
Outline 

• Principal Component Analysis (PCA) 

• Singular Value Decomposition (SVD) 

• Multi-Dimensional Scaling (MDS) 

• Non-linear extensions: 

• Kernel PCA 

• Isomap 
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PCA 

• PCA: Principle Component Analysis (closely related to SVD). 

• PCA finds a linear projection of high dimensional data into a 

lower dimensional subspace such as: 

o The variance retained is maximized. 

o The least square reconstruction error is minimized. 
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Some PCA/SVD applications 
 

 LSI: Latent Semantic Indexing.  

 Kleinberg/Hits algorithm (compute hubs and authority scores 

for nodes). 

 Google/PageRank algorithm (random walk with restart). 

 Image compression (eigen faces) 

 Data visualization (by projecting the data on 2D). 
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PCA 

PCA steps: transform an 𝑁 × 𝑑 matrix 𝑋 into an 𝑁 × 𝑚 matrix 𝑌: 

• Centralized the data (subtract the mean). 

• Calculate the 𝑑 × 𝑑 covariance matrix: C =
1

𝑁−1
𝑋𝑇𝑋 (different 

notation from tutorial!!!) 

o 𝐶𝑖,𝑗 =
1

𝑁−1
 𝑋𝑞,𝑖 . 𝑋𝑞,𝑗

𝑁
𝑞=1  

o 𝐶𝑖,𝑖 (diagonal) is the variance of variable i. 

o 𝐶𝑖,𝑗  (off-diagonal) is the covariance between variables i and j. 

• Calculate the eigenvectors of the covariance matrix (orthonormal). 

• Select m eigenvectors that correspond to the largest m eigenvalues to 

be the new basis. 
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Eigenvectors 

• If A is a square matrix, a non-zero vector v is an eigenvector of 

A if there is a scalar λ (eigenvalue) such that 

𝐴𝑣 = λ𝑣 

• Example: 
2 3
2 1

3
2

=
12
8

= 4
3
2

 

• If we think of the squared matrix as a transformation matrix, 

then multiply it with the eigenvector do not change its direction. 

What are the eigenvectors of the identity matrix? 
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 𝑋 : the data matrix with N=11 objects and d=2 dimensions. 
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PCA  example 



 Step 1: subtract the mean and calculate the covariance matrix C. 

 

𝐶 =
0.716 0.615
0.615 0.616
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PCA  example 



 Step 2: Calculate the eigenvectors and eigenvalues of the 

covariance matrix: 

 λ1≈1.28, v1 ≈ [-0.677  -0.735]T , λ2 ≈0.49, v2 ≈ [-0.735  0.677]T 

 

 

Notice that v1 and v2  

are orthonormal: 

|v1|=1 

|v2|=1  

v1 . v2 = 0 
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PCA  example 



 Step 3: project the data 

Let 𝑉 =  [𝑣1, …  𝑣𝑚] is 𝑑 × 𝑚 matrix where the columns 𝑣𝑖 are the 

eigenvectors corresponding to the largest m eigenvalues 

The projected data: 𝑌 = 𝑋 𝑉 is 𝑁 × 𝑚 matrix. 

If m=d (more precisely rank(X)), then there is no loss of information! 
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PCA  example 



 Step 3: project the data 

λ1≈1.28, v1 ≈ [-0.677  -0.735]T , λ2 ≈0.49, v2 ≈ [-0.735  0.677]T 

The eigenvector with the highest eigenvalue is the principle 

component of the data.  

if we are allowed to pick only one dimension, the principle 

component is the best direction (retain the maximum variance). 

 Our PC is v1 ≈ [-0.677  -0.735]T  

 

Iyad Batal 

PCA  example 



 Step 3: project the data 

If we select the first PC and reconstruct the data, this is what we get: 
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We lost variance along the other component (lossy compression!) 

PCA  example 



Useful properties 

• The covariance matrix is always symmetric 

C𝑇 = (
1

𝑁 − 1
𝑋𝑇𝑋)𝑇 =

1

𝑁 − 1
𝑋𝑇𝑋𝑇𝑇

= 𝐶 

• The principal components of 𝑋 are orthonormal 

 

𝑣𝑖
𝑇𝑣𝑗 =  

1       𝑖𝑓 𝑖 = 𝑗
0       𝑖𝑓 𝑖 ≠ 𝑗

 

• 𝑉=[𝑣1, … 𝑣𝑚], then 𝑉𝑇 = 𝑉−1 , i.e 𝑉𝑇 
𝑉 = 𝐼 
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Useful properties 

Theorem 1: if square 𝑑 × 𝑑 matrix S is a real and symmetric matrix 

(S=ST) then  

𝑺 =  𝑽 𝚲 𝑽𝑻 
  

Where 𝑉 = [𝑣1, …  𝑣𝑑] are the eigenvectors of S and  

Λ =  𝑑𝑖𝑎𝑔 (𝜆1, …  𝜆𝑑) are the eigenvalues.  

