Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
- Kernel PCA
- Isomap

PCA

- PCA: Principle Component Analysis (closely related to SVD).
- PCA finds a linear projection of high dimensional data into a lower dimensional subspace such as:
- The variance retained is maximized.
- The least square reconstruction error is minimized.

Iyad Batal

Some PCA/SVD applications

$>$ LSI: Latent Semantic Indexing.
$>$ Kleinberg/Hits algorithm (compute hubs and authority scores for nodes).
$>$ Google/PageRank algorithm (random walk with restart).
$>$ Image compression (eigen faces)
$>$ Data visualization (by projecting the data on 2D).

PCA

PCA steps: transform an $N \times d$ matrix X into an $N \times m$ matrix Y :

- Centralized the data (subtract the mean).
- Calculate the $d \times d$ covariance matrix: $\mathrm{C}=\frac{1}{N-1} X^{T} X$ (different notation from tutorial!!!)
- $C_{i, j}=\frac{1}{N-1} \sum_{q=1}^{N} X_{q, i} . X_{q, j}$
- $C_{i, i}$ (diagonal) is the variance of variable i .
- $C_{i, j}$ (off-diagonal) is the covariance between variables i and j .
- Calculate the eigenvectors of the covariance matrix (orthonormal).
- Select m eigenvectors that correspond to the largest m eigenvalues to be the new basis.

Eigenvectors

- If A is a square matrix, a non-zero vector \mathbf{v} is an eigenvector of A if there is a scalar λ (eigenvalue) such that

$$
A v=\lambda v
$$

- Example: $\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)\binom{3}{2}=\binom{12}{8}=4\binom{3}{2}$
- If we think of the squared matrix as a transformation matrix, then multiply it with the eigenvector do not change its direction.

What are the eigenvectors of the identity matrix?

PCA example

X : the data matrix with $N=11$ objects and $d=2$ dimensions.

PCA example

$>$ Step 1: subtract the mean and calculate the covariance matrix C.

$$
C=\left(\begin{array}{ll}
0.716 & 0.615 \\
0.615 & 0.616
\end{array}\right)
$$

PCA example

$>$ Step 2: Calculate the eigenvectors and eigenvalues of the covariance matrix:
$\lambda_{1} \approx 1.28, v_{1} \approx\left[\begin{array}{lll}-0.677 & -0.735\end{array}\right]^{\top}, \lambda_{2} \approx 0.49, v_{2} \approx\left[\begin{array}{ll}-0.735 & 0.677\end{array}\right]^{\top}$

Notice that v_{1} and v_{2} are orthonormal:
$\left|\mathrm{v}_{1}\right|=1$
$\left|v_{2}\right|=1$
$\mathrm{v}_{1} \cdot \mathrm{v}_{2}=0$

PCA example

$>$ Step 3: project the data
Let $V=\left[v_{1}, \ldots v_{m}\right]$ is $d \times m$ matrix where the columns v_{i} are the eigenvectors corresponding to the largest m eigenvalues
The projected data: $Y=X V$ is $N \times m$ matrix.
If $m=d$ (more precisely $\operatorname{rank}(X)$), then there is no loss of information!

PCA example

> Step 3: project the data

$$
\lambda_{1} \approx 1.28, v_{1} \approx\left[\begin{array}{ll}
-0.677 & -0.735
\end{array}\right]^{\top}, \lambda_{2} \approx 0.49, v_{2} \approx\left[\begin{array}{ll}
-0.735 & 0.677
\end{array}\right]^{\top}
$$

The eigenvector with the highest eigenvalue is the principle component of the data.
if we are allowed to pick only one dimension, the principle component is the best direction (retain the maximum variance).

Our PC is $\mathrm{v}_{1} \approx\left[\begin{array}{ll}-0.677 & -0.735\end{array}\right]^{\mathrm{T}}$

PCA example

$>$ Step 3: project the data
If we select the first PC and reconstruct the data, this is what we get:

We lost variance along the other component (lossy compression!)

Useful properties

- The covariance matrix is always symmetric

$$
\mathrm{C}^{T}=\left(\frac{1}{N-1} X^{T} X\right)^{T}=\frac{1}{N-1} X^{T} X^{T^{T}}=C
$$

- The principal components of X are orthonormal

$$
v_{i}^{T} v_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- $V=\left[v_{1}, \ldots v_{m}\right]$, then $V^{T}=V^{-1}$, i.e $V^{T} V=I$

Useful properties

Theorem 1: if square $d \times d$ matrix S is a real and symmetric matrix ($\mathrm{S}=\mathrm{S}^{\mathrm{T}}$) then

$$
S=V \Lambda V^{T}
$$

Where $V=\left[v_{1}, \ldots v_{d}\right]$ are the eigenvectors of S and
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{d}\right)$ are the eigenvalues.

