+a_{j}^{T} q_{A}^{\perp}}{\left\|a_{j}\right\|_{2}\|q\|_{2}}=\frac{a_{j}^{T} q_{A}+a_{j}^{T} Q_{A}^{\perp}\left(Q_{A}^{\perp}\right)^{T} q}{\left\|a_{j}\right\|_{2}\|q\|_{2}} \\
\cos \theta_{j}=\frac{a_{j}^{T} q_{A}+0 \cdot\left(Q_{A}^{\perp}\right)^{T} q}{\left\|a_{j}\right\|_{2}\|q\|_{2}}=\frac{a_{j}^{T} q_{A}}{\left\|a_{j}\right\|_{2}\|q\|_{2}} \\
\cos \theta_{j}^{\prime}=\frac{a_{j}^{T} q_{A}}{\left\|a_{j}\right\|_{2}\left\|q_{A}\right\|_{2}}
\end{gathered}
$$

Low Rank Approximation

- Change in the DB or not being precise:
- Use approximation of $A: A+E$ (Uncertainty Matrix)
- What if adding E reduces the rank of A
- A can be partitioned to isolate smaller parts of the entries

$$
R=\left(\begin{array}{rrr|rr}
-1.0001 & 0 & -0.5774 & -0.7070 & -0.4082 \\
0 & -1.0000 & 0 & -0.4082 & -0.7071 \\
0 & 0 & 0.8165 & 0 & 0.5774 \\
\hline 0 & 0 & 0 & -0.5774 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right) .
$$

QR. Factorization Problem

- Gives no information of row space
- Doesn't choose the smallest values \rightarrow Could be more precise
- Inability to address two problems
- Synonymy: two different words (say car and automobile) have the same meaning
- Polysemy: a term such as charge has multiple meanings
- Synonymy \rightarrow underestimate true similarity
- Polysemy \rightarrow overestimate true similarity
- Solution: LSI
- Use the co-occurrences of terms to capture the latent semantic associations of terms?

Latent Semantic Indexing (LSI)

- Approach: Employing a low rank approximation to the vector space representation
- Goal: Cluster similar documents which may share no terms in the latent semantic space, which is a low-dimensional subspace. (improves recall)
- LSI projects queries and documents into a space with latent semantic dimensions.
- co-occurring words are projected on the same dimensions
- non-co-occurring words are projected onto different dimensions
- Thus, LSI can be described as a method for dimensionality reduction

Latent Semantic Indexing (LSI)

- Dimensions of the reduced semantic space correspond to the axes of greatest variation in the original space (closely related to PCA)
- LSI is accomplished by applying SVD to term-by-document matrix
- Steps:
- Preprocessing: Compute optimal low-rank approximation (Iatent semantic space) to the original term-by-document matrix with help of SVD
- Evaluation: Rank similarity of terms and docs to query in the latent semantic space via a usual similarity measure
- Optimality dictates that the projection into the latent semantic space should be changed as little as possible measured by the sum of the squares of differences

$$
\begin{aligned}
& \text { Example } \\
& \left(\begin{array}{llllll}
\boldsymbol{d} & \boldsymbol{d} & \mathbf{d} & \mathbf{d} & \mathbf{d} \mathbf{5} & \mathbf{d} \mathbf{6} \\
\mathbf{c o s} \\
\mathbf{1} & \mathbf{1} & \mathbf{0} & \text { A: term-by- document matrix }
\end{array}\right. \\
& \boldsymbol{A}=\left(\begin{array}{ccccccc}
\text { cos monaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\
\text { truck } & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) \\
& \text { with rank } 5 \\
& \text { - Reduced to two dimensions } \\
& \text { (latent dimensions, } \\
& \text { concepts) } \\
& \text { - In the original space the } \\
& \text { relation between d2 and d3 } \\
& \text { is not clear }
\end{aligned}
$$

Singular Value Decomposition (SVD)