 

Proof:  

𝑆 𝑉 = 𝑉 Λ  

[𝑆 𝑣1 …  𝑆 𝑣𝑑] = [𝜆1. 𝑣1 …  𝜆𝑑. 𝑣𝑑]: the definition of eigenvectors.  

 𝑆 =  𝑉 Λ 𝑉−1 

 𝑆 =  𝑉 Λ 𝑉𝑇 because V is orthonormal 𝑉−1=
 
𝑉𝑇 
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Useful properties 

The projected data: 𝑌 = 𝑋 𝑉 

 

The covariance matrix of Y is  

𝐶𝑌 =
1

𝑁 − 1
𝑌𝑇𝑌 =

1

𝑁 − 1
𝑉𝑇𝑋𝑇𝑋 𝑉 = 𝑉𝑇𝐶𝑋𝑉 

      = VTV Λ VT 
V      because  the covariance matrix 𝐶𝑋 is symmetric 

      = V−1V Λ V−1 V     because  V is orthonormal 

      = Λ 

After the transformation, the covariance matrix becomes diagonal! 
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PCA (derivation) 

• Find the direction for which the variance is maximized: 

𝑣1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣1 𝑣𝑎𝑟 𝑋𝑣1  

Subject to:    𝑣1
𝑇𝑣1=1 

•  Rewrite in terms of the covariance matrix: 

𝑣𝑎𝑟 𝑋𝑣1 =
1

𝑁 − 1
𝑋𝑣1

𝑇 𝑋𝑣1 = 𝑣1
𝑇

1

𝑁 − 1
𝑋𝑇𝑋 𝑣1 = 𝑣1

𝑇𝐶 𝑣1 

• Solve via constrained optimization: 

𝐿 𝑣1, 𝜆1 = 𝑣1
𝑇𝐶 𝑣1 + 𝜆1(1 − 𝑣1

𝑇𝑣1) 
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PCA (derivation) 

• Constrained optimization: 

𝐿 𝑣1, 𝜆1 = 𝑣1
𝑇𝐶 𝑣1 + 𝜆1(1 − 𝑣1

𝑇𝑣1) 

 

• Gradient with respect to v1: 

𝑑𝐿 𝑣1, 𝜆1

𝑑𝑣1
= 2𝐶𝑣1 − 2𝜆1𝑣1 ⇒ 𝐶𝑣1 = 𝜆1𝑣1 

This is the eigenvector problem! 

• Multiply by v1
T: 

𝜆1=𝑣1
𝑇𝐶 𝑣1 

 The projection variance is the eigenvalue 
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PCA 

Unsupervised: maybe bad for classification! 
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Outline 

• Principal Component Analysis (PCA) 
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SVD 

Any 𝑁 × 𝑑 matrix 𝑋 can be uniquely expressed as: 
 

 

X = U x Σ x VT  

 

 

 

 

• r is the rank of the matrix X (# of linearly independent columns/rows). 

• U is a column-orthonormal 𝑁 × 𝑟 matrix. 

• Σ is a diagonal 𝑟 × 𝑟 matrix where the singular values σi are sorted 

in descending order. 

• V is a column-orthonormal 𝑑 × 𝑟 matrix. 
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SVD example  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The rank of this matrix r=2 because we have 2 types of 
documents (CS and Medical documents), i.e. 2 concepts. 
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doc-to-concept 
similarity matrix 

concepts strengths 

term-to-concept 
similarity matrix 



doc-to-concept 
similarity matrix 

concepts strengths 

term-to-concept 
similarity matrix 

 

 

 

 

 

 

 

 

 

  

U: document-to-concept similarity matrix 

V: term-to-concept similarity matrix.  

Example: U1,1 is the weight of CS concept in document d1, σ1 is the 

strength of the CS concept, V1,1 is the weight of ‘data’ in the CS concept.   

V1,2=0 means ‘data’ has zero similarity with the 2nd concept (Medical).  

What does U4,1 means? 

 

SVD example 



PCA and SVD relation 
 

Theorem: Let X = U Σ VT be the SVD of an 𝑁 × 𝑑 matrix X and    

C =
1

𝑁−1
𝑋𝑇𝑋 be the 𝑑 × 𝑑 covariance matrix. The eigenvectors of 

C are the same as the right singular vectors of X. 
 