Proof:
$S V=V \Lambda$
$\left[\begin{array}{lllll}S & v_{1} & \ldots & S & v_{d}\end{array}\right]=\left[\begin{array}{llll}\lambda_{1} & v_{1} & \ldots & \lambda_{d} \cdot v d\end{array}\right]$: the definition of eigenvectors.
$S=V \Lambda V^{-1}$
$S=V \Lambda V^{T}$ because V is orthonormal $V^{-1}=V^{T}$

Useful properties

The projected data: $Y=X V$

The covariance matrix of Y is

$$
\begin{aligned}
C_{Y} & =\frac{1}{N-1} Y^{T} Y=\frac{1}{N-1} V^{T} X^{T} X V=V^{T} C_{X} V \\
& =\mathrm{V}^{\mathrm{T}} \mathrm{~V} \Lambda \mathrm{~V}^{\mathrm{T}} \mathrm{~V} \quad \text { because the covariance matrix } C_{X} \text { is symmetric } \\
& =\mathrm{V}^{-1} \mathrm{~V} \Lambda \mathrm{~V}^{-1} \mathrm{~V} \text { because } \mathrm{V} \text { is orthonormal } \\
& =\Lambda
\end{aligned}
$$

After the transformation, the covariance matrix becomes diagonal!

PCA (derivation)

- Find the direction for which the variance is maximized:

$$
\begin{gathered}
v_{1}=\operatorname{argmax}_{v 1} \operatorname{var}\left(X v_{1}\right) \\
\text { Subject to: } \quad v_{1}{ }^{T} v_{1}=1
\end{gathered}
$$

- Rewrite in terms of the covariance matrix:

$$
\operatorname{var}\left(X v_{1}\right)=\frac{1}{N-1}\left(X v_{1}\right)^{T}\left(X v_{1}\right)=v_{1}{ }^{T} \frac{1}{N-1} X^{T} X v_{1}=v_{1}^{T} C v_{1}
$$

- Solve via constrained optimization:

$$
L\left(v_{1}, \lambda_{1}\right)=v_{1}{ }^{T} C v_{1}+\lambda_{1}\left(1-v_{1}{ }^{T} v_{1}\right)
$$

PCA (derivation)

- Constrained optimization:

$$
L\left(v_{1}, \lambda_{1}\right)=v_{1}^{T} C v_{1}+\lambda_{1}\left(1-v_{1}^{T} v_{1}\right)
$$

- Gradient with respect to v_{1} :

$$
\begin{gathered}
\frac{d L\left(v_{1}, \lambda_{1}\right)}{d v_{1}}=2 C v_{1}-2 \lambda_{1} v_{1} \Rightarrow C v_{1}=\lambda_{1} v_{1} \\
\text { This is the eigenvector problem! }
\end{gathered}
$$

- Multiply by $\mathrm{v}_{1}{ }^{\mathrm{T}}$:

$$
\lambda_{1}=v_{1}^{T} C v_{1}
$$

The projection variance is the eigenvalue

PCA

Unsupervised: maybe bad for classification!

Iyad Batal

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
- Kernel PCA
- Isomap

SVD

Any $N \times d$ matrix X can be uniquely expressed as:

- r is the rank of the matrix X (\# of linearly independent columns/rows).
- U is a column-orthonormal $N \times r$ matrix.
- Σ is a diagonal $r \times r$ matrix where the singular values σ_{i} are sorted in descending order.
- V is a column-orthonormal $d \times r$ matrix.

SVD example

The rank of this matrix $r=2$ because we have 2 types of documents (CS and Medical documents), i.e. 2 concepts.

SVD example

U : document-to-concept similarity matrix
V: term-to-concept similarity matrix.
Example: $\mathrm{U}_{1,1}$ is the weight of CS concept in document $\mathrm{d}_{1}, \sigma_{1}$ is the strength of the CS concept, $\mathrm{V}_{1,1}$ is the weight of 'data' in the CS concept. $\mathrm{V}_{1,2}=0$ means 'data' has zero similarity with the 2nd concept (Medical). What does $U_{4,1}$ means?

PCA and SVD relation

Theorem: Let $\mathrm{X}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$ be the SVD of an $N \times d$ matrix X and
$\mathrm{C}=\frac{1}{N-1} X^{T} X$ be the $d \times d$ covariance matrix. The eigenvectors of
C are the same as the right singular vectors of X.
Proof:
$X^{T} X=V \Sigma U^{T} U \Sigma V T=V \Sigma \Sigma V^{T}=V \Sigma^{2} V T$
$\mathrm{C}=\mathrm{V} \frac{\Sigma^{2}}{N-1} \mathrm{~V}^{\mathrm{T}}$
But C is symmetric, hence $\mathrm{C}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{\mathbf{T}}$ (according to theorem1).
Therefore, the eigenvectors of the covariance matrix are the same as matrix V (right singular vectors) and the eigenvalues of C can be computed from the singular values $\lambda_{\mathrm{i}}=\frac{\sigma_{\mathrm{i}}{ }^{2}}{\mathrm{~N}-1}$

Summary for PCA and SVD

Objective: project an $N \times d$ data matrix X using the largest m principal components $V=\left[v_{1}, \ldots v_{m}\right]$.