- Decomposes $A_{\text {txd }}$ into the product of three matrices $T_{\text {txd }}, S_{n x n}$ and $D_{d \times n}$

$$
\begin{gathered}
\mathrm{A}_{\mathrm{txd}} \\
\left(\begin{array}{lll}
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o}
\end{array}\right)=\left(\begin{array}{ll}
\boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o}
\end{array}\right) x\left(\begin{array}{ll}
\boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o}
\end{array}\right) x\left(\begin{array}{lll}
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o} \\
\boldsymbol{o} & \boldsymbol{o} & \boldsymbol{o}
\end{array}\right)
\end{gathered}
$$

- T and D: have orthonormal columns
- S: diagonal matrix containing singular values of A in descending order. number of non-zero singular values $=$ rank of A

Singular Value Decomposition (SVD)

- Columns of T: orthogonal eigenvectors of $A A^{T}$
- Columns of D: orthogonal eigenvectors of $A^{\top} A$
- LSI defines:
- A as term-by-document matrix
- T as term-to-concept similarity matrix
- S as concept strengths
- D as concept-to-doc similarity matrix
- If rank of A is smaller than term count, we can directly project into a reduced dimensionality space. However, we may also want to reduce the dimensionality of A by setting small singular values of S to zero.

Dimensionality Reduction

- Compute SVD of $A_{t x d}=T_{t \times n} S_{n \times n}\left(D_{d \times n}\right)^{\top}$
- Form $A^{\wedge}{ }_{\text {txk }}=T_{\text {txk }} S_{k \times k}\left(D_{k x n}\right)^{\top}$ by replacing the $r-k$ smallest singular values on the diagonal by zeros, which is the optimal reduced rank-k approximation of $A_{\text {txd }}$
- $B^{\wedge}{ }_{t \times k}=S_{k \times k}\left(D_{k \times n}\right)^{\top}$ builds the projection of documents from the original space to the reduced rank-k approximation
- in the original space, n dimensions correspond to terms
- in the new reduced space, k dimensions correspond to concepts
- $\mathrm{Q}_{\mathrm{k}}=\left(\mathrm{T}_{\text {txk }}\right)^{\top} \mathrm{Q}_{t}$ builds the projection of the query from the original space to the reduced rank-k approximation
- Then we can rank similarity of documents to query in the reduced latent semantic space via a usual similarity measure

$\begin{array}{ll}\square \times 2 \cap \sim & T=\left(\begin{array}{cccccc} \\ \text { cosmonaut } & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\ \text { astronaut } & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\ \text { moon } & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\ \text { car } & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\ \text { truck } & -0.26 & 0.65 & -0.41 & 0.58 & -0.09\end{array}\right)\end{array}$

$$
A=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\cos \text { monaut } & 1 & 0 & 1 & 0 & 0 & 0 \\
\text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\
\text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\
\text { car } & 1 & 0 & 0 & 1 & 1 & 0 \\
\text { truck } & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

$$
\begin{gathered}
S=\left(\begin{array}{ccccc}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 \\
0 & 0 & 0 & 1.00 & 0 \\
0 & 0 & 0 & 0 & 0.39
\end{array}\right) \\
D^{T}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\operatorname{dim} 1 & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
\operatorname{dim} 2 & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
\operatorname{dim} 3 & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
\operatorname{dim} 4 & 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\
\operatorname{dim} 5 & -0.53 & 0.29 & -0.63 & 0.19 & 0.41 & -0.22
\end{array}\right)
\end{gathered}
$$

Example-Reduction (rank-2
 We can get rid of zero valued columns and rows

$S^{r}=\left(\begin{array}{ccccc}2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
$T^{r}=\left(\begin{array}{cccccc} & \operatorname{dim} 1 & \operatorname{dim} 2 & \operatorname{dim} 3 & \operatorname{dim} 4 & \operatorname{dim} 5 \\ \text { cosmonaut } & -0.44 & -0.30 & 0 & 0 & 0 \\ \text { astronaut } & -0.13 & -0.33 & 0 & 0 & 0 \\ \text { moon } & -0.48 & -0.51 & 0 & 0 & 0 \\ \text { car } & -0.70 & 0.35 & 0 & 0 & 0 \\ \text { truck } & -0.26 & 0.65 & 0 & 0 & 0\end{array}\right)$
We can get rid of zero valued columns And have a 2×2 concept strength matrix