Proof: 

𝑋𝑇 𝑋 =  𝑉 Σ 𝑈𝑇  
𝑈 Σ 𝑉𝑇 =  𝑉 Σ Σ 𝑉𝑇 =  

𝑉 Σ2 𝑉𝑇 

C= V
Σ2

𝑁 − 1
VT 

But C is symmetric, hence C = V Λ VT  (according to theorem1). 

Therefore, the eigenvectors of the covariance matrix are the same 

as matrix V (right singular vectors) and the eigenvalues of C can be 

computed from the singular values λi =
σi

2

N−1
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Summary for PCA and SVD 

Objective: project an 𝑁 × 𝑑 data matrix 𝑋 using the largest m 

principal components 𝑉 = [𝑣1, … 𝑣𝑚]. 

1. zero mean the columns of X. 

2. Apply PCA or SVD to find the principle components of X. 

 PCA: 

I.    Calculate the covariance matrix C =
1

𝑁−1
𝑋𝑇𝑋. 

II.   V corresponds to the eigenvectors of C. 

SVD: 

I.     Calculate the SVD of X=U Σ VT. 

II.    V corresponds to the right singular vectors. 

3. Project the data in an m dimensional space: Y = X V 
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MDS 

• Multi-Dimensional Scaling [Cox and Cox, 1994] . 

• MDS give points in a low dimensional space such that the Euclidean 

distances between them best approximate the original distance matrix. 

 Given distance matrix 

 

 

 

 Map input points xi to zi such as 𝑧𝑖 − 𝑧𝑖 ≈ 𝛿𝑖,𝑗 

• Classical MDS:  the norm || . || is the Euclidean distance. 

• Distances  inner products (Gram matrix)  embedding 

     There is a formula to obtain Gram matrix G from distance matrix Δ. 
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MDS example 

Given pairwise distances between different cities (Δ matrix), plot 
the cities on a 2D plane (recover location)!! 
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PCA and MDS relation 

• Preserve Euclidean distances = retaining the maximum variance. 

• Classical MDS is equivalent to PCA when the distances in the 

input space are the Euclidean distance. 

• PCA uses the 𝑑 × 𝑑 covariance matrix:  C =
1

𝑁−1
𝑋𝑇𝑋 

• MDS uses the 𝑁 × 𝑁 Gram (inner product) matrix: 𝐺 = 𝑋 𝑋𝑇 

• If we have only a distance matrix (we don’t know the points in 

the original space), we cannot perform PCA!  

• Both PCA and MDS are invariant to space rotation! 
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Kernel PCA 

• Kernel PCA [Scholkopf et al. 1998] performs nonlinear projection. 

• Given input (𝑥1, …  𝑥𝑁), kernel PCA computes the principal 
components in the feature space (𝜑(𝑥1), …  𝜑(𝑥𝑁)). 

• Avoid explicitly constructing the covariance matrix in feature 
space.  

• The kernel trick: formulate the problem in terms of the kernel 
function 𝑘(𝑥, 𝑥′) = 𝜑(𝑥). 𝜑(𝑥′) without explicitly doing the 
mapping. 

• Kernel PCA is non-linear version of MDS use Gram matrix in the 
feature space (a.k.a Kernel matrix) instead of Gram matrix in the 
input space. 
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Kernel PCA 

Original space A non-linear feature space 
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Isomap 

• Isomap [Tenenbaum et al. 2000] tries to preserve the distances 

along the data Manifold (Geodesic distance ). 

• Cannot compute Geodesic distances without knowing the Manifold! 

 

 

 

 

 

 

• Approximate the Geodesic distance by the shortest path in the 

adjacency graph 

 

Blue: true manifold distance, red: approximated shortest path distance 
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Isomap 

• Construct the neighborhood graph (connect only k-nearest 

neighbors): the edge weight is the Euclidean distance. 

 

 

 

 

 

 

• Estimate the pairwise Geodesic distances by the shortest path 

(use Dijkstra algorithm). 

• Feed the distance matrix to MDS. 
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Isomap 

• Euclidean distances between outputs match the geodesic 

distances between inputs on the Manifold from which they are 

sampled. 
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Related Feature Extraction Techniques 

Linear projections: 

• Probabilistic PCA [Tipping and Bishop 1999]  

• Independent Component Analysis (ICA) [Comon , 1994] 

• Random Projections  

Nonlinear projection (manifold learning): 

• Locally Linear Embedding (LLE) [Roweis and Saul, 2000] 

• Laplacian Eigenmaps [Belkin and Niyogi, 2003] 

• Hessian Eigenmaps [Donoho and Grimes, 2003] 

• Maximum Variance Unfolding [Weinberger and Saul, 2005] 

 
Iyad Batal 


