Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:
• Density estimation:
 – Maximum likelihood (ML)
 – Bayesian parameter estimates
 – MAP
• Bernoulli distribution.
• Binomial distribution
• Multinomial distribution
• Normal distribution
Density estimation

Data: \[D = \{ D_1, D_2, ..., D_n \} \]
\[D_i = x_i \quad \text{a vector of attribute values} \]

Attributes:
- modeled by random variables \(X = \{ X_1, X_2, ..., X_d \} \) with:
 - Continuous values
 - Discrete values
- E.g. **blood pressure** with numerical values
 or **chest pain** with discrete values
 [no-pain, mild, moderate, strong]

Underlying true probability distribution:
\[p(X) \]

Density estimation

Data: \[D = \{ D_1, D_2, ..., D_n \} \]
\[D_i = x_i \quad \text{a vector of attribute values} \]

Objective: try to estimate the underlying ‘true’ probability distribution over variables \(X \), \(p(X) \), using examples in \(D \)

Standard (iid) assumptions: Samples
- are independent of each other
- come from the same (identical) distribution (fixed \(p(X) \))
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters Θ
 $$p(X | \Theta)$$
- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Learning via parameter estimation

Basic settings:
- A set of random variables $X = \{X_1, X_2, \ldots, X_d\}$
- A model of the distribution over variables in X
 with parameters Θ : $\hat{p}(X | \Theta)$

Data $D = \{D_1, D_2, \ldots, D_n\}$

Objective: find parameters Θ such that $p(X | \Theta)$ describes data D the best
Parameter estimation

- **Maximum likelihood (ML)**

 maximize \(p(D \mid \Theta, \xi) \)

 - yields: one set of parameters \(\Theta_{ML} \)

 - the target distribution is approximated as:
 \[
 \hat{p}(X) = p(X \mid \Theta_{ML})
 \]

- **Bayesian parameter estimation**

 - uses the posterior distribution over possible parameters
 \[
 p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
 \]

 - Yields: all possible settings of \(\Theta \) (and their “weights”)

 - The target distribution is approximated as:
 \[
 \hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta
 \]

Parameter estimation

Other possible criteria:

- **Maximum a posteriori probability (MAP)**

 maximize \(p(\Theta \mid D, \xi) \) (mode of the posterior)

 - Yields: one set of parameters \(\Theta_{MAP} \)

 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \Theta_{MAP})
 \]

- **Expected value of the parameter**

 \(\hat{\Theta} = E(\Theta) \) (mean of the posterior)

 - Expectation taken with regard to posterior \(p(\Theta \mid D, \xi) \)

 - Yields: one set of parameters

 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \hat{\Theta})
 \]
Parameter estimation. Coin toss example

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: \(D \) a sequence of outcomes \(x_i \) such that
- **head** \(x_i = 1 \)
- **tail** \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1 - \theta) \)

Objective:
We would like to estimate the probability of a **head** \(\hat{\theta} \)
from data

Parameter estimation. Example

- **Assume** the unknown and possibly biased coin
- **Probability of the head** is \(\theta \)
- **Data:**
 - Heads: 15
 - Tails: 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

\[
\hat{\theta} = \frac{15}{25} = 0.6
\]

This is **the maximum likelihood estimate** of the parameter \(\theta \)
Probability of an outcome

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1-\theta)^{(1-x_i)}$$ \hspace{1cm} \text{Bernoulli distribution}

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$D = H H T H T H$ (encoded as $D = 110101$)

What is the probability of observing the data sequence D:

$$P(D \mid \theta) = ?$$
Probability of a sequence of outcomes.

Data: \(D \) a sequence of outcomes \(x_i \) such that

- head \(x_i = 1 \)
- tail \(x_i = 0 \)

Model: probability of a head \(\theta \)
probability of a tail \((1 - \theta) \)

Assume: a sequence of coin flips \(D = H H T H T H \)
encoded as \(D = 110101 \)

What is the probability of observing a data sequence \(D \):

\[
P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta
\]
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = H \ H \ T \ H \ T \ H$
encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta^i (1 - \theta)^{(1-x_i)}$$

Can be rewritten using the Bernoulli distribution:

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model:
- probability of a head θ
- probability of a tail $(1 - \theta)$

Objective:
We would like to estimate the probability of a head $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Bernoulli distribution
Maximum likelihood (ML) estimate.

Likelihood of data:
\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} \]

Maximum likelihood estimate
\[\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi) \]

Optimize log-likelihood (the same as maximizing likelihood)
\[l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1 - x_i) \log (1 - \theta) = \theta \sum_{i=1}^{n} x_i + (1 - \theta) \sum_{i=1}^{n} (1 - x_i) \]

\[N_1 \text{ - number of heads seen} \quad N_2 \text{ - number of tails seen} \]

Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log (1 - \theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution:
\[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]
Maximum likelihood estimate. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 H H T T H H T H T T T H T H T H H H T H H T H T H T T

 - **Heads:** 15
 - **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

\[
\begin{align*}
\text{Head: } & \quad \theta_{ML} = \frac{N_1}{N} = \frac{15}{25} = 0.6 \\
\text{Tail: } & \quad (1 - \theta_{ML}) = \frac{N_2}{N} = \frac{10}{25} = 0.4
\end{align*}
\]
Posterior density

Bayesian and MAP approaches rely on the posterior density

\[p(\theta \mid D, \xi) \]

Can be calculated as:

Likelihood of data

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)} \]

(via Bayes rule)

Prior

\[P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i}(1 - \theta)^{(1-x_i)} = \theta^{N_1}(1 - \theta)^{N_2} \]

\[p(\theta \mid \xi) \] - is the prior probability on \(\theta \)

How to choose the prior probability?