$$
D^{r T}=\left(\begin{array}{ccccccc}
& d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\
\operatorname{dim} 1 & -0.75 & -0.28 & -0.20 & -0.44 & -0.33 & -0.12 \\
\operatorname{dim} 2 & -0.29 & -0.53 & -0.19 & 0.65 & 0.22 & 0.41 \\
\operatorname{dim} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\
\operatorname{dim} 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
\operatorname{dim} 5 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We can get rid of zero valued columns And have a 2×6 concept-to-doc similarity matrix

Example-Projection

Original space
Reduced latent semantic space
$Q=\left(\begin{array}{cc}\cos \text { monaut } & 1 \\ \text { astronaut } & 0 \\ \text { moon } & 0 \\ \text { car } & 0 \\ \text { truck } & 0\end{array}\right)$
$A=\left(\begin{array}{ccccccc} & d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\ \cos \text { monaut } & 1 & 0 & 1 & 0 & 0 & 0 \\ \text { astronaut } & 0 & 1 & 0 & 0 & 0 & 0 \\ \text { moon } & 1 & 1 & 0 & 0 & 0 & 0 \\ \text { mat } & & \\ & 1 & 0 & 0 & 1 & 1 & 0\end{array}\right)=\left(\begin{array}{ccccccc}d 1 & d 2 & d 3 & d 4 & d 5 & d 6 \\ \operatorname{dim} 1 & -1.62 & -0.60 & -0.44 & -0.97 & -0.70 & -0.26 \\ \operatorname{dim} 2 & -0.46 & -0.84 & -0.30 & 1.00 & 0.35 & 0.65\end{array}\right)$
$\cos (Q, d 2)=0$

We see that query is not related to the $\mathbf{d} 2$ in the original space but in the latent semantic space they become highly related, which is true $\operatorname{Max}[\cos (x, y)]=1$

Database as in Graph Model

- Building citation graph and its adjacency matrix
- Represent documents and terms as nodes of the graph
- There is a link from each document to each term if the term appears in that document
- An authoritive word: a commonly used word
- connected components in the linkage graph: distinct document topics

Kleinberg's Algorithm

- Extracting information from link structures of a hyperlinked environment
- Basic essentials
- Authorities
- Hubs
- For a topic, authorities are relevant nodes which are referred by many hubs
- For a topic, hubs are nodes which connect many related authorities for that topic
- Authorities are defined in terms of hubs and hubs defined in terms of authorities
- Mutually enforcing relationship (global nature)

Authorities and Hubs

- The algorithm can be applied to arbitrary hyperlinked environments
- World Wide Web (nodes correspond to web pages with links)
- Publications Database (nodes correspond to publications and links to co-citation relationship)

Kleinberg' s Algorithm (WWW)

- Is different from clustering
- Different meanings of query terms
- Addressed problems by the text-based model
- Self-description of page may not include appropriate keywords
- Distinguish between general popularity and relevance

Three steps

- Create a focused sub-graph of the Web
- Iteratively compute hub and authority scores

Filter out the top hubs and authorities

Root and Base Set

- For the success of the algorithm base set (sub-graph) should be
- relatively small
- rich in relevant pages
- contains most of the strongest authorities
- Start first with a root set
- obtained from a text-based search engine
- does not satisfy third condition of a useful subgraph
- Solution: extending root set
- add any page pointed by a page in the root set to it
- add any page that points to a page in the root set to it (at most d)
- the extended root set becomes our base set

Root and Base Set

Base

Two Operations

Updating authority weight

Updating hub weight

- $a[p]$... authority weight for page p
- h[p] ... hub weight for page p
- Iterative algorithm

1. set all weights for each page to 1
2. apply both operations on each page from the base set and normalize authority and hub weights separately (sum of squares=1)
3. repeat step 2 until weights converge