1. zero mean the columns of X .
2. Apply PCA or SVD to find the principle components of X.

PCA:
I. Calculate the covariance matrix $\mathrm{C}=\frac{1}{N-1} X^{T} X$.
II. V corresponds to the eigenvectors of C.

SVD:
I. Calculate the SVD of $\mathrm{X}=\mathrm{U} \Sigma \mathrm{V}^{\mathrm{T}}$.
II. V corresponds to the right singular vectors.
3. Project the data in an m dimensional space: $\mathrm{Y}=\mathrm{X} V$

Outline

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- Multi-Dimensional Scaling (MDS)
- Non-linear extensions:
- Kernel PCA
- Isomap

MDS

- Multi-Dimensional Scaling [Cox and Cox, 1994] .
- MDS give points in a low dimensional space such that the Euclidean distances between them best approximate the original distance matrix. Given distance matrix

$$
\Delta:=\left(\begin{array}{cccc}
\delta_{1,1} & \delta_{1,2} & \cdots & \delta_{1, I} \\
\delta_{2,1} & \delta_{2,2} & \cdots & \delta_{2, I} \\
\vdots & \vdots & & \vdots \\
\delta_{I, 1} & \delta_{I, 2} & \cdots & \delta_{I, I}
\end{array}\right) .
$$

Map input points x_{i} to z_{i} such as $\left|\left|z_{i}-z_{i}\right|\right| \approx \delta_{i, j}$

- Classical MDS: the norm $\|$.$\| is the Euclidean distance.$
- Distances \rightarrow inner products (Gram matrix) \rightarrow embedding There is a formula to obtain Gram matrix G from distance matrix Δ.

MDS example

Given pairwise distances between different cities (Δ matrix), plot the cities on a 2D plane (recover location)!!

Iyad Batal

PCA and MDS relation

- Preserve Euclidean distances $=$ retaining the maximum variance.
- Classical MDS is equivalent to PCA when the distances in the input space are the Euclidean distance.
- PCA uses the $d \times d$ covariance matrix: $\mathrm{C}=\frac{1}{N-1} X^{T} X$
- MDS uses the $N \times N$ Gram (inner product) matrix: $G=X X^{T}$
- If we have only a distance matrix (we don't know the points in the original space), we cannot perform PCA!
- Both PCA and MDS are invariant to space rotation!

Kernel PCA

- Kernel PCA [Scholkopf et al. 1998] performs nonlinear projection.
- Given input $\left(x_{1}, \ldots x_{N}\right)$, kernel PCA computes the principal components in the feature space $\left(\varphi\left(x_{1}\right), \ldots \varphi\left(x_{N}\right)\right)$.
- Avoid explicitly constructing the covariance matrix in feature space.
- The kernel trick: formulate the problem in terms of the kernel function $k\left(x, x^{\prime}\right)=\varphi(x) . \varphi\left(x^{\prime}\right)$ without explicitly doing the mapping.
- Kernel PCA is non-linear version of MDS use Gram matrix in the feature space (a.k.a Kernel matrix) instead of Gram matrix in the input space.

Kernel PCA

Original space

Isomap

- Isomap [Tenenbaum et al. 2000] tries to preserve the distances along the data Manifold (Geodesic distance).
- Cannot compute Geodesic distances without knowing the Manifold!

Blue: true manifold distance, red: approximated shortest path distance

- Approximate the Geodesic distance by the shortest path in the adjacency graph

Isomap

- Construct the neighborhood graph (connect only k-nearest neighbors): the edge weight is the Euclidean distance.

- Estimate the pairwise Geodesic distances by the shortest path (use Dijkstra algorithm).
- Feed the distance matrix to MDS.

Isomap

- Euclidean distances between outputs match the geodesic distances between inputs on the Manifold from which they are sampled.

Related Feature Extraction Techniques

Linear projections:

- Probabilistic PCA [Tipping and Bishop 1999]
- Independent Component Analysis (ICA) [Comon , 1994]
- Random Projections

Nonlinear projection (manifold learning):

- Locally Linear Embedding (LLE) [Roweis and Saul, 2000]
- Laplacian Eigenmaps [Belkin and Niyogi, 2003]
- Hessian Eigenmaps [Donoho and Grimes, 2003]
- Maximum Variance Unfolding [Weinberger and Saul, 2005]