Prior distribution

Choice of prior: Beta distribution

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1}(1 - \theta)^{\alpha_2-1} \]

\(\Gamma(x) \) - A Gamma function

For integer values of \(x \)

\(\Gamma(n) = (n-1)! \)

Why to use Beta distribution?

Beta distribution “fits” Bernoulli trials - conjugate choice

\[P(D \mid \theta, \xi) = \theta^{N_1}(1 - \theta)^{N_2} \]

Posterior distribution is again a Beta distribution

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]
Beta distribution

\[\alpha_1 = \alpha_2 = 0.5 \]
\[\alpha_1 = 2.5, \alpha_2 = 5 \]
\[\alpha_1 = 2.5, \alpha_2 = 2.5 \]

Posterior distribution

\[p(\theta | D, \xi) = \frac{P(D | \theta, \xi) \text{Beta}(\theta | \alpha_1, \alpha_2)}{P(D | \xi)} = \text{Beta}(\theta | \alpha_1 + N_1, \alpha_2 + N_2) \]
Bayesian framework

The ML estimate picks one value of the parameter

- **Assume**: there are two different parameter settings that are close in terms of their probability values. Using only one of them may introduce a strong bias, if we use them, for example, for predictions.

Bayesian parameter estimate
- Remedies the limitation of one choice
- Keeps all possible parameter values
- Where \(p(\theta \mid D, \xi) \approx Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \)

- The posterior can be used to define \(p(A \mid D) \):

\[
p(A \mid D) = \int_\Theta p(A \mid \Theta) p(\Theta \mid D, \xi) d\Theta
\]

Bayesian framework

- A probability of an outcome \(x=1 \) in the next trial

\[
P(x = 1 \mid D, \xi)
\]

Posterior density

\[
P(x = 1 \mid D, \xi) = \int_0^1 P(x = 1 \mid \theta, \xi) p(\theta \mid D, \xi) d\theta
\]

\[
= \int_0^1 \theta p(\theta \mid D, \xi) d\theta = E(\theta)
\]

- Equivalent to the expected value of the parameter
 - expectation is taken with respect to the posterior distribution

\[
p(\theta \mid D, \xi) = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
Expected value of the parameter

How to obtain the expected value?

\[
E(\theta) = \int_0^1 \theta \text{Beta}(\theta | \eta_1, \eta_2) d\theta = \int_0^1 \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \theta^{\eta_1-1} (1 - \theta)^{\eta_2-1} d\theta
\]

\[
= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \int_0^1 \theta^{\eta_1} (1 - \theta)^{\eta_2-1} d\theta
\]

\[
= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1) \Gamma(\eta_2)} \frac{\Gamma(\eta_1 + 1) \Gamma(\eta_2)}{\Gamma(\eta_1 + \eta_2 + 1)} \int_0^1 \text{Beta}(\eta_1 + 1, \eta_2) d\theta
\]

\[
= \frac{\eta_1}{\eta_1 + \eta_2}
\]

Note: \(\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)\) for integer values of \(\alpha\)

Expected value of the parameter

- Substituting the results for the posterior:

\[
p(\theta | D, \hat{\xi}) = \text{Beta}(\theta | \alpha_1 + N_1, \alpha_2 + N_2)
\]

We get

\[
E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + N_1 + \alpha_2 + N_2}
\]

- Note that the mean of the posterior is yet another “reasonable” parameter choice:

\[
\hat{\theta} = E(\theta)
\]
Maximum a posterior probability

Maximum a-posteriori estimate
- Selects the mode of the posterior distribution
\[
\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta \mid D, \xi)
\]
\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]
\[
= \frac{\Gamma(\alpha_1 + \alpha_2 + N_1 + N_2)}{\Gamma(\alpha_1 + N_1)\Gamma(\alpha_2 + N_2)} \theta^{N_1 + \alpha_1 - 1}(1 - \theta)^{N_2 + \alpha_2 - 1}
\]

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as prior counts)

MAP Solution:
\[
\theta_{\text{MAP}} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}
\]

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- Data:
 H H T T H H T H T T H T H H H T H H T T
 - Heads: 15
 - Tails: 10
- Assume \(p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \)
What is the MAP estimate?
MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

 H H T T H H T H T T H T T H H H T H H H H T H H H T
 - Heads: 15
 - Tails: 10
- Assume $p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5)$

What is the MAP estimate?

$$\theta_{MAP} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}$$

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

 H H T T H H T H T T H T T H H H T H H H T
 - Heads: 15
 - Tails: 10
- Assume $p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5)$

$$\theta_{MAP} = \frac{19}{33}$$

$p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,20)$

$$\theta_{MAP} = \frac{19}{48}$$