Matrix Notation

$$
A=\left(\begin{array}{cccccc}
& n 1 & n 2 & n 3 & n 4 & n 5 \\
n 1 & 0 & 1 & 1 & 1 & 0 \\
n 2 & 0 & 0 & 0 & 1 & 0 \\
n 3 & 0 & 0 & 0 & 0 & 1 \\
n 4 & 0 & 0 & 0 & 0 & 0 \\
n 5 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- G (root set) is a directed graph with web pages as nodes and their links
- G can be presented as a connectivity matrix A
- $A(i, j)=1$ only if i-th page points to j-th page
- Authority weights can be represented as a unit vector a - a(i) is the authority weight of the i-th page
- Hub weights can be represented as a unit vector h
- $h(i)$ is the hub weight of the i-th page

Convergence

- Two mentioned basic operations can be written as matrix operations (all values are updated simultaneously)
- Updating authority weights: $a=A^{\top} h$
- Updating hub weights: h=Aa
- After k iterations:

$$
\begin{aligned}
& a_{1}=A^{T} h_{0} \\
& h_{1}=A a_{1}
\end{aligned}
$$

- Thus
- h_{k} is a unit vector in the direction of $\left(A A^{\top}\right)^{k} h_{0}$
- a_{k} is a unit vector in the direction of $\left(A^{\top} A\right)^{k \cdot 1} h_{0}$
- Theorem
- a_{k} converges to the principal eigenvector of $A^{\top} A$
- h_{k} converges to the principal eigenvector of ${A A^{\top}}^{\top}$

Convergence

- ($\left.A^{\top} A\right)^{k} \times v^{`} \approx($ const $) v_{1}$ where $k \gg 1, v^{`}$ is a random vector, v_{1} is the eigenvector of $A^{\top} A$
- Proof:

$$
\begin{aligned}
\left(A^{\top} A\right)^{k}= & \left(A^{\top} A\right) \times\left(A^{\top} A\right) \times \ldots=\left(V \wedge^{2} V^{\top}\right) \times\left(V^{2} \wedge^{2 t}\right) \times \ldots \\
& =\left(V \wedge^{2} V^{\top}\right) \times \ldots=\left(V^{4} \wedge^{4} V^{\top}\right) \times \ldots=\left(V^{2 k} V^{\top}\right)
\end{aligned}
$$

Using spectral decomposition:

$$
\left(A^{\top} A\right)^{k}=\left(V \wedge{ }^{2 k} V^{\top}\right)=\lambda_{1}{ }^{2 k} V_{1} V_{1}^{\top}+\lambda_{2}^{2 k} V_{2} V_{2}^{\top}+\ldots+\lambda_{n}{ }^{2 k} V_{n} V_{n}^{\top}
$$

$$
\text { because } \lambda_{1}>\lambda_{i \neq 1} \rightarrow \lambda_{1}^{2 k} \gg \lambda_{i \neq 1}^{2 k}
$$

thus $\left(A^{\top} A\right)^{\mathrm{k}} \approx \lambda_{1}{ }^{2 \mathrm{k}} \mathrm{v}_{1} \mathrm{v}_{1}{ }^{\top}$
now $\left(A^{\top} A\right)^{k} \times v^{`}=\lambda_{1}{ }^{2 k} v_{1} v_{1}^{\top} \times v^{`}=($ const $) v_{1}$
because $v_{1}^{\top} x v^{`}$ is a scalar.

Sign of Eigenvector

- We know that $\left(A^{\top} A\right)^{k} \approx \lambda_{1}{ }^{2 k} v_{1} v_{1}{ }^{\top}$
- Since A is the adjacency matrix, elements of $\left(A^{\top} A\right)^{k}$ are all positive
- $\boldsymbol{\rightarrow}_{\lambda_{1}}{ }^{2 k} \mathrm{v}_{1} \mathrm{v}_{1}{ }^{\top}$ should be positive
- $\lambda_{1}{ }^{2 k}$ is positive $\rightarrow \mathrm{v}_{1} \mathrm{v}_{1}{ }^{\top}$ is positive \rightarrow all elements of v_{1} should have the same sign (either all elements are positive or all are negative)

Sub-communities

- Authority vector converges to the principal eigenvector of $A^{\top} A$, which lets us choose strong authorities
- Hub vector converges to the principal eigenvector of AA $^{\top}$ which lets us choose strong hubs
- These chosen authorities and hubs build a cluster in our network
- However there can exist different clusters of authorities and hubs for a given topic, which correspond to:
- different meanings of a term (e.g. jaguar \rightarrow animal,car,team)
- different communities for a term (e.g. randomized algorithms)
- polarized thoughts for a term (e.g. abortion)
- Extension:
- each eigenvector of $A^{\top} A$ and $A A^{\top}$ represents distinct authority and hub vectors for a sub-community in Graph G, respectively.

PageRank

- PageRank is a link analysis algorithm that assigns weights to nodes of a hyperlinked environment
- It assigns importance scores to every node in the set which is similar to the authority scores in Kleinberg algorithm
- It is an iterative algorithm like Kleinberg algorithm
- Main assumptions:
- in-degree of nodes are indicators of their importance
- links from different nodes are not counted equally. They are normalized by the out-degree of its source.

Simplified PageRank (WWW)

$$
\operatorname{Pr}(u)=\sum_{v \in B(u)} \frac{\operatorname{Pr}(v)}{L(v)}
$$

$B(u)$ is the set of nodes which have a link to u

- PageRank Algorithm simulates a random walk over web pages.
- Pr value is interpreted as probabilities
- In each iteration we update Pr values of each page simultaneously
- After several passes, Pr value converges to a probability distribution used to represent the probability that a person randomly clicking on links will arrive at any particular page

Matrix Notation

- $M(i, j)$ is the transition matrix and defines fragment of the j-th page's Pr value which contributes to the Pr value of the i-th page

PageRank and Markov Chain

- PageRank defines a Markov Chain on the pages
- with transition matrix M and stationary distribution Pr
- states are pages
- transitions are the links between pages (all equally probable)
- As a result of Markov theory, Pr value of a page is the probability of being at that page after lots of clicks.

Matrix Notation

Non-Simplified PageRank (WWW)
 $$
\operatorname{Pr}(u)=\frac{1-d}{k}+d \cdot \sum_{v \in B(u)} \frac{\operatorname{Pr}(v)}{L(v)}
$$

Matrix Notation

k is the number of total pages B_{i} is the set of pages which have a link to i-th page

$$
\boldsymbol{M}_{i j}=\left\{\begin{array}{l}
\frac{\mathbf{1 - d}}{\boldsymbol{k}}+\frac{\boldsymbol{d}}{\left|\boldsymbol{B}_{j}\right|}, \text { if } i \in \boldsymbol{B}_{j} \\
\frac{\mathbf{1 - d}}{\boldsymbol{k}}, \text { else }
\end{array}\right.
$$

- (1-d) defines the probability to jump to a page, to which there is no link from the current page

Pr converges to the principal eigenvector of the transition matrix M

Randomized HITS

- Random walk on HITS
- Odd time steps: update authority
- Even time steps: update hubs

$$
\begin{aligned}
a^{(t+1)} & =\epsilon \overrightarrow{1}+(1-\epsilon) A_{\mathrm{row}}^{T} h^{(t)} \\
h^{(t+1)} & =\epsilon \overrightarrow{1}+(1-\epsilon) A_{\mathrm{col}} a^{(t+1)}
\end{aligned}
$$

- t: a very large odd number, large enough that the random walk converged \rightarrow The authority weight of a page $=$ the chance that the surfer visits that page on time step t

Stability of Algorithms

- Being stable to perturbations of the link structure.
- HITS: if the eigengap is big, insensitive to small perturbations; If it's small there may be a small perturbation that can dramatically change its results.
- PageRank: if the perturbed/modified web pages did not have high overall PageRank, then the perturbed PageRank scores will not be far from the original.
- Randomized HITS: insensitive to small perturbations

Thank You!

Special thanks to Cem

